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Abstract

We present a system, CRUISE, that
guides ordinary software developers to
build a high quality natural language
understanding (NLU) engine from scratch.
This is the fundamental step of building a
new skill for personal assistants. Unlike
existing solutions that require either
developers or crowdsourcing to manually
generate and annotate a large number
of utterances, we design a hybrid rule-
based and data-driven approach with the
capability to iteratively generate more and
more utterances. Our system only requires
light human workload to iteratively prune
incorrect utterances. CRUISE outputs
a well trained NLU engine and a large
scale annotated utterance corpus that third
parties can use to develop their custom
skills. Using both benchmark dataset
and custom datasets we collected in real-
world settings, we validate the high quality
of CRUISE generated utterances via both
competitive NLU performance and human
evaluation. We also show the largely
reduced human workload in terms of both
cognitive load and human pruning time
consumption.

1 Introduction

Artificially intelligent voice-enabled personal
assistants have been emerging in our daily life,
such as Alexa, Google Assistant, Siri, Bixby, etc.
Existing off-the-shelf personal assistants provide a
large number of capabilities, referred to as skills,
and the number of skills keeps growing rapidly.
Thus, it is critically desirable to design an easy
to use system that facilitates developers to quickly
build high quality new skills.

The key of developing a new skill is to
understand all varieties of user utterances and
carry out the intent of users, referred to as
natural language understanding (NLU) engine.
Existing industrial personal assistant products
or open source tools (e.g., API.ai, WIT.ai)
require software developers themselves or via
crowdsourcing to manually input various natural
utterances and annotate the slots for each
utterance. Recently, researches have been made
to bootstrap the utterance generations. These
approaches first generate canonical utterances
based on either lexicon/grammar (Wang et al.,
2015) or language/SQL templates (Iyer et al.,
2017); then utilize crowdsourcing to create
paraphrases and correct labels. Unfortunately,
they require software developers to have natural
language expertise and still heavily rely on costly
crowdsourcing. Thus, it is significantly and
crucially desirable to develop a system for helping
ordinary developers quickly build a high quality
skill for personal assistants.

In this paper, we present a system, called
Cold-start iteRative Utterance generatIon for Skill
dEvelopment (CRUISE). As the name suggests,
CRUISE aims to guide software developers to
build a new skill from scratch, a.k.a., cold-start.
It is defined from two aspects: cold-start software
developers which refer to the ordinary developers
who do not have either linguistic expertise or
complete functionalities of the new skill in mind;
and cold-start dataset which means that there
is zero or very few training samples available.
Specifically, CRUISE initially takes the list of
intents in a new skill as inputs from software
developers and runs a hybrid rule-based and data-
driven algorithm to automatically generate more
and more new utterances for each intent. During
the whole process, software developers only need
to iteratively prune the incorrect samples. As

https://dialogflow.com
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such, CRUISE does not depend on crowdsourcing
to conduct the heavy task of manually generating
utterances and annotating slots.

2 Background and Related Work

Natural language understanding is a key
component in skill development. In personal
assistants, since users intend to use spoken
language to interact with personal assistant
agents, most industrial products are focused
on spoken language understanding (SLU) in
which it is sufficient to understand user query by
classifying the intent and identifying a set of slots
(Liu and Lane, 2016). One class of approaches
is to paraphrase user utterances to increase the
number of training set (Barzilay and Lee, 2003;
Quirk et al., 2004; Kauchak and Barzilay, 2006;
Zhao et al., 2009; Prakash et al., 2016). However,
these approaches depend on the existence of
large amount of dataset for training paraphrasing
model. As discussed above, the most relevant
works (Wang et al., 2015; Iyer et al., 2017)
bootstrapped the utterances based on grammar
and SQL templates respectively and then relied on
crowdsourcing to increase the utterance varieties
and correct the labels. Unfortunately, they require
both linguistic expertise from software developers
and heavy human workload. In this paper, we use
NLU and SLU engines equivalently.

3 CRUISE System Overview

3.1 Our Settings
Settings for Software Developers: To build a
new skill S, a software developer starts with
providing a list of predefined intents in this skill
S. For each intent, as shown in Figure 1,
the software developer first reviews and prunes
an automatically constructed knowledge base.
Next, the only human labor of a developer is to
iteratively prune incorrect generated utterances. In
the end, CRUISE will automatically outputs both
a well-trained NLU engine for skill S and a large
number of annotated correct utterances that can
be used directly by third parties to train their own
NLU engines.
Offline Preprocessed Components: CRUISE
also consists of the following components which
have been preprocessed offline without the
involvement of software developers: (1) Publicly
available InfoBox template Ω (InfoBox, 2017):
contains a subset of information/attributes about

an object, i.e., a set of object-attribute pairs. For
example, the object food has attributes such as
course, region, etc. (2) Language model: pre-
trained on a public corpus (e.g., Wikipedia). (3)
Pre-built concept hash table: for each word in
the language model vocabulary, we use MS term
conceptualizer (Wang and Wang, 2016) to find its
most likely concept/category. For example, the
word pizza is considered as an instance of the
concept food. Then a hash table is constructed
to map each concept to its instances.

3.2 CRUISE Design

We discuss the goals of CRUISE system design
and the key ideas to achieve them.
Cold start Support: As discussed in introduction,
the first trade-off in CRUISE design is between
cold start (lack of training data and expertise from
developers) and a high quality NLU engine. In
order to accommodate the developers who do
not have any linguistic expertise and reduce their
workload to manually generate various utterances,
we design an Iterative Utterance Generation
approach. It starts from an intent as a simplest
natural language utterance and decomposes the
complex utterance generation into small tasks to
tackle them one by one iteratively.
Reduced Human Workload: Another trade-off
in CRUISE design is between human workload
minimization and high quality of generated
utterances. To address this, we design CRUISE
from two aspects: (1) Human-in-the-loop Pruning
allows developers iteratively prune the incorrect
generated utterances. In next iteration, more
utterances are generated only based on the
previously selected correct utterances. (2)
Automated Utterance Annotation generates an
utterance corpus that can be directly used to train
NLU engine without extra human efforts. The
idea is to generate tagged utterances in which each
tag can be simply coupled with its corresponding
instances to automatically annotate the slots. For
example, a tagged utterance contains @food and
@size tags rather than their instances such as
pizza and large (in Figure 1).

3.3 CRUISE Components & Workflow

As the running example shows in Figure 1,
CRUISE has two main steps, knowledge base
construction and iterative utterance generation.

Step 1. Knowledge Base Construction: for each
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Iterative Utterance Generation
Iteration 1:

Utterance Expansion
find @size @food

find @food from @country
find @food with @ingredient

find @ingredient @food
find @food the @size

NLU EngineNatural Language Utterances with Labeled Intent Class and Slots

Iteration 2:
Expanded Utterances Combination

find @size @food from @country
find @food of @size from @country
find @ingredient @food the @size

find @size @ingredient @food
find @ingredient @food at @time

Iteration 3:
Utterance Paraphrasing

get @size @food from @country
where to have @size @food
show me @ingredient @food

i want @food with @ingredient
can i grab @size @food

Knowledge Base Construction
(attributes, their relations & instances)

find → @time: morning, noon, seventh

@food → @size: large, small, king

@food → @image: [NONE]

Intent: FIND_FOOD
verb: find

object tag: @food

Figure 1: A running example of CRUISE system: it takes
a new intent “FIND FOOD” as input and outputs both
annotated natural language utterances (each utterance
with an intent label and slots labels) and a trained NLU
engine. Each black box corresponds to a component
in CRUISE, with both correct outputs (in green) and
incorrect outputs (in red) to be pruned by developers.
The underlined words are generated by the data-driven
tagged sentence filler (Section 4.2) and the other words
are generated by rules (Section 4.1).

intent (e.g., “FIND FOOD” includes a verb find
and an object tag @FOOD), CRUISE constructs
a knowledge base with the following information:
(1) identified list of attribute tags depending on
object tag using Infobox template Ω (e.g. attribute
tag @SIZE depends on object tag @FOOD); (2) the
sample instances belong to each tag using pre-built
concept hash table (e.g. instances “large”, “small”
for tag @SIZE). In addition, developers can also
add or remove the tags and instances of each tag.

Step 2. Iterative Utterance Generation:
CRUISE iteratively generates more and more
utterances with human-in-the-loop pruning.
CRUISE outputs the generated natural language
utterances with both intent and slots annotations
as well as a ready-to-use NLU engine trained on
these utterances.

4 Iterative Utterance Generation

In this section, we describes the details of
utterance generation in each iteration. The key
idea to generate utterances in each iteration is the
hybrid of rule-based and data-driven approaches.
In brief, we utilize a small set of rules to derive
a list of incomplete tagged utterances with blanks
(word placeholders); then use data-driven tagged
utterance filler algorithm to fill in the blanks. The
rest of this section includes rule-based iteration
design and data-driven tagged utterance filler
algorithm respectively.

4.1 Rule-based Iteration Design

The key idea is to decompose the task of
generating complex utterances into three subtasks
and tackle each task in one iteration. Specifically,
we divide the utterance generation task into
the following subtasks in three iterations (idea

i would like to fnd of small @SIZE with @INGREDIENT by @TIME

Attributive Attributive Adjunct

Iteratio 1: uteraoce expaosiio ti geoerate 
atributies aod adjuocts

(noun phrase) + iverb

Iteratio 3: uteraoce paraphrasiog 
ti rephrase predicate (aod subject)

Iteratio 2: Expaoded Uteraoces Cimbioatio ti swap atributies aod adjuocts

@FOOD

i would like to find of @size with @ingredient from @country

Attribute Attribute Attribute

Iteration 1: Utterance Expansion to generate 
additional attribute tags

(noun phrase) + verb

Iteration 3: Utterance Paraphrasing 
to rephrase predicate (and subject)

Iteration 2: Expanded Utterances Combination to swap attributes

@FOOD

Figure 2: A running example to illustrate subtasks in each
iteration towards generating a tagged utterance

illustration in Figure 2 and examples in Figure
1): (1) Utterance Expansion: generate attributives
and adjuncts to expand an utterance into utterances
with an additional new tag. (2) Expanded
Utterances Combination: swap attributives and
adjuncts to concatenate previously expanded
utterances. (3) Utterance Paraphrasing: rephrase
predicate (and subject) to paraphrase each
utterance. At the end of each iteration i, we
provide all generated utterances to the software
developer for pruning such that only the selected
correct utterances will be the input of next
iteration. At last, we output the natural language
utterances by substituting instances into tags with
slot annotations.

Iteration 1. Utterance Expansion: Given an
intent as a simplest verb phrase consisting of only
a verb and its direct object (tag), the goal is to
expand it into utterances such that each generated
utterance has an additional attribute tag associated
with the object tag. Thanks to the simple verb
phrase, the expansion has no semantic ambiguity.
Thus, for each new tag t, we expand the utterance
by inserting t before and after the object tag.
While it is straightforward to insert t directly
before the object, the insertion of t after the object
need joiner words where we introduce blanks. In
the end, we fill out the blanks (usually 1-3) in
tagged utterances as described in Section 4.2.

Iteration 2. Expanded Utterances
Combination: The goal is to combine the
previously generated correct utterances (two tags
in each utterance) into long utterances with all
combination of different tags in each utterance.
We generate the permutations of attribute tags
themselves (and with joiner words) before (after)
the object. This iteration then outputs utterances
these attribute tag permutations before and after
the object with non-overlapping attribute tags.
Thanks to the correct input utterances, most of
combined utterances are surely correct, which
saves a lot of pruning efforts.

Iteration 3. Utterance Paraphrasing: Since
the previous iterations have covered the varieties
for attributives phrases and clauses, the goal
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of iteration 3 is to increase the varieties of
predicates. We generate different predicates for a
tagged utterance as follows: (1) verb replacement,
(2) wh-word question rephrasing, and (3) “I”
started utterance rephrasing. Both (2) and (3)
are motivated by the application of personal
assistants that help the user who initiates the
utterance. Likewise, we invoke tagged utterance
filler to fill out the blanks (usually 3) for each
predicate. In order to further reduce the human
pruning workload, we group the same predicates
for developers to prune them at once instead of
pruning every single utterance again and again.

4.2 Data-driven Tagged Sentence Filler

As a key data-driven subroutine, this module
takes a tagged utterance with blanks (i.e., word
placeholders) u as the input and outputs the
complete tagged utterance with all blanks filled
by natural language words, called filler words.
We first instantiate the attribute and object tags
in u using their mapped instances in the pre-built
concept hash table. Since all instances belong to
the vocabulary of the pre-trained language model,
we avoid tackling out of vocabulary problem.
Based on the intuition that good filler words are
usually generated repeatedly in many instantiated
utterances, we fill out the blanks in all instantiated
utterances and return the Kt (up to 20) filler words
ranked by the frequency of their appearances.

To fill out the blanks in an incomplete natural
language utterance, we use an efficient beam
search algorithm via RNN based pre-trained
language models. This returns a list of Kn (up
to 30) best filler words, ranked according to their
likelihood scores.

5 Experimental Evaluation

We implement the CRUISE system with an easy-
to-use user interface (Figure 3) with the thumb
up/down mechanism for efficient human pruning.
We have internal developers to use and evaluate
this real system in terms of both utterance quality
and human workload.

5.1 Data Quality Evaluation

5.1.1 Objective Evaluation via NLU Engines
We validate our CRUISE system by first
evaluating the performance of existing NLU
engines trained using our generated utterances
compared with using benchmark or manually

Figure 3: CRUISE User Interface

Table 1: Human NLU engine vs. CRUISE NLU engine
results in benchmark and custom datasets

Human NLU CRUISE NLU

Dataset NLU
Engine

Intent
Accuracy

Slot Tagging
F-1 Score

Intent
Accuracy

Slot Tagging
F-1 Score

ATIS RASA 93.29% 90.84 83.33% 80.25
RNN 97.96% 96.02 82.60% 84.70

Food RASA 99.4% 91.92 99.58% 93.91
RNN 99.31 % 92.28 99.73% 94.70

Hotel RASA - 92.22 - 89.92
RNN - 92.09 - 94.85

generated utterances. For simplicity, we refer
to our CRUISE generated datasets as CRUISE
Dataset in comparison of Benchmark/Human
Dataset. Correspondingly, the NLU engines
trained on CRUISE and benchmark human
generated datasets are referred to as CRUISE
NLU and Human NLU engines respectively.
Both NLU engines are evaluated by testing on
benchmark or user generated utterances.
NLU Engines & Performance Metrics: To
maximally reduce the bias from NLU engines, we
evaluate the performance using different existing
NLU engines: open source RASA (RASA, 2017)
and deep learning based RNN NLU engine with
joint learning of intent classifier and slot tagger
(Liu and Lane, 2016). Both NLU engines target
on classifying the intent of each whole utterance
and identifying tags/entities (a.k.a. slot tagging).
Thus, we use the accuracy and F-1 score as
the metrics for intent classifier and slot tagging
respectively. We run RASA NLU engine using
their default parameters.

Benchmark Dataset Evaluation: Although
the benchmark NLU trained on crowdsourced data
is expected to perform much better than CRUISE
NLU trained on machine generated dataset from
cold start, we show that CRUISE NLU still
achieves a high accuracy and efficiently trades off
NLU performance and human workload.

We evaluate our system on the ATIS (Airline
Travel Information Systems) dataset (Hemphill
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Figure 4: Mixed NLU results in ATIS Dataset

et al., 1990), a widely used dataset in SLU
research. It contains 4,978 training utterances and
893 testing utterances with 127 distinct slot labels
and 22 different intents. We generate 767,985
unique tagged utterances using CRUISE system.
For a fair comparison, we randomly sample 5,000
utterances from CRUISE dataset as training set.
Since ATIS is relatively larger, we select both
word embedding and LSTM hidden dimension as
128 with 1 hidden layer in RNN NLU.

Table 1 reports the result of NLU performance
comparison. As one can see, the performance
of CRUISE NLU engine is roughly around
10-15% worse than benchmark NLU engine
trained on crowdsourced benchmark data for both
intent classification and slot tagging. After a
detailed analysis, we find that CRUISE data
has smaller vocabulary size (301 words) than
the crowdsourced benchmark data (949 words)
due to the selection of high likelihood words in
beam search. Hence, we attribute a significant
cause of errors because of the out-of-vocabulary
words in test set. We further test CRUISE
NLU on the subset of test set without out-of-
vocabulary words and observe 5-6% improvement
of NLU performance. Importantly, we observe
that CRUISE NLU performs much better on more
complex utterances, e.g., “show me fares for
round trip flights with first class of delta from
miami into houston”, where the benchmark NLU
fail for both intent classification and slot tagging.

In addition to CRUISE NLU, we further
test the performance of NLU engines which
are trained by mixed CRUISE and benchmark
datasets, named Mixed NLU. The benchmark
data is treated as the manual entry data from
developers such that we can better study another
trade-off between additional human workload and
NLU engine performance. Figure 4 reports the
result of mixed NLU engine performance with
half CRUISE data and half benchmark data. Both
the mixed and benchmark NLU engines achieve
similar performance for different sizes of training
set on the costly crowdsourced ATIS dataset.

This implies that we can reduce nearly half
human workload for developing a skill, given the
negligible pruning effort (Section 5.2).

Real-World Setting Evaluation: We further
evaluate CRUISE in a simulated real-world
scenario when a software developer starts to
develop a new skill. In order to do so, we create
two custom datasets: (a) Food and (b) Hotel. Food
data has three intents and hotel data has only one
intent. Each intent is associated with six to eight
different attributes/tags selected from InfoBox
template or provided by internal developers. For
each intent, we ask two developers to generate
a list of tagged utterances manually and using
our CRUISE system respectively. The total sizes
of human and CRUISE generated utterances are
5,352 and 21,429 in food and hotel datasets
respectively. For fairness, we randomly select a
subset from human dataset as a standard test data
to test both NLU engines. Table 1 shows that
CRUISE NLU outperforms human NLU in most
cases. This is because CRUISE dataset has a larger
number and varieties of high quality utterances
than human dataset.

5.1.2 Subjective Human Evaluation

We further evaluate the CRUISE dataset
subjectively by soliciting judgments from
Amazon Mechanical Turkers. Each turker was
presented a task of rating utterances sampled from
mixed CRUISE and human generated datasets.
Turkers rate each question on a 5 point Likert
scale (Likert, 1932) as to whether the utterance is
natural and grammatically correct. Ratings range
from 1 (worst) to 5 (best). Thus, our evaluation
provides more detailed rating than what automatic
metrics such as BLEU can provide (Papineni
et al., 2002). In order to control the evaluation
quality, we further judge the trustworthiness of
each turker by scoring their performance on 20-30
gold-standard utterances that were internally rated
by experts. Based on this trustworthiness score,
we establish a group of trusted turkers. Then, we
collect 10 ratings for each utterance from these
trusted turkers. Finally, we compute the average
score over all trusted ratings on 300-500 randomly
sampled utterances in each dataset.

Table 2 reports human evaluation results
between CRUISE and human generated data. We
observe that CRUISE generated dataset achieves
close performance in terms of both metrics in
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Table 2: Human Evaluation Results

Dataset Naturalness Grammar Overall

ATIS CRUISE 3.32 3.37 3.35
Human 3.74 3.78 3.76

Custom CRUISE 3.60 3.41 3.50
Human 3.35 3.08 3.21

ATIS, which is collected via costly crowdsourcing.
More importantly, for human data generated by
only a single developer in custom datasets, the
results show that CRUISE data has better quality
than human data in terms of both metrics.

5.2 Human Workload Analysis

We analyze the cognitive load via preliminary
qualitative analysis from internal developers.
Specifically, we interview the participated
developers regarding different types of cognitive
load (Sweller et al., 1998). In terms of intrinsic
cognitive load about the inherent difficulty level
to use CRUISE system, the developers concluded
CRUISE as a more easy-to-use system than both
existing industrial tools and academic solutions.
Extraneous cognitive load is also largely reduced
since our design enables batch processing
of human pruning by one-click marking of all
utterances in each page. At last, the developers are
also satisfied with the reduced germane cognitive
load due to the iterative pruning design in
CRUISE which dramatically minimize the whole
pruning effort by generating more utterances only
based on the correct ones in previous iteration.

Next, we report the time consumption of human
pruning to evaluate the workload quantitatively.
As shown in Figure 5, we observe that it takes less
than 0.15s on average to prune each utterance, and
as low as 0.01s for some intents. This is because
iteration design in our CRUISE system enables
the capability that each picked correct utterance
can generate many utterances at one time. In
comparison, we observe that human developers
take around 30 seconds on average to generate and
annotate an utterance in our custom dataset. In the
example of ATIS dataset, it takes around 0.05s on
average to prune each utterance. Thus, a developer
only needs to spend less than 5 mins on average to
prune incorrect utterances in order to find 5,000
correct utterance for training a competitive NLU
engine. For frequent intents, it takes less time to
prune as CRUISE intends to generate more correct
utterances determined by a better language model.
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