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Abstract

This work presents an approach decomposing
propositions into four functional components
and identify the patterns linking those com-
ponents to determine argument structure. The
entities addressed by a proposition are target
concepts and the features selected to make a
point about the target concepts are aspects.
A line of reasoning is followed by providing
evidence for the points made about the tar-
get concepts via aspects. Opinions on target
concepts and opinions on aspects are used to
support or attack the ideas expressed by target
concepts and aspects. The relations between
aspects, target concepts, opinions on target
concepts and aspects are used to infer the ar-
gument relations. Propositions are connected
iteratively to form a graph structure. The ap-
proach is generic in that it is not tuned for a
specific corpus and evaluated on three differ-
ent corpora from the literature: AAEC, AMT,
US2016G1tv and achieved an F score of 0.79,
0.77 and 0.64, respectively.

1 Introduction

Argument mining is the process of identifying ar-
gumentative structure contained within a text. It
involves segmenting arguments into elementary
discourse units (EDUs), distinguishing argumen-
tative units from non-argumentative units, classi-
fying argument components into classes such as
premise and claim, identifying and labeling argu-
ment relations between the components, and iden-
tifying argument schemes. We are here aimed at
mining argument structure from text segmented
into EDUs (or, more precisely for argument min-
ing, Argumentative Discourse Units, ADUs (Peld-
szus and Stede, 2015)).

Several argument mining approaches use fea-
tures identified from individual EDUs and apply
classifiers (Moens et al., 2007); others use features
that span EDUs and apply dependency parsing

(Muller et al., 2012), similarity (Lawrence et al.,
2014), linguistic indicators (Villalba and Saint-
Dizier, 2012) and their combinations (Lawrence
and Reed, 2015). Recently, a neural end-to-end
method for argument mining shows that depen-
dency parsing outperforms an EDU-level classifier
(Eger et al., 2017). Stab and Gurevych (2014b)
use both EDU-level and cross-EDU features to im-
prove performance. The EDU-spanning features
used by these latter approaches include syntac-
tic dependency and lexical overlap between the
EDUs. For instance, Eger et al. (2017) applied
token level syntactic dependency to learn the re-
lations between EDUs. Even though cross-EDU
tokens are used for argument mining, the nature of
such tokens is not studied well.

Following the same line of reasoning, similar-
ity approaches use EDU level similarity to deter-
mine argument structure. Lawrence et al. (2014)
use Latent Dirichlet Allocation (LDA) topic mod-
eling; Lawrence and Reed (2015) use WordNet1

Synset hierarchy to determine similarity between
propositions. Such approaches start from a con-
clusion and determine the most related proposi-
tion to create hierarchical graph structure based
on the assumption that a conclusion is similar to
a premise. Similarity, however, does not necessar-
ily entail an argument relation and vice-versa.

In this work, we aim to detect argument rela-
tions (AR) and their category (support vs attack)
based on the nature of the relations existing among
the functional components of propositions. The
functional components of propositions are: tar-
get concepts (C), aspects (A), opinions on aspects
(OA) and opinions on target concepts (OC). In or-
der to identify ARs and their category, we train
classifiers using the relations between the four
components. The classifiers provide an output pre-

1 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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dicting whether any pair of propositions involve an
AR or not, and categorize the AR.

To the best of our knowledge there is no ap-
proach that decomposes propositions into fine-
grained components and uses them to determine
argument structure. Our Decompositional Argu-
ment Mining (DAM) identifies argument struc-
ture by exploiting similarity (between C and A)
and relations between the polarities of OC and
OA. Our first hypothesis is then the AR between
EDUs is governed by the relations between their
functional components. For instance, the support
relation between (2) and (9) from Table 1 is a
function of the similarity between C of (9) “cook-
ing; potato; burger” and A of (2) “food” and the
agreement between the polarities of their respec-
tive opinion expressions (i.e. the opinions “have
an opportunity; interesting” and “better” are both
positive). Similarly the support relation between
(6) and (7) is the function of the similarity be-
tween A of (6) “job” and C of (7) “job” and the
agreement between the polarities of their respec-
tive opinion expressions (i.e. “are losing” and
“are fleeing” are both negative). The attack rela-
tion between (10) and (11) is the function of the
similarity between C of (10) “advertising” and
A of (11) “advertising” and the contradiction be-
tween the polarities of the opinion on A of (10)
“should be prohibited” and the opinion on C of
(11) “needs”.

Our second hypothesis is that automatic recog-
nition of argument structure can be substantially
enhanced by using the relations between the four
functional components of propositions as com-
pared to other features like discourse indicators
which are rare to find. For instance, none of the
propositions presented in the example are linked
via discourse indicators, and yet the relations be-
tween the four components can be used as a ba-
sis for identifying their ARs. The third hypothesis
is that fine-grained similarity is more reliable and
accurate than EDU level similarity. The similar-
ity between the entirety of propositions is not a
good indicator of AR. For instance the similarity
between (3) and (8) is 0.737 (as provided by ADW
(Pilehvar et al., 2013)) and yet does not involve an
AR, but (8) and (1) has a similarity score of 0.45
and involves an AR since there is a strong similar-
ity between the aspect of (1) “family” and target
concept of (8) “family”.

The contribution of this work is three-fold: (a)

a model to identify components linking proposi-
tions; (b) directional similarity indicating the di-
rection of AR between propositions; (c) an ap-
proach determining the entire argument structure
based on just the relations between the four func-
tional components of proposition across three het-
erogeneous corpora of which two are monological
and the other is dialogical (see Section 3).

2 Argument Graph Model

A proposition in the Frege’s sense, is decomposed
into four functional components: C, A, OC and
OA. C and A are used to link a premise and a con-
clusion; the polarity of OC and OA is used to iden-
tify the type of relations (inference vs conflict).

2.1 Functional Decomposition of a
Proposition and their relations

We define the four functional components of a
proposition before formalizing the representation
of proposition in terms of the components. Ex-
amples (4) to (7) in Table 1 are taken from the
first US 2016 presidential election television de-
bate corpus (US2016G1tv) (Lawrence and Reed,
2017; Visser et al., 2019) and (1) to (3), (8) to
(13) are taken from the Argument Annotated Es-
say Corpus (AAEC) (Stab and Gurevych, 2014a)
to illustrate the components.

2.1.1 Target Concept (C)
A proposition makes a point about (at least one)
concept: an idea, physical or abstract entity, fol-
lowing (Lima et al, 2010):

“Concepts, also known as classes, are used in a broad

sense. They can be abstract or concrete, elementary or

composite, real or fict[it]ious. In short, a concept can be

anything about which something is said, and, therefore,

could also be the description of a task, function, action,

strategy, reasoning process, etc.” (Lima et al., 2010, p:428).

The set of concepts addressed by a proposition
are referred to as target concepts, (C). The ex-
amples in Table 1 are annotated to show C (seg-
mented with [], and marked by the subscript c
and also shown in bold for convenience). (1)
and (2) address the target concept (after stem-
ming) “camp”, whilst the targets concepts in (3)
are “family” and “camp”. The target concept is
analogous to a topic of a propositions and usually
presented as a subject of a proposition. Aspects
specialize the topic of a proposition by providing
specific angle of reasoning.
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No Example
1 [Camping]c [is a great way]oc to [bring]oa [families]a [together]oa
2 [Campers]c [have an opportunity]oc to try some [interesting]oa [food]a
3 When [families]c go [camping]c, they put the [jobs]a and [sporting events]a [on hold]oa
4 [Housing]c [did collapse]oc
5 [These countries, especially China]c, [are taking]oc [Americans’ jobs]a
6 [We]c, [are losing]oc [our]a [good]oa [jobs]a so many of them
7 [Our jobs]c, [are fleeing]oc [the country]a
8 By putting aside these events, the [family]c [has an opportunity]oc to [bond]oa their [relationships]a
9 [Cooking]c over a fire makes [burgers]c and [potatoes]c [taste better]oc than can be found at [fast]a[food]a[place]a
10 [Advertising]c [alcohol]a, [cigarettes]a, [goods]a and [services]a with [adult content]a [should be prohibited]oc
11 [Modern society]c [needs]oc [advertising]a
12 [Ads]c will [keep] us [well informed]oc about [new]oa [products]a and [services]a
13 [advertising]c [cigarettes]a and [alcohol]a [will definitely affect]oc our children [in negative way]oc

Table 1: Examples to illustrate the four functional components of a proposition: C, A, OC and OA. (In the online
version, positive and negative polarity is indicated in blue and red, respectively).

2.1.2 Aspect (A)

Often, a specific angle of reasoning is selected
to make a point about C. The concepts providing
such angles of reasoning are denoted as aspects
(A). For instance, (1) and (2) address the target
concept “camp” with respect to the aspects “fam-
ily” and “food” (in bold) respectively. Similarly,
the aspects of (3) are “job, sporting event”. The
difference between C and A is not an ontological
distinction, it is rather the syntactic and semantic
role they play in the respective propositions. An
aspect in one proposition can be a target concept
in another (see (1) and (3)).

2.1.3 Opinion on Target Concept (OC)

OC is an opinion expressed on C to express posi-
tive or negative attitudes. The opinionated words
in a proposition are usually ambiguous and do not
fall into the conventional opinionated words cate-
gory. For instance, in (5), the opinion “are tak-
ing”, which is expressed on the target concept
“country, china”, does not fall into the conven-
tional opinionated word category.

2.1.4 Opinion on Aspect (OA)

OA is an opinion expressed on an A to provide pos-
itive or negative attitudes. For instance, in (2) the
opinion “interesting” is expressed on the aspect
“food”.

Since we have defined the four components of a
proposition, we can now formalise the representa-
tion of a proposition in terms of the components.
Hence, a proposition, p, can be represented as a
set of tuples,

P = {〈C0, oC0, {〈A0, oA0〉, · · · , 〈Ai, oAi〉}〉,
〈C1, oC1, {〈A1, oA1〉, ..., 〈Aj , oAj〉}〉, · · ·
〈Cn, oCn, {〈Aj , oAj〉, · · · , 〈Ak, oAk〉}〉}

(1)
Where, Ci, Ai, oCi, oAi represents C, A, OC and
OA, respectively.

2.1.5 The Relations Between the Four
Functional Components

The relations between the four components fall
into two categories: similarity and agreement. The
relation between C and A is similarity whereas
agreement (or contradiction) between OC and OA.
The relations between C and A are further cate-
gorized into four: (a) similarity between C of a
premise and a conclusion, (b) similarity between
A of a premise and a conclusion, (c) similarity be-
tween A of a premise and C of a conclusion, and
(d) similarity between A of a conclusion and C of
a premise. The relations between OC and OA are
also categorized into four: (a) the agreement be-
tween OC of a conclusion and a premise, (b) the
agreement between OA of a premise and a conclu-
sion, (c) the agreement between OC of a conclu-
sion and OA of a premise, and (d) the agreement
between OA of a conclusion and OC of a premise.

2.2 Argument Relation

The argument relation (AR) between a premise and
a conclusion is a function of the relations between
the four components. A classifier is trained on the
relations between the four components to identify
the patterns encoded by the type of AR:
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Inference relations: A pair of propositions in-
volving support relation.
Conflict relations: A pair of propositions involv-
ing attack relation.

To mention, when a premise develops one or
more aspects of a conclusion, the aspects of a con-
clusion form C of a premise (i.e are highly simi-
lar). For instance, (8) supports (1) in relation to the
aspect “family”; (9) supports (2) in relation to the
aspect “food”. The relation between OC and OA
is identified through matching the polarity of the
opinions. For instance the polarity of the opinions
on (1 and 8) matches (both are positive), since the
propositions involve support relation. Similarly,
the attack relation between (10) and (11) is indi-
cated by the similarity between C of (10) and A of
(11) and the contradiction between the polarities
of the opinions on OC of (10) and OC of (11).

Accordingly, the AR between propositions is
defined by,

AR =


S if rel(C,A,OC,OA) = θ

AT if rel(C,A,OC,OA) = β

N otherwise

(2)

where, S stands for support, AT for attack and
N for none, while θ, β representing the result of a
classifier (θ for support and β for attack).

A graph structure is formed to represent an ar-
gument by linking proposition whose components
are related via the valid relations encoded by AR.
Propositions and the relations between them are
nodes, the connections between the nodes form the
edges. Figure 1 shows an argument structure for a
portion of propositions in Table 1, where (11) is
attacking (10), (12) is supporting (11), (13) is at-
tacking (11), and (13) is supporting (10) based on
the similarity between C and A and the agreement
between the polarities of the opinion expressions
on C and A.

3 Methodology

In this section, we present the data-sets and the
major components of our approach.

3.1 Data
We aim to cover varieties of data-sets (though not
comprehensive), annotated based on the underly-
ing set of argumentation theory to see how our
approach behaves across heterogeneous data-sets
without tuning to a specific data-set. we use three

Figure 1: Argument structure for propositions (10),
(11), (12), and (13) from Table 1

corpora, with different types of source material
(monologue, dialogue), different creation rubrics
(naturally occurring, created under direction), dif-
ferent argument structure conventions (recursive,
limited), different notions of inference (typed, un-
typed) and different notions of conflict (rebut-only,
rebut and undercut).

The first is Argument Annotated Essay Corpus
(AAEC) (Stab and Gurevych, 2014a) which has
a total of 90 arguments. Propositions under each
argument are labelled as premise, claim or ma-
jor claim. The corpus has 31,194 tokens, 1,552
propositions and 1214 Argument relations (AR).
The second corpus is the Argumentative Micro
Text (AMT) (Peldszus and Stede, 2013) which is
a collection of 112 short texts collected from hu-
man subjects in German and were translated into
English. It is annotated following the argumen-
tation structure outlined by Peldszus and Stede
(2013) and attain high inter-annotator agreement
score. The structure consists of a central claim,
and support/attack propositions. It has a total of
8,007 tokens, 576 propositions and 272 argument
relations. We have also used dialogical corpus
from the first US 2016 presidential election tele-
vision debate between the candidates Clinton and
Trump (US2016G1tv) (Lawrence and Reed, 2017;
Visser et al., 2019) which is annotated based on
AIF (Chesnevar et al., 2006) using the OVA+ an-
notation tool (Janier et al., 2014)2 and stored in
the AIFdb database (Lawrence et al., 2015). The
corpus has a total of 15,805 tokens, 1,473 propo-
sitions and 505 inferences.

In addition to the original annotation, we anno-
2http://ova.arg-tech.org

http://ova.arg-tech.org
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tate C, A, OC and OA. We obtain the total of 3,455,
4,113, 4,359, and 2,987 C, A, OC and OA respec-
tively. For the corpus evaluation, a second annota-
tor analysed 10% of claim-premise pairs form the
combined corpora. To this end, we combine the
three corpora and randomly select 10% of claim-
premise pairs and provide it to the second annota-
tor after removing the annotation labels of the first
annotation. The annotation of the four compo-
nents is compared against the original annotation
to calculate the inter-annotators agreement. This
gave a Cohen’s kappa score κ = 0.86, κ = 0.82,
κ = 0.81, and κ = 0.80 on C, A, OC and OA, re-
spectively. The annotation of the second annotator
is discarded after calculating the Cohen’s kappa
score. The description of the annotation process
and guideline is available online 3.

3.2 Identifying Argument Structure

Our approach involves a pipeline of four steps:
Given segmented argumentative text, the first step
identifies C, A, OC and OA. The similarity compo-
nent determines the degree of similarity between C
and A. The next step identifies the polarity of the
opinions to determine if they contradict or agree.
The last component uses the similarity between C
and A, and the relation between OC and OA (con-
tradiction or agreement) to link propositions and
iteratively construct a graph. The details are pro-
vided below.

3.2.1 Identifying Aspects, Target Concepts
and Opinions

We formulate the task in two ways: relation ex-
traction task adapted from information extraction,
and a sequence labeling task adapted from aspect
based opinion mining.

C, A, OC and OA identification as a rela-
tion extraction task. We model it as a re-
lation extraction task since C, A, OC and OA
are syntactically interdependent. Relation ex-
traction has been studied extensively in natu-
ral language processing using supervised meth-
ods (Kambhatla, 2004; Zhao and Grishman, 2005)
and semi-supervised methods (Etzioni et al., 2005;
Banko et al., 2007). Supervised methods use clas-
sification techniques: Maximum Entropy Models
(Borthwick et al., 1998), Hidden Markov Mod-
els (Bikei et al., 1997), Support Vector Machines

3http://arg.tech/˜debela/Guidelines.
pdf

(Asahara and Matsumoto, 2003), and Conditional
Random Fields (McCallum and Li, 2003).

Following the same line of reasoning, we train
four classifiers (Naive Bayes, CRF, bag of features
based SVM, and tree kernel based SVM) to clas-
sify the words in a proposition as C, A, OC or OA.
The first three classifiers use frequency, part of
speech category and universal dependency as clas-
sification features. The tree kernel SVM is trained
using the portion of the dependency tree connect-
ing the four components as positive examples and
the rest as negative examples.

C, A, OC and OA identification as a sequence
labeling task. The sequence labeling model is
adapted from aspect based opinion mining. As-
pect based opinion mining identifies opinions ex-
pressed on a target object and specific aspects of
the object (Zhang and Liu, 2014). Taking the anal-
ogy of target object:aspects in opinionated text to
C:A:OC:OA in argumentative text, we apply simi-
lar techniques for identifying C, A, OC and OA.

The underlying idea behind the model is that C,
A, OC and OA are interdependent and occur in a
sequence in a sentence. The model is based on
the Inside-Outside-Begin (IOB) labelling schema
(Ramshaw and Marcus, 1999). Accordingly, we
use the IOB labeling schema where, B-Concept
denotes the beginning of a concept; I-Concept, de-
notes that the token is inside the concept, and O
for other (non C, A, OC or OA) tokens. Hidden
Markov Models (HMM) (Jin et al., 2009), Condi-
tional Random Fields (CRF) (Sminchisescu et al.,
2006) and recently, convolutional neural networks
(CNN) (Poria et al., 2016) are common techniques
employed. The assumption that an observation
only depends on the current state and that a given
state depends on its immediate predecessor state
made HMM approaches less applicable for rela-
tions involving long distance dependencies. CRF
is also a linear model and suffers from the same
criticism as HMM. CNN on the other hand can en-
code long distance relations existing between con-
cepts. As a result, we use CNN to train the model
since C, A, OC and OA can appear a long way
away from each other.

3.2.2 Identifying the contradiction between
opinions

Our aim here is to compare the polarities between
OC and OA to check if they match or contradict.

The opinionated words in our case are context
dependent (“are taking our jobs” vs “are taking our

http://arg.tech/~debela/Guidelines.pdf
http://arg.tech/~debela/Guidelines.pdf
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presents”) and often the contexts are fine-grained
(see example 5). We aim to disambiguate the
sentiment orientation of the words via identify-
ing constrained synonyms (CS). Constrained syn-
onyms are subset of synonyms expressing similar
sense to the current opinion word in a fine-grained
context. For instance, among the synonyms of
“taking” in (5), we are interested to identify syn-
onyms like “robbing” and “stealing”, constrained
by a given context like “China, Americans jobs”.
Our hypothesis is then the use of such CS express-
ing a similar opinion can improve the estimation
of the polarity of ambiguous opinion words by ag-
gregating the information coming from multiple
words expressing a similar opinion to the current
opinion. In order to identify the CS, we enhance
word embedding to enforce the encoding of fine-
grained contexts.

Our Context Sensitive Polarity Prediction
(CSPP) technique consists of two main compo-
nents: identifying CS and predicting polarity us-
ing the CS.

To identify the CS, we extend CBOW based
Word2Vec (Tomas et al., 2013) (see Equation 3).
Accordingly, given a fine-grained context, the ex-
tended CBOW predict CS for an opinion word in
the context. We use C and A as a fine-grained con-
text of the opinion and encode them in the repre-
sentation of words. The embedding is extended
by introducing an additional output layer (called
the constrained context, CC, output layer) to up-
date the embedding based on the fine-grained con-
texts. The two output layers are connected to the
previous layer in the network and the cost func-
tion is the loss of the first plus the second output.
Given a sequence of words W={w1, ..., wN}, the
Constrained Embedding (CE) objective function is
defined by the formula in Equation 4.

CBOW (W ) =
1

N

N∑
i=1

log P(wi | gcwi) (3)

CE(W ) =
1

N

N∑
i=1

log P(wi | gcwi) + log P(wi | ccwi)

(4)

where d is the number of fine-grained context
which is equivalent to the number of target con-
cepts and aspects; gcwi indicates the global con-
texts identified by taking d/2 words to the left
and right of wi (d/2 words to the left and right of
the current word is taken to equalize the number

of global context with the number of fine-grained
context); ccwi is given by the aggregation of fine-
grained and global context (gcwi) using Equation
5. Given an input sequence wi, wi+1, ...wn, and
fine-grained context cj , cj+1, ...cd, the function
which aggregates both contexts to produce (ccwi)
for the current word wi is given by:

ccwi = [ ~ew T
i−d/2

([~ecTj , ~ec
T
j+1
, ~ecTj+2

..., ~ecTd ]), ...

~ew T
i−1

([~ecTj , ~ec
T
j+1
, ~ecTj+2

..., ~ecTd ]),

~ewT
i+1

([~ecTj , ~ec
T
j+1
, ~ecTj+2

..., ~ecTd ]), ...,

~ewT
i+d/2

([~ecTj , ~ec
T
j+1
, ~ecTj+2

..., ~ecTd ])]

(5)
where, ~ew T

i−d/2
, ..., ~ew T

i−1
, ~ewT

i+1
, ..., ~ewT

i+d/2
are

the transpose of pre-trained vectors of the
global contexts of the current word wi and
~ecTj , ~ec

T
j+1
, ~ecTj+2

, ..., ~ecTd are the transpose of pre-
trained vectors of the d sized fine-grained con-
texts.

Once the CS are identified for the current opin-
ion word using the extended word embedding, we
train a classifier to categorize the polarity, given
a classification feature including the initial list of
opinion words generated by Hu and Liu (Hu and
Liu, 2004), the current opinion word, the CS and
paragraphs containing the opinion words and the
CS.

3.2.3 Computing Similarity
Similarity between C and A is used to connect
propositions. In addition to aspect based, we have
tried proposition level similarity for comparison:

1. Proposition level similarity. Computes sim-
ilarity between the entirety of propositions.

2. Aspect Based Similarity. Computes the sim-
ilarity between aspects and target concepts.

We used two state of the art similarity ap-
proaches allowing to measure the similarity be-
tween any text fragment at various linguistic lev-
els: Align Disambiguate Walk (ADW) (Pilehvar
et al., 2013) and Doc2vec (Le and Mikolov, 2014).
ADW is a graph-based approach for measuring the
semantic similarity of linguistic items at various
levels (word senses, texts). To measure the simi-
larity between words, ADW starts by disambiguat-
ing them using the context in which the words
are used based on their WordNet representation.
Doc2vec (Le and Mikolov, 2014) is an enhanced
version of word2vec (Mikolov et al., 2013) that
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allows for computing similarity between phrases,
sentences, paragraphs or documents.

3.2.4 Identify Argument Relations and
Category

A classifier is trained to learn the relations be-
tween the four components in order to link propo-
sitions. The classification features are: the similar-
ity between C and A; the relation between OC and
OA. To facilitate the training, we convert the con-
tinues similarity values (which ranges from 0.0 to
1.0) to a discrete value by tuning a threshold α on
a development set to categorize them into two: un-
related or similar. Likewise, the relation between
OC and OA holds discreet values: agreement, dis-
agreement or neutral.

3.2.5 Iterative Graph Construction
Given a set of propositions, we build a struc-
ture consisting the valid ARs holding between the
propositions. Propositions and ARs are nodes and
the links between them form edges.

We start with any arbitrary proposition Pi and
then identify the associated functional compo-
nents. The similarity between C and A of Pi

and all the other propositions (Pi+1...n); the agree-
ment between OC and OA of Pi and all the other
remaining propositions (Pi+1...n) are identified.
A classifier is then used to identify the AR be-
tween the propositions based on the relations be-
tween their components. Accordingly, a proposi-
tion whose functional components are related with
the functional components of Pi is connected to Pi

to form an edge (Pi+1 → Pi). Once all the child
nodes (all the premises) are connected, the propo-
sition is marked as visited. Continuing with the
next unvisited proposition, the same procedure is
applied until all the propositions in the entire ar-
gument are visited.

4 Experiments

Four machine learning approaches are trained to
detect C, A, OC and OA. Two similarity ap-
proaches are tried to identify similarity between C
and A. CSPP is tried to identify the polarity of OC
and OA. Our DAM combines the best performing
component identifier, similarity and the CSPP to
train a classifier in order to identify AR existing
between proposition. The implementation of our
approach is available online 4. It takes argumenta-

4http://ws.arg.tech/

tive text as an input and returns the argument struc-
ture using AIF-JSON (Chesnevar et al., 2006) for-
mat.

4.1 Evaluation technique and setup

We use ten-fold cross-validation, where the data-
set is randomly divided into ten groups. Argu-
ments are randomly split into 80% training and
20% test sets with the same class distribution.
To balance the class distribution (composition of
premise, conclusion, attack relation, and support
relation), we follow the unitization in the respec-
tive corpus. For instance, AAEC is originally
presented as 90 self contained essays consisting
of conclusions, premises and the associated argu-
ment relations. Hence, we consider an argument
as a unit to take all the constituted elements at
a time. We report average precision, recall and
F-measure computed by ten-fold cross-validation
over these units.

4.2 Results and Discussions

We present the results of the individual compo-
nents separately:
C, A, OC and OA extraction. The four classifiers
are evaluated on the three corpora as presented in
Table 2. We use the class distribution of the com-
ponents as a baseline. We divide the number of
C and A by the total number of concepts (C and
A) to obtain the class distribution for C and A.
The same procedure is followed for the opinions
(OC and OA). The sequential labeling approach
out-performed all the classifiers and the baseline
across the corpora. The syntactic dependency ex-
isting between C, A, OC and OA, regardless of the
distance existing between them, is recognized by
the CNN more reliably than the other classifiers.
The kernel-based SVM outperformed the feature
based SVM which is again attributed to its ability
of encoding the syntactic dependency linking the
target concepts and the aspects.

CSPP. We use SemEval data-sets (Rosenthal
et al., 2017) to evaluate CSPP. We compare the re-
sult against an implementation using conventional
word embedding as a baseline. CSPP achieves
an overall F-measure of 0.79 while the baseline
achieves 0.71. The strength of CSPP is founded on
its use of multiple words expressing similar senses
as the current opinion (in similar context) to gather
several instances of the current ambiguous words
to increases the chance of prediction.

http://ws.arg.tech/
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Data-Sets
AAEC AMT US2016G1tv

Approaches C A OC OA C A OC OA C A OC OA
Baseline 0.45 0.55 0.57 0.43 0.48 0.52 0.6 0.4 0.43 0.57 0.61 0.39
SVM-kernel 0.82 0.71 0.81 0.62 0.78 0.65 0.69 0.65 0.77 0.69 0.69 0.66
SVM-feature 0.81 0.70 0.81 0.65 0.75 0.68 0.67 0.66 0.76 0.69 0.67 0.66
CNN-Sequence 0.83 0.72 0.82 0.7 0.77 0.69 0.7 0.67 0.78 0.71 0.68 0.67
CRF 0.80 0.69 0.72 0.65 0.78 0.67 0.66 0.69 0.76 0.67 0.67 0.67
Naive Bayes 0.79 0.69 0.76 0.66 0.75 0.62 0.62 0.62 0.75 0.66 0.65 0.64

Table 2: The performance (F-measure) of C, A, OC and OA extraction on AAEC, AMT and US2016G1tv corpus

Approaches
S&G2014b P&S2016 PLS DAM

Data-Sets Components P R F P R F P R F P R F
AAEC Para Propositions 0.77 0.68 0.73 n/a n/a 0.81 0.77 0.79

AR 0.74 0.71 0.72 0.62 0.67 0.64 0.82 0.76 0.79
ARC 0.74 0.71 0.72 n/a 0.81 0.74 0.77

AAEC Essay Propositions n/a n/a n/a 0.76 0.73 0.74
AR 0.58 0.7 0.63 0.73 0.75 0.74
ARC n/a 0.73 0.74 0.74

AMT Propositions

n/a

n/a n/a n/a 0.9 0.67 0.77
AR n/a n/a 0.76 0.61 0.64 0.62 0.91 0.66 0.77
ARC n/a n/a 0.88 0.66 0.75

US2016G1tv Propositions

n/a

n/a

n/a

n/a n/a 0.66 0.62 0.64
Inference 0.51 0.62 0.56 0.65 0.63 0.64
ARC n/a 0.63 0.61 0.62

Table 3: The performance of Stab and Gurevyech’s technique (2014b) (SG2014b), Peldszus and Stede’s technique
(2016) (PS2016), PLS and DAM in extracting the components of an argument, AR and the category of AR (ARC)
(inference vs conflict) on AAEC (paragraph and essay level), AMT and US2016G1tv.

AR identification. The performance of our ap-
proach in identifying premises, conclusions, AR
and the category of AR (inference vs conflict) is
presented in Table 3. Since the AR between a
premise and conclusion depends on the similarity
between the C and A, we tune the value of α to 0.4
on a development set (similar components have a
similarity measure greater than 0.4).

Following the evaluation strategy of Stab and
Gurevych (2014b), we first evaluate our approach
on AAEC at paragraph and essay levels where we
achieve F measures of 0.79 and 0.74, respectively.
We have also achieved an F measure of 0.77 on
the AMT corpus and 0.64 on US2016G1tv cor-
pus. The performance of our approach tends to
confirm our initial hypothesis: the AR between
propositions is indeed governed by the relation
between their functional components. The per-
formance varies across the three corpora with the
lowest performance observed on the US2016G1tv
corpus. We have inspected the three corpora to
identify the possible factors and identified three
issues: (a) similarity is dependent on the infor-
mation presented in the propositions alone, yet
US2016G1tv is particularly demanding in that un-
derstanding many of the utterances depends upon

(external) context in addition to what is present in
the discourse; (b) since US2016G1tv corpus is di-
alogical, unlike the others, it includes the speak-
ers’ text in the construction of propositions and
hence their representation is more complex than
the monological corpora. The complex represen-
tations of propositions make the formalization and
the extraction of target concepts and aspects diffi-
cult; (c) the AMT corpus has a high proportion of
co-reference to represent C and A resulting in poor
similarity, since the similarity between a word and
its co-reference is low.

4.3 Error Analysis

Two major error types are observed. The first is
related to propagation of the errors encountered
during C and A extraction to the similarity iden-
tifier and AR identifier affecting the overall per-
formance. Specifically, when a word is incorrectly
identified as part of C or A, their similarity mea-
sure is affected and then the decision about the
AR.

The second error type is related to the similar-
ity module which provides incorrect result for cer-
tain words. For instance, ADW provides compara-
ble similarity values between “food” and “meal”,
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and between “food” and “family”. Yet the first
pair is more closely related as compared to the
later. Moreover, propositions involving two or
more categories of aspects (where each category
is supported or attacked by different propositions)
present a challenge, since it requires grouping of
the aspects and consider each group as a unit to
compute similarity.

4.4 Comparison Systems

We have compared our approach against the lead-
ing techniques in the field including Stab and
Gurevych’s work (2014b), Peldszus and Stede’s
(2016) work, and proposition level similarity. We
re-implement proposition level similarity and use
the results reported by the authors for the remain-
ing approaches.

Stab and Gurevych (2014b) propose a classifier
which identify argument components and AR cat-
egory using a multiclass classification on (AAEC)
(Stab and Gurevych, 2014a). Instead of consid-
ering the entirety of essay, they connect proposi-
tions within the same paragraph. They use Weka
implementation of four different classifiers: SVM,
Naive Bayes, C4.5 Decision Tree and Random
Forest (Hall et al., 2009). SVM scored the best
result with an overall accuracy of 0.73 and 0.72
in identifying argument components and AR re-
spectively on AAEC (Stab and Gurevych, 2014a)
at paragraph level.

Peldszus and Stede (2016) aim to map RST
trees to argumentation structures (Taboada and
Mann, 2006) using subgraph matching and an ev-
idence graph model. They evaluate several fea-
tures of their system on AMT (Peldszus and Stede,
2013). We are concerned with one of the features
in order to make direct comparison: identifying if
two EDUs are connected on which they achieve an
overall F-measure of 0.76.

Most related to our work is an approach us-
ing proposition level similarity (PLS) as an inte-
gral component to determine argument structure
(Lawrence and Reed, 2015). They use similar-
ity to indicate the AR existing between EDUs and
supplement other features to identify the entire ar-
gument structure. Since the similarity component
alone can not induce the direction of the relation
between the EDUs, we compared its performance
in terms of detecting the existence of AR be-
tween EDUs. PLS provides a challenge to identify
among different relations, since a pair of proposi-

tions in a given argument can score strong sim-
ilarity without involving AR. PLS does not iden-
tify the direction of relation (claim vs premise) and
hence these values are listed as n/a in Tables 3. We
also use n/a to indicate that the evaluation result
for the respective evaluation criteria (identifying
premise, conclusion and AR) is not available for
the comparison approaches.

Table 3 shows the performance of DAM, PLS,
Stab and Gurevych’s approach (2014b), and Peld-
szus and Stede’s (2016) approach on the three
data-sets. DAM outperformed all the approaches
across the three corpora achieving the highest pre-
cision, recall and F-measure. The decrease in
recall on AMT is attributed to the fact that co-
references are productive in the corpus affecting
similarity output, since similarity techniques are
dependent on the lexicon choice (i.e the similarity
between a word and its co-reference is low).

5 Conclusion

In this work, we have presented an approach for
linking premises and conclusions that uses the
similarity of target concepts and aspects, and the
agreement between the opinions on target con-
cepts and aspects of EDUs. We have demon-
strated that the argument relations existing be-
tween propositions are largely dependent on the
relations existing between the individual compo-
nents (target concepts, aspects, opinions on target
concepts and opinions on aspects) of the proposi-
tions. It would also be nice to explore about more
fine-grained functional components and grammat-
ical entities in the future works. Not only does
our DAM approach outperform the current state
of the art, most importantly, it is shown to work
without modification across heterogeneous cor-
pora (AAEC, AMT and US2016G1tv) which are
substantially different in kind. This generality
is an important milestone in the development of
argument mining techniques and suggests that a
combination of structural and distributional tech-
niques, as employed here, offers the potential for
robust, domain-independent performance in this
extremely demanding task.

Acknowledgments

This research was supported in part by the Engi-
neering and Physical Sciences Research Council
(EPSRC) in the United Kingdom under grant
EP/N014871/1.



525

References
Masayuki Asahara and Yuji Matsumoto. 2003.

Japanese named entity extraction with redundant
morphological analysis. In Proceedings of the
2003 Conference of the North American Chapter
of the Association for Computational Linguistics
on Human Language Technology, pages 8–15.
Association for Computational Linguistics.

Michele Banko, Michael J Cafarella, Stephen Soder-
land, Matt Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI, pages 2670–2676.

Daniel M. Bikei, Scott Miller, Richard Schwartz,
and Ralph Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceedings
of the fifth conference on Applied natural language
processing, pages 194–201. Association for Compu-
tational Linguistics.

Andrew Borthwick, John Sterling, Eugene Agichtein,
and Ralph Grishman. 1998. Exploiting diverse
knowledge sources via maximum entropy in named
entity recognition. In Sixth Workshop on Very Large
Corpora, pages 152–160.

Carlos Chesnevar, Jarred McGinnis, Sanjay Mod-
gil, Iyad Rahwan, Chris Reed, Guillermo Simari,
Matthew South, Gerard Vreeswijk, and Steven Will-
mott. 2006. Towards an argument interchange for-
mat. The knowledge engineering review, 21(4):293–
316.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning for
computational argumentation mining. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, pages 11–22. Asso-
ciation for Computational Linguistics.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S Weld, and Alexander Yates. 2005. Un-
supervised named-entity extraction from the web:
An experimental study. Artificial intelligence,
165(1):91–134.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proceedings of the
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD-2004).

Mathilde Janier, John Lawrence, and Chris Reed. 2014.
OVA+: an argument analysis interface. In Com-
putational Models of Argument: Proceedings of
COMMA, volume 266, page 463.

Wei Jin, Hung Hay Ho, and Rohini K. Srihari. 2009.
Opinionminer: A novel machine learn-ing system

for web opinion mining and extraction. In Proceed-
ings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 1195–1204. ACM.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for extracting relations. In Proceedings of the
ACL 2004 on Interactive poster and demonstration
sessions, page 22. Association for Computational
Linguistics.

John Lawrence, Mathilde Janier, and Chris Reed. 2015.
Working with open argument corpora. In European
Conference on Argumentation, pages 367–380.

John Lawrence and Chris Reed. 2015. Combining
argument mining techniques. In Proceedings of
the 2nd Workshop on Argumentation Mining, pages
127–136.

John Lawrence and Chris Reed. 2017. Using com-
plex argumentative interactions to reconstruct the
argumentative structure of large-scale debates. In
Proceedings of the 4th International ACL/EMNLP
Workshop on Argument Mining, pages 108–117.

John Lawrence, Chris Reed, Colin Allen, Simon McAl-
ister, and Andrew Ravenscroft. 2014. Mining argu-
ments from 19th century philosophical texts using
topic based modelling. In Proceedings of the First
Workshop on Argumentation Mining, pages 79–87.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Joselice Ferreira Lima, Clia M. Gomes Amaral, and
Lus Fernando R. Molinaro. 2010. Alternation.
CENTERIS, 2(11):426–435.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL, pages 188–191.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Marie-Francine Moens, Eric Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic detection
of arguments in legal texts. In Proceedings of the
11th international conference on Artificial intelli-
gence and law, pages 225–230. ACM.

Philippe Muller, Stergos D. Afantenos, Pascal Denis,
and Nicholas Asher. 2012. Constrained decoding
for text-level discourse parsing. Proceedings of
COLING 2012, pages 1883–1900.



526

Andreas Peldszus and Manfred Stede. 2013. Ranking
the annotators: An agreement study on argumenta-
tion structure. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 196–204.

Andreas Peldszus and Manfred Stede. 2015. Joint pre-
diction in mst-style discourse parsing for argumen-
tation mining. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 938–948.

Andreas Peldszus and Manfred Stede. 2016. Rhetori-
cal structure and argumentation structure in mono-
logue text. In Proceedings of the Third Workshop on
Argument Mining, pages 103–112.

Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, disambiguate and-
walk: A unified approach for measuring semantic
similarity. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1341–1351.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2016. Aspect extraction for opinion min-
ing with a deep convolutional neural network.
Knowledge-Based Systems, 108:42–49.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International Work-
shop on Semantic Evaluation,SemEval ’17,Associa-
tion for Computational Linguistics.

Cristian Sminchisescu, Atul Kanaujia, and Dimitris
Metaxas. 2006. Conditional models for contextual
human motion recognition. Computer Vision and
Image Understanding, 104(2-3):210–220.

Christian Stab and Iryna Gurevych. 2014a. Annotating
argument components and relations in persuasive es-
says. pages 1501–1510.

Christian Stab and Iryna Gurevych. 2014b. Identify-
ing argumentative discourse structures in persuasive
essays. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing, pages 46–56.

Maite Taboada and William Mann. 2006. Rhetorical
structure theory: Looking back and moving ahead.
Discourse studies, 8(3):423–459.

Mikolov Tomas, Chen Kai, Corrado Greg, and Dean
Jeffrey. 2013. Efficient estimation of word repre-
sentations in vector space. In arXiv preprint arXiv,
pages 1301–3781.

Maria P.G. Villalba and Patrick Saint-Dizier. 2012.
Some facets of argument mining for opinion anal-
ysis. COMMA, 245:23–34.

Jacky Visser, Barbara Konat, Rory Duthie, Marcin
Koszowy, Katarzyna Budzynska, and Chris Reed.
2019. Argumentation in the 2016 US presidential
elections: annotated corpora of television debates
and social media reaction. Language Resources and
Evaluation.

Lei Zhang and Bing Liu. 2014. Aspect and entity
extraction for opinion mining. In Data mining
and knowledge discovery for big data, pages 1–40.
Springer.

Shubin Zhao and Ralph Grishman. 2005. Extracting
relations with integrated information using kernel
methods. In Proceedings of the 43rd annual meeting
on association for computational linguistics, pages
419–426. Association for Computational Linguis-
tics.


