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Abstract

We propose a new domain adaptation method
for Combinatory Categorial Grammar (CCG)
parsing, based on the idea of automatic gen-
eration of CCG corpora exploiting cheaper re-
sources of dependency trees. Our solution is
conceptually simple, and not relying on a spe-
cific parser architecture, making it applicable
to the current best-performing parsers. We
conduct extensive parsing experiments with
detailed discussion; on top of existing bench-
mark datasets on (1) biomedical texts and
(2) question sentences, we create experimen-
tal datasets of (3) speech conversation and (4)
math problems. When applied to the proposed
method, an off-the-shelf CCG parser shows
significant performance gains, improving from
90.7% to 96.6% on speech conversation, and
from 88.5% to 96.8% on math problems.

1 Introduction

The recent advancement of Combinatory Cate-
gorial Grammar (CCG; Steedman (2000)) pars-
ing (Lee et al., 2016; Yoshikawa et al., 2017),
combined with formal semantics, has enabled
high-performing natural language inference sys-
tems (Abzianidze, 2017; Martı́nez-Gómez et al.,
2017). We are interested in transferring the suc-
cess to a range of applications, e.g., inference sys-
tems on scientific papers and speech conversation.

To achieve the goal, it is urgent to enhance the
CCG parsing accuracy on new domains, i.e., solv-
ing a notorious problem of domain adaptation of
a statistical parser, which has long been addressed
in the literature. Especially in CCG parsing, prior
work (Rimell and Clark, 2008; Lewis et al., 2016)
has taken advantage of highly informative cate-
gories, which determine the most part of sentence
structure once correctly assigned to words. It
is demonstrated that the annotation of only pre-
terminal categories is sufficient to adapt a CCG

parser to new domains. However, the solution is
limited to a specific parser’s architecture, making
non-trivial the application of the method to the
current state-of-the-art parsers (Lee et al., 2016;
Yoshikawa et al., 2017; Stanojević and Steedman,
2019), which require full parse annotation. Addi-
tionally, some ambiguities remain unresolved with
mere supertags, especially in languages other than
English (as discussed in Yoshikawa et al. (2017)),
to which the method is not portable.

Distributional embeddings are proven to be
powerful tools for solving the issue of domain
adaption, with their unlimited applications in NLP,
not to mention syntactic parsing (Lewis and Steed-
man, 2014b; Mitchell and Steedman, 2015; Pe-
ters et al., 2018). Among others, Joshi et al.
(2018) reports huge performance boosts in con-
stituency parsing using contextualized word em-
beddings (Peters et al., 2018), which is orthogo-
nal to our work, and the combination shows huge
gains. Including Joshi et al. (2018), there are stud-
ies to learn from partially annotated trees (Mir-
roshandel and Nasr, 2011; Li et al., 2016; Joshi
et al., 2018), again, most of which exploit specific
parser architecture.

In this work, we propose a conceptually simpler
approach to the issue, which is agnostic on any
parser architecture, namely, automatic generation
of CCGbanks (i.e., CCG treebanks)1 for new do-
mains, by exploiting cheaper resources of depen-
dency trees. Specifically, we train a deep conver-
sion model to map a dependency tree to a CCG
tree, on aligned annotations of the Penn Tree-
bank (Marcus et al., 1993) and the English CCG-
bank (Hockenmaier and Steedman, 2007) (Fig-
ure 1a). When we need a CCG parser tailored for

1In this paper, we call a treebank based on CCG gram-
mar a CCGbank, and refer to the specific one constructed in
Hockenmaier and Steedman (2007) as the English CCGbank.
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Figure 1: Overview of the proposed method. (a) A neural network-based model is trained to convert a dependency
tree to a CCG one using aligned annotations on WSJ part of the Penn Treebank and the English CCGbank. (b) The
trained converter is applied to an existing dependency corpus (e.g., the Genia corpus) to generate a CCGbank, (c)
which is then used to fine-tune the parameters of an off-the-shelf CCG parser.

a new domain, the trained converter is applied to a
dependency corpus in that domain to obtain a new
CCGbank (1b), which is then used to fine-tune an
off-the-shelf CCG parser (1c). The assumption
that we have a dependency corpus in that target
domain is not demanding given the abundance of
existing dependency resources along with its de-
veloped annotation procedure, e.g., Universal De-
pendencies (UD) project (Nivre et al., 2016), and
the cheaper cost to train an annotator.

One of the biggest bottlenecks of syntactic pars-
ing is handling of countless unknown words. It
is also true that there exist such unfamiliar input
data types to our converter, e.g., disfluencies in
speech and symbols in math problems. We ad-
dress these issues by constrained decoding (§4),
enabled by incorporating a parsing technique into
our converter. Nevertheless, syntactic structures
exhibit less variance across textual domains than
words do; our proposed converter suffers less
from such unseen events, and expectedly produces
high-quality CCGbanks.

The work closest to ours is Jiang et al. (2018),
where a conversion model is trained to map de-
pendency treebanks of different annotation princi-
ples, which is used to increase the amount of la-
beled data in the target-side treebank. Our work
extends theirs and solves a more challenging task;
the mapping to learn is to more complex CCG
trees, and it is applied to datasets coming from
plainly different natures (i.e., domains). Some
prior studies design conversion algorithms to in-
duce CCGbanks for languages other than English

from dependency treebanks (Bos et al., 2009; Am-
bati et al., 2013). Though the methods may be ap-
plied to our problem, they usually cannot cover the
entire dataset, consequently discarding sentences
with characteristic features. On top of that, un-
avoidable information gaps between the two syn-
tactic formalisms may at most be addressed prob-
abilistically.

To verify the generalizability of our approach,
on top of the existing benchmarks on (1) biomed-
ical texts and (2) question sentences (Rimell
and Clark, 2008), we conduct parsing experiments
on (3) speech conversation texts, which exhibit
other challenges such as handling informal expres-
sions and lengthy sentences. We create a CCG
version of the Switchboard corpus (Godfrey et al.,
1992), consisting of full train/dev/test sets of auto-
matically generated trees and manually annotated
100 sentences for a detailed evaluation. Addition-
ally, we manually construct experimental data for
parsing (4) math problems (Seo et al., 2015), for
which the importance of domain adaptation is pre-
viously demonstrated (Joshi et al., 2018). We ob-
serve huge additive gains in the performance of the
depccg parser (Yoshikawa et al., 2017), by com-
bining contextualized word embeddings (Peters
et al., 2018) and our domain adaptation method: in
terms of unlabeled F1 scores, 90.68% to 95.63%
on speech conversation, and 88.49% to 95.83% on
math problems, respectively.2

2All the programs and resources used in this work
are available at: https://github.com/masashi-y/
depccg.

https://github.com/masashi-y/depccg
https://github.com/masashi-y/depccg
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Figure 2: Example CCG derivation tree for phrase cats that Kyle wants to see. Categories are combined using rules
such as an application rule (marked with “>”, X/Y Y ⇒ X) and a composition rule (“>B”: X/Y Y/Z⇒ X/Z).
See Steedman (2000) for the detail.

2 Combinatory Categorial Grammar

CCG is a lexicalized grammatical formalism,
where words and phrases are assigned categories
with complex internal structures. A category X/Y
(or X\Y) represents a phrase that combines with
a Y phrase on its right (or left), and becomes an
X phrase. As such, a category (S\NP)/NP repre-
sents an English transitive verb which takes NPs
on both sides and becomes a sentence (S).

The semantic structure of a sentence can be ex-
tracted using the functional nature of CCG cate-
gories. Figure 2 shows an example CCG deriva-
tion of a phrase cats that Kyle wants to see, where
categories are marked with variables and constants
(e.g., kyle in NPkyle), and argument ids in the
case of verbs (subscripts in (Ssee\NPs,1)/NPt,2).
Unification is performed on these variables and
constants in the course of derivation, resulting
in chains of equations s = v = z = kyle,
and t = x = cats, successfully recovering the
first and second argument of see: Kyle and cats
(i.e., capturing long-range dependencies). What
is demonstrated here is performed in the stan-
dard evaluation of CCG parsing, where the num-
ber of such correctly predicted predicate-argument
relations is calculated (for the detail, see Clark
et al. (2002)). Remarkably, it is also the basis of
CCG-based semantic parsing (Abzianidze, 2017;
Martı́nez-Gómez et al., 2017; Matsuzaki et al.,
2017), where the above simple unification rule is
replaced with more sophisticated techniques such
as λ-calculus.

There are two major resources in CCG: the
English CCGbank (Hockenmaier and Steedman,
2007) for news texts, and the Groningen Meaning
Bank (Bos et al., 2017) for wider domains, includ-
ing Aesop’s fables. However, when one wants a
CCG parser tuned for a specific domain, he or she
faces the issue of its high annotation cost:

• The annotation requires linguistic expertise,

being able to keep track of semantic compo-
sition performed during a derivation.

• An annotated tree must strictly conform to
the grammar, e.g., inconsistencies such as
combining N and S\NP result in ill-formed
trees and hence must be disallowed.

We relax these assumptions by using dependency
tree, which is a simpler representation of the syn-
tactic structure, i.e., it lacks information of long-
range dependencies and conjunct spans of a coor-
dination structure. However, due to its simplicity
and flexibility, it is easier to train an annotator, and
there exist plenty of accessible dependency-based
resources, which we exploit in this work.

3 Dependency-to-CCG Converter

We propose a domain adaptation method based on
the automatic generation of a CCGbank out of a
dependency treebank in the target domain. This is
achieved by our dependency-to-CCG converter, a
neural network model consisting of a dependency
tree encoder and a CCG tree decoder.

In the encoder, higher-order interactions among
dependency edges are modeled with a bidirec-
tional TreeLSTM (Miwa and Bansal, 2016), which
is important to facilitate mapping from a depen-
dency tree to a more complex CCG tree. Due
to the strict nature of CCG grammar, we model
the output space of CCG trees explicitly3; our de-
coder is inspired by the recent success of A* CCG
parsing (Lewis and Steedman, 2014a; Yoshikawa
et al., 2017), where the most probable valid tree is
found using A* parsing (Klein and D. Manning,
2003). In the following, we describe the details of
the proposed converter.

3The strictness and the large number of categories make
it still hard to leave everything to neural networks to learn.
We trained constituency-based RSP parser (Joshi et al., 2018)
on the English CCGbank by disguising the trees as con-
stituency ones, whose performance could not be evaluated
since most of the output trees violated the grammar.
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Firstly, we define a probabilistic model of the
dependency-to-CCG conversion process. Accord-
ing to Yoshikawa et al. (2017), the structure of
a CCG tree y for sentence x = (x1, ..., xN )
is almost uniquely determined4 if a sequence
of the pre-terminal CCG categories (supertags)
c = (c1, ..., cN ) and a dependency structure d =
(d1, ..., dN ), where di ∈ {0, ..., N} is an index
of dependency parent of xi (0 represents a root
node), are provided. Note that the dependency
structure d is generally different from an input de-
pendency tree.5 While supertags are highly in-
formative about the syntactic structure (Bangalore
and Joshi, 1999), remaining ambiguities such as
attachment ambiguities need to be modeled us-
ing dependencies. Let the input dependency tree
of sentence x be z = (p,d′, `), where pi is a
part-of-speech tag of xi, d′i an index of its depen-
dency parent, `i is the label of the corresponding
dependency edge, then the conversion process is
expressed as follows:6

P (y|x, z) =

N∏
i=1

ptag(ci|x, z)

N∏
i=1

pdep(di|x, z).

Based on this formulation, we model ci and di
conditioned on a dependency tree z, and search
for y that maximizes P (y|x, z) using A* parsing.

Encoder A bidirectional TreeLSTM consists of
two distinct TreeLSTMs (Tai et al., 2015). A
bottom-up TreeLSTM recursively computes a hid-
den vector h↑

i for each xi, from vector representa-
tion ei of the word and hidden vectors of its depen-
dency children {h↑

j |d′j = i}. A top-down TreeL-

STM, in turn, computes h↓
i using ei and a hidden

vector of the dependency parent h↓
d′i

. In total, a
bidirectional TreeLSTM returns concatenations of
hidden vectors for all words: hi = h↑

i ⊕ h↓
i .

We encode a dependency tree as follows, where
ev denotes the vector representation of variable v,
and Ω and Ξd′ are shorthand notations of the series
of operations of sequential and tree bidirectional
LSTMs, respectively:

e1, ..., eN = Ω(ep1 ⊕ ex1 , ..., epN ⊕ exN ),

h1, ...,hN = Ξd′(e1 ⊕ e`1 , ..., eN ⊕ e`N ).
4The uniqueness is broken if a tree contains a unary node.
5In this work, input dependency tree is based on Uni-

versal Dependencies (Nivre et al., 2016), while dependency
structure d of a CCG tree is Head First dependency tree in-
troduced in Yoshikawa et al. (2017). See § 5 for the detail.

6Here, the independence of each cis and dis is assumed.

Decoder The decoder part adopts the same ar-
chitecture as in Yoshikawa et al. (2017), where
pdep|tag probabilities are computed on top of
{hi}i∈[0,N ], using a biaffine layer (Dozat and
Manning, 2017) and a bilinear layer, respectively,
which are then used in A* parsing to find the most
probable CCG tree.

Firstly a biaffine layer is used to compute uni-
gram head probabilities pdep as follows:

ri = ψdep
child(hi), rj = ψdep

head(hj),

si,j = rTi Wrj + wTrj ,

pdep(di = j|x, z) ∝ exp(si,j),

where ψ denotes a multi-layer perceptron. The
probabilities ptag are computed by a bilinear trans-
formation of vector encodings xi and xd̂i , where d̂i
is the most probable dependency head of xi with
respect to pdep: d̂i = arg maxj pdep(di = j|x, z).

qi = ψtag
child(hi), qd̂i = ψtag

head(hd̂i
),

si,c = qTi Wcqd̂i + vT
c qi + uT

c qd̂i + bc,

ptag(ci = c|x, z) ∝ exp(si,c).

A* Parsing Since the probability P (y|x, z) of a
CCG tree y is simply decomposable into probabil-
ities of subtrees, the problem of finding the most
probable tree can be solved with a chart-based al-
gorithm. In this work, we use one of such algo-
rithms, A* parsing (Klein and D. Manning, 2003).
A* parsing is a generalization of A* search for
shortest path problem on a graph, and it controls
subtrees (corresponding to a node in a graph case)
to visit next using a priority queue. We follow
Yoshikawa et al. (2017) exactly in formulating our
A* parsing, and adopt an admissible heuristic by
taking the sum of the max ptag|dep probabilities
outside a subtree. The advantage of employing an
A* parsing-based decoder is not limited to the op-
timality guarantee of the decoded tree; it enables
constrained decoding, which is described next.

4 Constrained Decoding

While our method is a fully automated treebank
generation method, there are often cases where we
want to control the form of output trees by using
external language resources. For example, when
generating a CCGbank for biomedical domain, it
will be convenient if a disease dictionary is uti-
lized to ensure that a complex disease name in a
text is always assigned the category NP. In our
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decoder based on A* parsing, it is possible to per-
form such a controlled generation of a CCG tree
by imposing constraints on the space of trees.

A constraint is a triplet (c, i, j) representing
a constituent of category c spanning over words
xi, ..., xj . The constrained decoding is achieved
by refusing to add a subtree (denoted as (c′, k, l),
likewise, with its category and span) to the priority
queue when it meets one of the conditions:

• The spans overlap: i < k ≤ j < l or k < i ≤
l < j.

• The spans are identical (i = k and j = l),
while the categories are different (c 6= c′) and
no category c′′ exists such that c′ ⇒ c′′ is a
valid unary rule.

The last condition on unary rule is necessary to
prevent structures such as (NP (N dog)) from
being accidentally discarded, when using a con-
straint to make a noun phrase to be NP. A set
of multiple constraints are imposed by checking
the above conditions for each of the constraints
when adding a new item to the priority queue.
When one wants to constrain a terminal category
to be c, that is achieved by manipulating ptag:
ptag(c|x, z) = 1 and for all categories c′ 6= c,
ptag(c′|x, z) = 0.

5 Experiments

5.1 Experimental Settings

We evaluate our method in terms of performance
gain obtained by fine-tuning an off-the-shelf CCG
parser depccg (Yoshikawa et al., 2017), on a va-
riety of CCGbanks obtained by converting exist-
ing dependency resources using the method.

In short, the method of depccg is equivalent to
omitting the dependence on a dependency tree z
from P (y|x, z) of our converter model, and run-
ning an A* parsing-based decoder on ptag|dep cal-
culated on h1, ...,hN = Ω(ex1 , ..., exN ), as in our
method. In the plain depccg, the word repre-
sentation exi is a concatenation of GloVe7 vectors
and vector representations of affixes. As in the
previous work, the parser is trained on both the
English CCGbank (Hockenmaier and Steedman,
2007) and the tri-training dataset by Yoshikawa
et al. (2017). In this work, on top of that, we in-
clude as a baseline a setting where the affix vectors

7https://nlp.stanford.edu/projects/
glove/

Method UF1 LF1
depccg 94.0 88.8
+ ELMo 94.98 90.51
Converter 96.48 92.68

Table 1: The performance of baseline CCG parsers and
the proposed converter on WSJ23, where UF1 and LF1
represents unlabeled and labeled F1, respectively.

are replaced by contextualized word representa-
tion (ELMo; Peters et al. (2018)) (exi = xGloV e

xi
⊕

xELMo
xi

),8 which we find marks the current best
scores in the English CCGbank parsing (Table 1).

The evaluation is based on the standard eval-
uation metric, where the number of correctly
predicted predicate argument relations is calcu-
lated (§2), where labeled metrics take into account
the category through which the dependency is con-
structed, while unlabeled ones do not.

Implementation Details The input word repre-
sentations to the converter are the concatenation
of GloVe and ELMo representations. Each of
epi and e`i is randomly initialized 50-dimensional
vectors, and the two-layer sequential LSTMs Ω
outputs 300 dimensional vectors, as well as bidi-
rectional TreeLSTM Ξd′ , whose outputs are then
fed into 1-layer 100-dimensional MLPs with ELU
non-linearity (Clevert et al., 2016). The training is
done by minimizing the sum of negative log like-
lihood of ptag|dep using the Adam optimizer (with
β1 = β2 = 0.9), on a dataset detailed below.

Data Processing In this work, the input tree
to the converter follows Universal Dependencies
(UD) v1 (Nivre et al., 2016). Constituency-based
treebanks are converted using the Stanford Con-
verter9 to obtain UD trees. The output depen-
dency structure d follows Head First dependency
tree (Yoshikawa et al., 2017), where a dependency
arc is always from left to right. The conversion
model is trained to map UD trees in the Wall
Street Journal (WSJ) portion 2-21 of the Penn
Treebank (Marcus et al., 1993) to its correspond-
ing CCG trees in the English CCGbank (Hocken-
maier and Steedman, 2007).

8We used the “original” ELMo model, with 1,024-
dimensional word vector outputs (https://allennlp.
org/elmo).

9https://nlp.stanford.edu/software/
stanford-dependencies.shtml. We used the
version 3.9.1.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://allennlp.org/elmo
https://allennlp.org/elmo
https://nlp.stanford.edu/software/stanford-dependencies.shtml
https://nlp.stanford.edu/software/stanford-dependencies.shtml
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Relation Parser Converter #
(a) PPs attaching to NP / VP

(NP\NP)/NP 90.62 97.46 2,561
(S\NP )\(S\NP))/NP 81.15 88.63 1,074
(b) Subject / object relative clauses
(NP\NP)/(Sdcl\NP ) 93.44 98.71 307
(NP\NP)/(Sdcl/NP ) 90.48 93.02 20

Table 2: Per-relation F1 scores of the proposed con-
verter and depccg + ELMo (Parser). “#” column
shows the number of occurrence of the phenomenon.

Fine-tuning the CCG Parser In each of the fol-
lowing domain adaptation experiments, newly ob-
tained CCGbanks are used to fine-tune the param-
eters of the baseline parser described above, by
re-training it on the mixture of labeled examples
from the new target-domain CCGbank, the En-
glish CCGbank, and the tri-training dataset.

5.2 Evaluating Converter’s Performance
First, we examine whether the trained converter
can produce high-quality CCG trees, by applying
it to dependency trees in the test portion (WSJ23)
of Penn Treebank and then calculating the stan-
dard evaluation metrics between the resulting trees
and the corresponding gold trees (Table 1). This
can be regarded as evaluating the upper bound of
the conversion quality, since the evaluated data
comes from the same domain as the converter’s
training data. Our converter shows much higher
scores compared to the current best-performing
depccg combined with ELMo (1.5% and 2.17%
up in unlabeled/labeled F1 scores), suggesting
that, using the proposed converter, we can obtain
CCGbanks of high quality.

Inspecting the details, the improvement is ob-
served across the board (Table 2); the converter
precisely handles PP-attachment (2a), notoriously
hard parsing problem, by utilizing input’s pobj
dependency edges, as well as relative clauses (2b),
one of well-known sources of long-range depen-
dencies, for which the converter has to learn from
the non-local combinations of edges, their la-
bels and part-of-speech tags surrounding the phe-
nomenon.

5.3 Biomedical Domain and Questions
Previous work (Rimell and Clark, 2008) provides
CCG parsing benchmark datasets in biomedical
texts and question sentences, each representing
two contrasting challenges for a newswire-trained
parser, i.e., a large amount of out-of-vocabulary

Method P R F1
C&C 77.8 71.4 74.5
EasySRL 81.8 82.6 82.2
depccg 83.11 82.63 82.87
+ ELMo 85.87 85.34 85.61
+ GENIA1000 85.45 84.49 84.97
+ Proposed 86.90 86.14 86.52

Table 3: Results on the biomedical domain dataset
(§5.3). P and R represent precision and recall, respec-
tively. The scores of C&C and EasySRL fine-tuned
on the GENIA1000 is included for comparison (ex-
cerpted from Lewis et al. (2016)).

Method P R F1
C&C - - 86.8
EasySRL 88.2 87.9 88.0
depccg 90.42 90.15 90.29
+ ELMo 90.55 89.86 90.21
+ Proposed 90.27 89.97 90.12

Table 4: Results on question sentences (§5.3). All of
baseline C&C, EasySRL and depccg parsers are re-
trained on Questions data.

words (biomedical texts), and rare or even unseen
grammatical constructions (questions).

Since the work also provides small training
datasets for each domain, we utilize them as
well: GENIA1000 with 1,000 sentences and
Questions with 1,328 sentences, both anno-
tated with pre-terminal CCG categories. Since
pre-terminal categories are not sufficient to train
depccg, we automatically annotate Head First
dependencies using RBG parser (Lei et al., 2014),
trained to produce this type of trees (We follow
Yoshikawa et al. (2017)’s tri-training setup).

Following the previous work, the evaluation is
based on the Stanford grammatical relations (GR;
Marneffe et al. (2006)), a deep syntactic represen-
tation that can be recovered from a CCG tree.10

Biomedical Domain By converting the Genia
corpus (Tateisi et al., 2005), we obtain a new
CCGbank of 4,432 sentences from biomedical pa-
pers annotated with CCG trees. During the pro-
cess, we have successfully assigned the category
NP to all the occurrences of complex biomedical
terms by imposing constraints (§4) that NP spans
in the original corpus be assigned the category NP
in the resulting CCG trees as well.

10We used their public script (https://www.cl.
cam.ac.uk/˜sc609/candc-1.00.html).

https://www.cl.cam.ac.uk/~sc609/candc-1.00.html
https://www.cl.cam.ac.uk/~sc609/candc-1.00.html
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Table 3 shows the results of the pars-
ing experiment, where the scores of previ-
ous work (C&C (Clark and Curran, 2007) and
EasySRL (Lewis et al., 2016)) are included for
reference. The plain depccg already achieves
higher scores than these methods, and boosts
when combined with ELMo (improvement of 2.73
points in terms of F1). Fine-tuning the parser
on GENIA1000 results in a mixed result, with
slightly lower scores. This is presumably because
the automatically annotated Head First dependen-
cies are not accurate. Finally, by fine-tuning on
the Genia CCGbank, we observe another improve-
ment, resulting in the highest 86.52 F1 score.

Questions In this experiment, we obtain a CCG
version of the QuestionBank (Judge et al., 2006),
consisting of 3,622 question sentences, excluding
ones contained in the evaluation data.

Table 4 compares the performance of depccg
fine-tuned on the QuestionBank, along with other
baselines. Contrary to our expectation, the plain
depccg retrained on Questions data performs
the best, with neither ELMo nor the proposed
method taking any effect. We hypothesize that,
since the evaluation set contains sentences with
similar constructions, the contributions of the lat-
ter two methods are less observable on top of
Questions data. Inspection of the output trees
reveals that this is actually the case; the majority of
differences among parser’s configurations are ir-
relevant to question constructions, suggesting that
the models capture well the syntax of question in
the data.11

5.4 Speech Conversation

Setup We apply the proposed method to a new
domain, transcription texts of speech conversation,
with new applications of CCG parsing in mind.
We create the CCG version of the Switchboard
corpus (Godfrey et al., 1992), by which, as far as
we are aware of, we conduct the first CCG pars-
ing experiments on speech conversation.12 We ob-
tain a new CCGbank of 59,029/3,799/7,681 sen-

11Due to many-to-many nature of mapping to GRs, the
evaluation set contains relations not recoverable from the
gold supertags using the provided script; for example, we find
that from the annotated supertags of sentence How many bat-
tles did she win ?, the (amod battle many) relation is
obtained instead of the gold det relation. This implies one
of the difficulties to obtain further improvement on this set.

12Since the annotated part-of-speech tags are noisy,
we automatically reannotate them using the core web sm
model of spaCy (https://spacy.io/), version 2.0.16.

a. we should cause it does help

b. the only problem i see with term limitations is that

i think that the bureaucracy in our government as

is with most governments is just so complex that

there is a learning curve and that you ca n’t just

send someone off to washington and expect his first

day to be an effective congress precision

Table 5: Example sentences from the manually anno-
tated subset of Switchboard test set.

Error type #
PP-attachment 3
Adverbs attaching wrong place 11
Predicate-argument 5
Imperative 2
Informal functional words 2
Others 11

Table 6: Error types observed in the manually anno-
tated Switchboard subset data.

tences for each of the train/test/development set,
where the data split follows prior work on depen-
dency parsing on this dataset (Honnibal and John-
son, 2014).

In the conversion, we have to handle one of the
characteristics of speech transcription texts, disflu-
encies. In real application, it is ideal to remove
disfluencies such as interjection and repairs (e.g., I
want a flight to Boston um to Denver), prior to per-
forming CCG-based semantic composition. Since
this corpus contains a layer of annotation that la-
bels their occurrences, we perform constrained de-
coding to mark the gold disfluencies in a tree with
a dummy category X, which can combine with
any category from both sides (i.e., for all cate-
gory C, C X ⇒ C and X C ⇒ C are allowed).
In this work, we perform parsing experiments on
texts that are clean of disfluencies, by removing
X-marked words from sentences (i.e., a pipeline
system setting with an oracle disfluency detection
preprocessor).13

Another issue in conducting experiments on this
dataset is evaluation. Since there exists no evalua-
tion protocol for CCG parsing on speech texts, we
evaluate the quality of output trees by two proce-
dures; in the first experiment, we parse the entire
test set, and convert them to constituency trees us-

13We regard developing joint disfluency detection and
syntactic parsing method based on CCG as future work.

https://spacy.io/
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Figure 3: Parse output by the re-trained parser for sentence if CD = 8 and BE = 2, find AE. from math problems.

Method
Whole Subset

P R F1 UF1 LF1
depccg 74.73 73.91 74.32 90.68 82.46
+ ELMo 75.76 76.62 76.19 93.23 86.46
+ Proposed 78.03 77.06 77.54 95.63 92.65

Table 7: Results on speech conversation texts (§5.4), on
the whole test set and the manually annotated subset.

Method UF1 LF1
depccg 88.49 66.15
+ ELMo 89.32 70.74
+ Proposed 95.83 80.53

Table 8: Results on math problems (§5.5).

ing a method by Kummerfeld et al. (2012).14 We
report labeled bracket F1 scores between the re-
sulting trees and the gold trees in the true Switch-
board corpus, using the EVALB script.15 How-
ever, the reported scores suffer from the compound
effect of failures in CCG parsing as well as ones
occurred in the conversion to the constituency
trees. To evaluate the parsing performance in de-
tail, the first author manually annotated a subset
of randomly sampled 100 sentences from the test
set. Sentences with less than four words are not
contained, to exclude short phrases such as nod-
ding. Using this test set, we report the standard
CCG parsing metrics. Sentences from this domain
exhibit other challenging aspects (Table 5), such
as less formal expressions (e.g., use of cause in-
stead of because) (5a), and lengthy sentences with
many embedded phrases (5b).16

Results On the whole test set, depccg
shows consistent improvements when combined
with ELMo and the proposed method, in the
constituency-based metrics (Whole columns in

14https://github.com/jkkummerfeld/
berkeley-ccg2pst

15https://nlp.cs.nyu.edu/evalb/
16Following Honnibal and Johnson (2014), sentences in

this data are fully lower-cased and contain no punctuation.

Table 7). Though the entire scores are rela-
tively lower, the result suggests that the proposed
method is effective to this domain on the whole.
By directly evaluating the parser’s performance
in terms of predicate argument relations (Sub-
set columns), we observe that it actually recovers
the most of the dependencies, with the fine-tuned
depccg achieving as high as 95.63% unlabeled
F1 score.

We further investigate error cases of the fine-
tuned depccg in the subset dataset (Table 6).
The tendency of error types is in accordance
with other domains, with frequent errors in PP-
attachment and predicate-argument structure, and
seemingly more cases of attachment errors of ad-
verbial phrases (11 cases), which occur in lengthy
sentences such as in Table 5b. Other types of er-
ror are failures to recognize that the sentence is in
imperative form (2 cases), and ones in handling in-
formal functional words such as cause (Table 5a).
We conclude that the performance on this domain
is as high as it is usable in application. Since
the remaining errors are general ones, they will be
solved by improving general parsing techniques.

5.5 Math Problems

Setup Finally, we conduct another experiment
on parsing math problems. Following previ-
ous work of constituency parsing on math prob-
lem (Joshi et al., 2018), we use the same train/test
sets by Seo et al. (2015), consisting of 63/62 sen-
tences respectively, and see if a CCG parser can be
adapted with the small training samples. Again,
the first author annotated both train/test sets, de-
pendency trees on the train set, and CCG trees on
the test set, respectively. In the annotation, we
follow the manuals of the English CCGbank and
the UD. We regard as an important future work
extending the annotation to include fine-grained
feature values in categories, e.g., marking a dis-
tinction between integers and real numbers (Mat-
suzaki et al., 2017). Figure 3 shows an example

https://github.com/jkkummerfeld/berkeley-ccg2pst
https://github.com/jkkummerfeld/berkeley-ccg2pst
https://nlp.cs.nyu.edu/evalb/
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CCG tree from this domain, successfully parsed
by fine-tuned depccg.

Results Table 8 shows the F1 scores of depccg
in the respective settings. Remarkably, we observe
huge additive performance improvement. While,
in terms of labeled F1, ELMo contributes about
4 points on top of the plain depccg, adding
the new training set (converted from dependency
trees) improves more than 10 points.17 Examin-
ing the resulting trees, we observe that the huge
gain is primarily involved with expressions unique
to math. Figure 3 is one of such cases, which the
plain depccg falsely analyzes as one huge NP
phrase. However, after fine-tuning, it successfully
produces the correct “If S1 and S2, S3” structure,
recognizing that the equal sign is a predicate.

6 Conclusion

In this work, we have proposed a domain adap-
tation method for CCG parsing, based on the au-
tomatic generation of new CCG treebanks from
dependency resources. We have conducted ex-
periments to verify the effectiveness of the pro-
posed method on diverse domains: on top of ex-
isting benchmarks on biomedical texts and ques-
tion sentences, we newly conduct parsing experi-
ments on speech conversation and math problems.
Remarkably, when applied to our domain adapta-
tion method, the improvements in the latter two
domains are significant, with the achievement of
more than 5 points in the unlabeled metric.
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