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Abstract

This paper tackles the problem of disentan-
gling the latent representations of style and
content in language models. We propose a
simple yet effective approach, which incorpo-
rates auxiliary multi-task and adversarial ob-
jectives, for style prediction and bag-of-words
prediction, respectively. We show, both qual-
itatively and quantitatively, that the style and
content are indeed disentangled in the latent
space. This disentangled latent representation
learning can be applied to style transfer on
non-parallel corpora. We achieve high perfor-
mance in terms of transfer accuracy, content
preservation, and language fluency, in compar-
ison to various previous approaches.1

1 Introduction

The neural network has been a successful learning
machine during the past decade due to its highly
expressive modeling capability, which is a conse-
quence of multiple layers of non-linear transfor-
mations of input features. Such transformations,
however, make intermediate features “latent,” in
the sense that they do not have explicit meaning
and are not interpretable. Therefore, neural net-
works are usually treated as black-box machinery.

Disentangling the latent space of neural net-
works has become an increasingly important re-
search topic. In the image domain, for example,
Chen et al. (2016) use adversarial and information
maximization objectives to produce interpretable
latent representations that can be tweaked to ad-
just writing style for handwritten digits, as well as
lighting and orientation for face models. However,
this problem is less explored in natural language
processing.

1Our code and all model output are avail-
able at https://sites.google.com/view/
disentangle4transfer.

In this paper, we address the problem of dis-
entangling the latent space of neural networks for
text generation. Our model is built on an autoen-
coder that encodes a sentence to the latent space
(vector representation) by learning to reconstruct
the sentence itself. We would like the latent space
to be disentangled with respect to different fea-
tures, namely, style and content in our task.

To accomplish this, we propose a simple yet ef-
fective approach that combines multi-task and ad-
versarial objectives. We artificially divide the la-
tent representation into two parts: the style space
and content space, where we consider the senti-
ment of a sentence as its style. We design a sys-
tematic set of auxiliary losses, enforcing the sepa-
ration of style and content latent spaces. In partic-
ular, the multi-task loss operates on a latent space
to ensure that the space does contain the infor-
mation we wish to encode. The adversarial loss,
on the contrary, minimizes the predictability of in-
formation that should not be contained in a given
latent space. In early work, researchers typically
work with the style space (Shen et al., 2017; Fu
et al., 2018), but simply ignore the content space,
as it is hard to formalize what “content” actually
refers to. Cycle consistency of back-translation
defines content implicitly (Xu et al., 2018), but
requires reinforcement learning over the discrete
sentence space, which could be extremely difficult
to train.

In our paper, we propose to approximate the
content information by bag-of-words (BoW) fea-
tures, where we focus on style-neutral, non-
stopwords. Along with traditional style-oriented
auxiliary losses, our BoW multi-task loss and
BoW adversarial loss enable better disentangle-
ment of the style and content spaces.

The learned disentangled latent space can be di-
rectly used for text style transfer, which aims to
transform a given sentence to a new sentence with

https://sites.google.com/view/disentangle4transfer
https://sites.google.com/view/disentangle4transfer
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the same content but a different style. We follow
the setting where the model is trained on a non-
parallel but style-labeled corpus (Hu et al., 2017;
Shen et al., 2017); thus, we call it non-parallel text
style transfer. With our disentangled latent space,
we simply use the autoencoder to encode the con-
tent vector of a sentence, but ignore its encoded
style vector. We then infer from the training data
an empirical embedding of the style that we would
like to transfer to. The encoded content vector and
the empirically-inferred style vector are concate-
nated and fed to the decoder. This grafting tech-
nique enables us to obtain a new sentence similar
in content to the input sentence, but with a differ-
ent style.

We conducted experiments on two benchmark
datasets. Both qualitative and quantitative results
show that the style and content spaces are indeed
disentangled well. In the style-transfer evaluation,
we achieve high performance in style-transfer ac-
curacy, content preservation, as well as language
fluency, compared with previous results. Ablation
tests also show that all our auxiliary losses can be
combined well, each playing its own role in disen-
tangling the latent space.

2 Related Work

Disentangling neural networks’ latent space has
been explored in computer vision in recent years,
and researchers have successfully disentangled
the features (such as rotation and color) of im-
ages (Chen et al., 2016; Higgins et al., 2017). In
these approaches, the disentanglement is purely
unsupervised, as no style labels are needed. Un-
fortunately, we have not observed disentangled
features by applying these approaches in text rep-
resentations, and thus we require style labels in our
approach.

Style-transfer has also been explored in com-
puter vision. For example, Gatys et al. (2016)
show that the artistic style of an image can be cap-
tured well by certain statistics.

In NLP, the definition of “style” itself is vague,
and as a convenient starting point, researchers of-
ten treat sentiment as a salient style attribute. Hu
et al. (2017) propose to control the sentiment by
using discriminators to reconstruct sentiment and
content from generated sentences. However, there
is no evidence that the latent space would be disen-
tangled by simply reconstructing a sentence. Shen
et al. (2017) use a pair of adversarial discrimina-

tors to align the recurrent hidden decoder states
of original and style-transferred sentences, for a
given style. Fu et al. (2018) propose two ap-
proaches: training style-specific embeddings and
training separate style-specific decoders. Their
style embeddings are similar to an earlier study by
study by Ficler and Goldberg (2017). Their multi-
decoder approach is used by Nogueira dos Santos
et al. (2018), and is extended to private-shared net-
works for styled generation (Zhang et al., 2018).
Zhao et al. (2018) also extend the multi-decoder
approach and use a Wasserstein-distance penalty
to align content representations of sentences with
different styles. Tsvetkov et al. (2018) use a
machine-translation preprocessing step to strip au-
thor style from documents, and then use a multi-
decoder model to convert the result into a sentence
with a specific style.

Recently, cycle consistency of back-translation
is applied to ensure content preservation (Xu et al.,
2018; Logeswaran et al., 2018). These methods re-
quire reinforcement learning and are usually diffi-
cult to train.

Li et al. (2018) propose a hybrid retrieval and
generation method that transfers the style by re-
trieving and incrementally editing a sentence sim-
ilar to the source sentence.

Rao and Tetreault (2018) treat the formality of
writing as a style, and create a parallel corpus for
style transfer with sequence-to-sequence models.
This is beyond the scope of our paper, as we focus
on non-parallel text style transfer.

Style transfer generation is also related to non-
parallel machine translation, where researchers
apply similar techniques of adversarial alignment,
back translation, etc. (Lample et al., 2018a,b; Con-
neau et al., 2018).

Our paper differs from previous work in that we
accomplish style transfer with a disentangled la-
tent space, for which we propose a systematic set
of auxiliary losses.

3 Approach

Figure 1 shows the overall framework of our ap-
proach. We will first present an autoencoder as our
base model. Then we design the auxiliary losses
for style and content disentanglement. Finally, we
introduce our approach to style-transfer text gen-
eration.
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Figure 1: Overview of our approach.

3.1 Autoencoder

An autoencoder encodes an input to a latent vector
space, from which it reconstructs the input itself.

Let x = (x1, x2, · · ·xn) be an input sequence
with n words. Our encoder uses a recurrent neural
network (RNN) with gated recurrent units (GRUs,
Cho et al., 2014); it reads x word-by-word, and
performs a linear transformation of the final hid-
den state to obtain a hidden vector representation
h.

Then, a decoder RNN generates a sentence
word-by-word, which ideally should be x itself.
Suppose at a time step t the decoder RNN predicts
the word xt with probability p(xt|h, x1 · · ·xt−1),
the autoencoder is trained with a sequence-
aggregated cross-entropy loss, given by

JAE(θE,θD) = −
n∑

t=1

log p(xt|h, x1 · · ·xt−1)

(1)
where θE and θD are the parameters of the en-
coder and decoder, respectively. For brevity, we
only present the loss for a single data point (i.e.,
a sentence) throughout the paper. Total loss sums
over all data points, and is implemented with mini-
batches. Both the encoder and decoder are deter-
ministic functions in the this model (Rumelhart
et al., 1986), and thus, we call it a deterministic
autoencoder (DAE).

Variational Autoencoder. Alternatively, we
may use a variational autoencoder (VAE, Kingma
and Welling, 2013), which imposes a probabilistic
distribution on the latent vector. The decoder re-
constructs data based on the sampled latent vector
from its posterior, and the Kullback–Leibler (KL,
1951) divergence is penalized for regularization.

Formally, the VAE loss is

JAE(θE,θD) =− EqE(h|x)[log p(x|h)]
+ λkl KL(qE(h|x)‖p(h)) (2)

where λkl is the hyperparameter balancing the
reconstruction loss and the KL term. p(h)
is the prior, typically the standard normal
N (0, I). qE(h|x) is the posterior in the form
N (µ,diagσ2), where µ and σ are predicted by
the encoder.

Compared with DAE, the reconstruction of
VAE is based on the samples of the posterior,
which populates encoded representations into a
neighbourhood close to its prior and thus smooths
the latent space. Bowman et al. (2016) show that
VAE enables more fluent sentence generation from
a latent space than DAE.

The autoencoding loss serves as our primary
training objective for sentence generation. For dis-
entangled representation learning, we hope that h
can be separated into two spaces s and c, repre-
senting style and content, respectively, i.e., h =
[s; c], where [·; ·] denotes concatenation. This is
accomplished by a systematic design of auxiliary
losses described below, and shown in Figure 1a.

3.2 Style-Oriented Losses

We first design auxiliary losses that ensure the
style information is contained in the style space s.
This involves (1) a multi-task loss that ensures s is
discriminative for the style, and (2) an adversarial
loss that ensures c is not.

Multi-Task Loss for Style. In the dataset, each
sentence is labeled with its style, particularly, bi-
nary sentiment of positive or negative, following
most previous work (Hu et al., 2017; Shen et al.,
2017; Fu et al., 2018; Zhao et al., 2018).

We build a two-way softmax classifier (equiva-
lent to logistic regression) on the style space s to
predict the style label, given by

ys = softmax(Wmul(s)s+ bmul(s)) (3)

where θmul(s) = [Wmul(s); bmul(s)] are the param-
eters of the style classifier in the setting of multi-
task learning, and ys is the output of softmax layer.

The classifier is trained with cross-entropy loss
against the ground-truth distribution ts(·) by

Jmul(s)(θE;θmul(s)) = −
∑

l∈labels

ts(l) log ys(l) (4)
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In fact, we train the style classifier at the same
time as the autoencoding loss. Thus, this could
be viewed as multi-task learning, incentivizing the
entire model to not only decode the sentence, but
also predict its sentiment from the style vector s.
We denote it by “mul(s).” The idea of multi-task
training is not new and has been used in previous
work for sentence representation learning (Jernite
et al., 2017) and sentiment analysis (Balikas et al.,
2017), among others.

Adversarial Loss for Style. The multi-task
loss only ensures that the style space contains style
information. However, the content space might
also contain style information, which is undesir-
able for disentanglement.

We thus apply an adversarial loss to discour-
age the content space containing style information.
We first train a separate classifier, called an adver-
sary, that deliberately discriminates the style label
based on the content vector c. Then, the encoder
is trained to encode a content space from which its
adversary cannot predict the style.

Concretely, the adversarial discriminator and its
training objective have a similar form as Eqns. (3)
and (4), but with different input and parameters,
given by

ys = softmax(Wdis(s)c+ bdis(s)) (5)

Jdis(s)(θdis(s)) = −
∑

l∈labels
tc(l) log ys(l) (6)

where θdis(s) = [Wdis(s); bdis(s)] are the parameters
of the adversary.

It should be emphasized that, when we train the
adversary, the gradient is not propagated back to
the autoencoder, i.e., the vector c is treated as shal-
low features. Therefore, we view Jdis(s) as a func-
tion of θdis(s) only, whereas Jmul(s) is a function of
both θE and θmul(s).

Having trained an adversary, we would like the
autoencoder to be tuned in such an ad hoc fashion
that c is not discriminative for style. In existing
literature, there could be different approaches, for
example, maximizing the adversary’s loss (Shen
et al., 2017; Zhao et al., 2018) or penalizing the
entropy of the adversary’s prediction (Fu et al.,
2018). In our work, we adopt the latter, as it
can be easily extended to multi-category classifi-
cation, used in Subsection 3.3. Formally, the style-
oriented adversarial objective is to maximize

Jadv(s)(θE) = H(ys|c;θdis(s)) (7)

where ys is the predicted distribution over the
style labels and H(p) = −

∑
i∈labels pi log pi is

the entropy of the adversary. Here, Jadv(s) is max-
imized with respect to the encoder θE and we fix
θdis(s). The objective attains maximum value when
ys is uniform.

While adversarial loss has been explored in pre-
vious style-transfer studies (Shen et al., 2017; Fu
et al., 2018), it has not been combined with the
multi-task loss. As shown in our experiments, a
simple combination of these two losses is promis-
ingly effective, achieving better style transfer per-
formance than a variety of previous methods.

3.3 Content-Oriented Losses

The above style-oriented losses only regularize
style information, but they do not impose any con-
straint on how the content information should be
encoded.

In practice, the style space is usually smaller
than content space. But it is unrealistic to expect
that the content would not flow into the style space
simply because of its limited capacity. Therefore,
we need to design content-oriented losses to reg-
ularize the content information. In most previous
work, however, the treatment of content is miss-
ing (Hu et al., 2017; Fu et al., 2018).

Inspired by the above combination of multi-task
and adversarial losses, we apply the same idea to
the content space. However, it is usually hard to
define what “content” actually refers to.

To this end, we propose to approximate the con-
tent information by bag-of-words (BoW) features.
The BoW feature of a sentence is a vector, each
element indicating the probability of a word’s oc-
currence. For a sentence x withN words, the word
w∗’s BoW probability is tc(w∗) =

∑N
i=1 I{wi=w∗}

N ,
where I{·} is an indicator function. Here, we only
consider content words, excluding stopwords and
sentiment words (Hu and Liu, 2004),2 since we
focus on “content” information. It should be men-
tioned that the removal of stopwords and senti-
ment words is not essential, but results in better
performance. We analyze the effect of using dif-
ferent vocabularies in Appendix B.

Multi-Task Loss for Content. Similar to the
style-oriented loss, the multi-task loss for content,
denoted as “mul(c),” ensures that the content space

2The list of sentiment words is available at
https://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html#lexicon

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
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c contains content information, i.e., BoW features.
We introduce a softmax classifier over the BoW
vocabulary

yc = softmax(Wmul(c)c+ bmul(c)) (8)

where θmul(c)=[Wmul(c); bmul(c)] are the classifier’s
parameters; yc is the predicted BoW distribution.

The training objective is a cross-entropy loss
against the ground-truth distribution tc(·):

Jmul(c)(θE;θmul(c)) = −
∑

w∈vocab

tc(w) log yc(w)

(9)
where the optimization is performed with both en-
coder parameters θE and the multi-task classifier
θmul(c). Notice that, although the target distribu-
tion is not one-hot for BoW, the cross-entropy loss
in Eqn. (9) has the same form as (4).

It is also interesting that, at first glance, the
multi-task loss for content appears to be redun-
dant to the autoencoding loss, when in fact, it is
not. The autoencoding loss only requires that the
model could reconstruct the sentence based on the
combined content and style spaces, but does not
ensure their separation. The multi-task loss fo-
cuses on content words and is applied to the con-
tent space only.

Adversarial Loss for Content. To ensure that
the style space does not contain content informa-
tion, we design our final auxiliary loss, the BoW
adversarial loss for content, denoted as “adv(c).”

We build a content adversary, a softmax classi-
fier on the style space predicting BoW features

yc = softmax(Wdis(c)
>s+ bdis(c)) (10)

Jdis(c)(θdis(c)) =−
∑

w∈vocab

tc(w) log yc(w) (11)

where θdis(c) = [Wdis(c); bdis(c)] are the classifier’s
parameters for BoW prediction.

The adversarial loss for the model is to maxi-
mize the entropy of the discriminator

Jadv(c)(θE) = H(yc|s;θdis(c)) (12)

Again, Jdis(c) is trained with respect to the dis-
criminator’s parameters θdis(c), whereas Jadv(c) is
trained with respect to θE, similar to the adversar-
ial loss for style.

Our BoW-based, content-oriented losses are
novel in the style-transfer literature. While they
do not directly work with “style,” they regularize
the content information, so that the style and con-
tent can be better disentangled.

1 foreach mini-batch do
2 minimize Jdis(s)(θdis(s)) w.r.t. θdis(s);
3 minimize Jdis(c)(θdis(c)) w.r.t. θdis(c);
4 minimize Jovr w.r.t. θE,θD,θmul(s),θmul(c);
5 end

Algorithm 1: Training process.

3.4 Training Process
The overall loss Jovr for our model comprises sev-
eral terms: the autoencoder’s reconstruction ob-
jective, the multi-task and adversarial objectives,
for style and content, respectively, given by

Jovr = JAE(θE,θD) (13)

+λmul(s)Jmul(s)(θE,θmul(s))− λadv(s)Jadv(s)(θE)

+λmul(c)Jmul(c)(θE,θmul(c))− λadv(c)Jadv(c)(θE)

where λs are the hyperparameters that balance the
autoencoding loss and these auxiliary losses.

To put it all together, the model training in-
volves an alternation of optimizing the adversaries
by Jdis(s) and Jdis(c), and the model itself by Jovr,
shown in Algorithm 1.

3.5 Generating Style-Transferred Sentences
A direct application of our disentangled latent
space is style-transfer sentence generation, i.e., we
can synthesize a sentence with generally the same
meaning but a different style in the inference stage.

Let x∗ be an input sentence with s∗ and c∗ be-
ing the encoded style and content vectors, respec-
tively. If we would like to transfer its content to a
different style, we compute an empirical estimate
of the target style’s vector ŝ of the training set, us-
ing

ŝ =

∑
i∈target style si

# target style samples
(14)

The inferred target style ŝ is concatenated with the
encoded content c∗ for decoding style-transferred
sentences, as shown in Figure 1b.

4 Experiments

4.1 Datasets
We conducted experiments on two datasets, Yelp
and Amazon reviews. Both comprise sentences la-
beled by binary sentiment (positive or negative).
They are used to train latent space disentangle-
ment as well as to evaluate sentiment transfer.

Yelp Service Reviews. We used the Yelp re-
view dataset, following previous work (Shen et al.,
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2017; Zhao et al., 2018).3 It contains 444101,
63483, and 126670 labeled reviews for train, vali-
dation, and test, respectively. We set the maximum
length of a sentence to 15 words and the vocabu-
lary size to ∼9200, following Shen et al. (2017).

Amazon Product Reviews. We further eval-
uate our model with an Amazon review dataset,
following some other previous papers (Fu et al.,
2018).4 It contains 555142, 2000, and 2000 la-
beled reviews for train, validation, and test, re-
spectively. The maximum length of a sentence is
set to 20 words and the vocabulary size is ∼58k,
as in Fu et al. (2018).

4.2 Experimental Settings

Our RNN has a hidden state of 256 dimensions,
linearly transformed to a style space of 8 dimen-
sions and a content space of 128 dimensions. They
were chosen empirically, and we found them ro-
bust to model performance. For the decoder, we
fed the latent vector h = [s, c] to the hidden state
at each step.

We used the Adam optimizer (Kingma and Ba,
2014) for the autoencoder and the RMSProp op-
timizer (Tieleman and Hinton, 2012) for the dis-
criminators, following stability tricks in adversar-
ial training (Arjovsky et al., 2017). Each optimizer
has an initial learning rate of 10−3. Our model is
trained for 20 epochs, by which time it has con-
verged. The word embedding layer was initial-
ized by word2vec (Mikolov et al., 2013) trained
on respective training sets. Both the autoencoder
and the discriminators are trained once per mini-
batch with λmul(s) = 10, λmul(c) = 3, λadv(s) = 1,
and λadv(c) = 0.03. These hyperparameters were
tuned by a log-scale grid search within two orders
of magnitude around the default value 1; we chose
the values yielding the best validation results.

For the VAE model, the KL penalty is weighted
by λkl(s) and λkl(c) for style and content, respec-
tively. We set both to 0.03, tuned by the same
method of log-scale grid search. During training,
we also used the sigmoid KL annealing schedule,
following Bahuleyan et al. (2018).

4.3 Exp. I: Disentangling Latent Space

First, we analyze how the style (sentiment) and
content of the latent space are disentangled. We

3The Yelp dataset is available at https://github.
com/shentianxiao/language-style-transfer

4The Amazon dataset is available at https://
github.com/fuzhenxin/text_style_transfer

Latent Space Yelp Amazon
DAE VAE DAE VAE

None (majority guess) 0.60 0.51
Content space (c) 0.66 0.70 0.67 0.69
Style space (s) 0.97 0.97 0.82 0.81
Complete space ([s; c]) 0.97 0.97 0.82 0.81

Table 1: Classification accuracy on latent spaces.

Style Space Content Space

(b) VAE

(a) DAE

Figure 2: t-SNE plots of the disentangled style and con-
tent spaces on Yelp (with all auxiliary losses).

train separate logistic regression sentiment clas-
sifiers on different latent spaces, and report their
classification accuracy in Table 1.

We see the 128-dimensional content vector c is
not particularly discriminative for style. Its accu-
racy is slightly better than majority guess. How-
ever, the 8-dimensional style vector s, despite its
low dimensionality, achieves substantially higher
style classification accuracy. When combining
content and style vectors, we observe no further
improvement. These results verify the effective-
ness of our disentangling approach, as the style
space contains style information, whereas the con-
tent space does not.

We show t-SNE plots (van der Maaten and Hin-
ton, 2008) for both DAE and VAE in Figure 2.
As seen, sentences with different styles are no-
ticeably separated in a clean manner in the style
space (LHS), but are indistinguishable in the con-
tent space (RHS). It is also evident that the latent
space learned by VAE is considerably smoother
and more continuous than the one learned by DAE.

4.4 Exp. II: Non-Parallel Text Style Transfer

In this experiment, we apply the disentangled la-
tent space to sentiment-transfer text generation.

Metrics. We evaluate competing models based
on (1) style transfer accuracy, (2) content preser-
vation, and (3) quality of generated language. The
evaluation of sentence generation has proven to be
difficult in contemporary literature, so we adopt a
few automatic metrics and use human judgment as

https://github.com/shentianxiao/language-style-transfer
https://github.com/shentianxiao/language-style-transfer
https://github.com/fuzhenxin/text_style_transfer
https://github.com/fuzhenxin/text_style_transfer
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well.
Style-Transfer Accuracy (STA): We follow most

previous work (Hu et al., 2017; Shen et al., 2017;
Fu et al., 2018) and train a separate convolutional
neural network (CNN) to predict the sentiment of
a sentence (Kim, 2014), which is then used to ap-
proximate the style transfer accuracy. In other
words, we report the CNN classifier’s accuracy
on the style-transferred sentences, considering the
target style to be the ground-truth. While the style
classifier itself may not be perfect, it achieves a
reasonable sentiment accuracy on the validation
sets (97% for Yelp; 82% for Amazon). Thus,
it provides a quantitative way of evaluating the
strength of style transfer.

Cosine Similarity (CS): We followed Fu et al.
(2018) and computed the cosine measure be-
tween source and generated sentence embeddings,
which are the concatenation of min, max, and
mean of word embeddings (sentiment words re-
moved). This provides a rough estimation of con-
tent preservation.

Word Overlap (WO): We find that cosine simi-
larity, although correlated to human judgment, is
not a sensitive measure. Instead, we propose a
simple and effective measure that counts the un-
igram word overlap rate of the original sentence x
and the style-transferred sentence y, computed by
count(x∩y)
count(x∪y) . Here, we exclude both stopwords and
sentiment words.

Perplexity (PPL): We use a trigram Kneser–
Ney (KN, Kneser and Ney, 1995) language model
as a quantitative and automated metric to evaluate
the fluency of a sentence. It estimates the empiri-
cal distribution of trigrams in a corpus, and com-
putes the perplexity of a test sentence. We trained
the language model on the respective datasets, and
report PPL on the generated sentences. A smaller
PPL indicates more fluent sentences.

Geometric Mean (GM): We use the geometric
mean of STA, WO, and 1/PPL—reflecting trans-
fer strength, content preservation, and fluency,
respectively—to obtain an aggregated score con-
sidering all aspects. Notice that a smaller PPL
is desired; thus, we use 1/PPL when computing
GM. Also, cosine similarity (CS) is not included,
because it is insensitive yet repetitive with word
overlap (WO). Here, we adopt the geometric mean
so that the scale of each metric does not influence
the judgment.

Manual Evaluation: Despite the above auto-

matic metrics, we also conduct human evaluations
to further confirm the performance of our model.
This was done on the Yelp dataset only, due to
the amount of manual effort involved. We asked
6 human annotators to rate each sentence on a
1–5 Likert scale (Stent et al., 2005) in terms of
transfer strength (TS), content preservation (CP),
and language quality (LQ). This evaluation was
conducted in a strictly blind fashion: samples ob-
tained from all evaluated models were randomly
shuffled, so that the annotator was unaware of
which model generated a particular sentence. The
inter-rater agreement—as measured by Krippen-
dorff’s alpha (Klaus, 2004) for our Likert scale
ratings—is 0.74, 0.68, and 0.72 for these three as-
pects, respectively. According to Klaus (2004),
this is an acceptable inter-rater agreement. We
also computed the geometric mean (GM) to ob-
tain an aggregated score.

Overall performance. We compare our ap-
proach with previous state-of-the-art work in Ta-
ble 2. For competing methods, we quote re-
sults from existing papers whenever possible. In
some studies, the authors have released their style-
transferred sentences, and we tested them with
our metrics. A caveat is that this may involve a
different data split, providing a rough (but unbi-
ased) comparison. For others, we re-evaluated the
model using publicly available code. We sought
comparison with Hu et al. (2017), but unfortu-
nately could not find publicly available code. In-
stead we sought performance comparisons of their
model in subsequent work, and found that, accord-
ing to the human evaluation in Shen et al. (2017),
Hu et al. (2017) is comparable but slightly worse
than Shen et al. (2017). The latter is compared
with our model in terms of both automatic metrics
and human evaluation.

We see in Table 2 a clear trade-off between style
transfer and content preservation, as they are con-
tradictory goals. Especially, a few models have a
transfer accuracy lower than 50%. They are shown
in gray, and not the focus of the comparison, be-
cause the system cannot achieve the goal of style
transfer most of the time.

Our method achieves high style-transfer accu-
racy (STA) in both experiments. On the Yelp
dataset, it outperforms previous methods by more
than 7%, whereas on Amazon, VAE is 1% lower
than Tsvetkov et al. (2018), ranking second.

Our approach achieves high content preserva-
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Model Yelp Dataset Amazon Dataset
STA↑ CS↑ WO↑ PPL↓ GM↑ STA↑ CS↑ WO↑ PPL↓ GM↑

Style-Embedding (Fu et al., 2018) 0.18 0.96 0.67 124 0.10 0.40† 0.93† 0.36 32 0.17
Cross-Alignment (Shen et al., 2017) 0.78† 0.89 0.21 93 0.12 0.61 0.89 0.02 202 0.04
Multi-Decoder (Zhao et al., 2018) 0.82† 0.88 0.27 85 0.14 0.55 0.93 0.17 75 0.11
Del-Ret-Gen (Li et al., 2018) ‡ 0.86 0.94 0.52 70 0.19 0.43 0.98 0.80 65 0.17
BackTranslate (Tsvetkov et al., 2018) 0.85 0.83 0.08 206 0.07 0.83 0.82 0.02 115 0.05
Cycle-RL (Xu et al., 2018) ‡ 0.80 0.92 0.43 470 0.09 0.72 0.91 0.22 332 0.08
Ours (DAE) 0.88 0.92 0.55 52 0.21 0.72 0.92 0.35 73 0.15
Ours (VAE) 0.93 0.90 0.47 32 0.24 0.82 0.90 0.20 63 0.14

Table 2: Performance of text style transfer. STA: Style transfer accuracy. CS: Cosine similarity. WO: Word
overlap rate. PPL: Perplexity. GM: Geometric mean. The larger↑ (or lower↓), the better. †Quoted from previous
papers (with the same data split). ‡Involving custom data splits, providing a rough (but unbiased) comparison.
Others are based on our replication, and we use published code whenever possible. We achieve 0.809 and 0.835
transfer accuracy on the Yelp dataset, close to the results in Shen et al. (2017) and Zhao et al. (2018), respectively,
showing that our replication is fair. Gray numbers show that a method fails to transfer style most of the time.

Model TS CP LQ GM
Fu et al. (2018) 1.67 3.84 3.66 2.86
Shen et al. (2017) 3.63 3.07 3.08 3.25
Zhao et al. (2018) 3.55 3.09 3.77 3.46
Ours (DAE) 3.67 3.64 4.19 3.83
Ours (VAE) 4.32 3.73 4.48 4.16

Table 3: Manual evaluation on the Yelp dataset.

tion as well. Among all the methods that can
achieve more than 50% transfer accuracy, DAE
has the highest word overlap (WO) on Yelp; VAE
is also high, although slightly lower than Li et al.
(2018). On Amazon, the phenomenon is similar.
DAE is the best; VAE is 2% lower in WO (al-
though 10% better in transfer accuracy), compared
with Xu et al. (2018).

For language fluency, VAE yields the best PPL
in both datasets. It is also noted that, the cycle
reinforcement learning (Cycle-RL) approach does
not generate fluent sentences (Xu et al., 2018).
They have unusually high PPL scores, but after
reading the samples provided by the authors (via
personal email correspondence) we are assured
that the sentences obtained by Cycle-RL are less
fluent.

When we consider all the above aspects, our
approach (either DAE or VAE) has the highest
geometric meaning (GM), showing that we have
achieved good balance on transfer strength, con-
tent preservation, as well as language fluency.

Table 3 presents the results of human evalua-
tion on selected methods.5Again, we see that the
style embedding model (Fu et al., 2018) is ineffec-
tive as it has a very low transfer strength, and that
our method outperforms other baselines in all as-

5Selection was based on the time of availability.

Objectives STA CS WO PPL GM
JAE 0.11 0.94 0.47 40 0.11
JAE, Jmul(s) 0.77 0.91 0.33 41 0.18
JAE, Jadv(s) 0.78 0.89 0.23 35 0.17
JAE, Jmul(s), Jadv(s) 0.91 0.87 0.17 23 0.19
JAE, Jmul(s), Jadv(s), 0.93 0.90 0.47 32 0.24
Jmul(c), Jadv(c)

Table 4: Ablation tests on Yelp. In all variants, we fol-
low the same protocol of style transfer by substituting
an empirical estimate of the target style vector.

pects. The results are consistent with Table 2. This
also implies that the automatic metrics we used are
reasonable, and could be extrapolated to different
models; it also shows consistent evidence of the
effectiveness of our approach.

Ablation Test. We conducted ablation tests
on the Yelp dataset, and show results in Table 4.
With JAE only, we cannot achieve reasonable style
transfer accuracy by substituting an empirically
estimated style vector of the target style. This is
because the style and content spaces would not be
disentangled spontaneously with the autoencoding
loss alone. With either Jmul(s) or Jadv(s), the model
achieves reasonable transfer accuracy and cosine
similarity. Combining them together improves the
transfer accuracy to 90%, outperforming previous
methods by a margin of 5% (Table 2). This shows
that the multi-task loss and the adversarial loss
work in different ways. Our insight of combining
the two auxiliary losses is a simple yet effective
way of disentangling latent space.

On the other hand, Jmul(s) and Jadv(s) only reg-
ularize the style information, leading to gradual
drop of content preserving scores. Then, we
use another insight of introducing content-oriented
auxiliary losses, Jmul(c) and Jadv(c), based on BoW
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features, which regularize the content information
in the same way as style. By incorporating all
these auxiliary losses, we achieve high transfer ac-
curacy, high content preservation, as well as high
language fluency.

5 Conclusion and Future Work

In this paper, we propose an effective approach
for disentangling style and content latent spaces.
We systematically combine multi-task and adver-
sarial objectives to separate content and style from
each other, where we also propose to approximate
content information with bag-of-words features of
style-neutral, non-stopword vocabulary.

Both qualitative and quantitative experiments
show that the latent space is indeed separated into
style and content parts. The disentangled space
can be directly applied to text style-transfer tasks.
Our method achieves high style-transfer strength,
high content-preservation scores, as well as high
language fluency, compared with previous work.

Our approach can be naturally extended to non-
categorical styles, because our style feature is en-
coded from the input sentence. Non-categorical
styles cannot be easily handled by fixed style
embeddings or style-specific decoders (Fu et al.,
2018). Bao et al. (2019) have successfully shown
that the syntax and semantics of a sentence can be
disentangled from each other.
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Original (Positive) DAE Transferred (Negative) VAE Transferred (Negative)
the food is excellent and the
service is exceptional

the food was a bit bad but the
staff was exceptional

the food was bland and i am not
thrilled with this

the waitresses are friendly and
helpful

the guys are rude and helpful the waitresses are rude and are
lazy

the restaurant itself is romantic
and quiet

the restaurant itself is awkward
and quite crowded

the restaurant itself was dirty

great deal horrible deal no deal
both times i have eaten the
lunch buffet and it was out-
standing

their burgers were decent but
the eggs were not the consis-
tency

both times i have eaten here the
food was mediocre at best

Original (Negative) DAE Transferred (Positive) VAE Transferred (Positive)
the desserts were very bland the desserts were very good the desserts were very good
it was a bed of lettuce and
spinach with some italian
meats and cheeses

it was a beautiful setting and
just had a large variety of ger-
man flavors

it was a huge assortment of fla-
vors and italian food

the people behind the counter
were not friendly whatsoever

the best selection behind the
register and service presenta-
tion

the people behind the counter is
friendly caring

the interior is old and generally
falling apart

the decor is old and now per-
fectly

the interior is old and noble

they are clueless they are stoked they are genuinely profession-
als

Table 5: Examples of style transferred sentence generation.

BoW Vocabulary STA CS WO PPL GM
Full corpus vocabulary 0.822 0.896 0.344 30 0.21
Vocabulary without sentiment words 0.872 0.901 0.359 30 0.22
Vocabulary without stopwords 0.836 0.894 0.429 33 0.22
Vocabulary without stopwords and sentiment words 0.934 0.904 0.473 32 0.24

Table 6: Analysis of the BoW vocabulary.


