
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 13–18
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

13

Out-of-the-box Universal Romanization Tool uroman

Ulf Hermjakob, Jonathan May, Kevin Knight
Information Sciences Institute, University of Southern California

{ulf,jonmay,knight}@isi.edu

Abstract

We present uroman, a tool for converting
text in myriads of languages and scripts
such as Chinese, Arabic and Cyrillic into a
common Latin-script representation. The
tool relies on Unicode data and other ta-
bles, and handles nearly all character sets,
including some that are quite obscure such
as Tibetan and Tifinagh. uroman converts
digital numbers in various scripts to West-
ern Arabic numerals. Romanization en-
ables the application of string-similarity
metrics to texts from different scripts with-
out the need and complexity of an in-
termediate phonetic representation. The
tool is freely and publicly available as a
Perl script suitable for inclusion in data
processing pipelines and as an interactive
demo web page.

1 Introduction

String similarity is a useful feature in many natural
language processing tasks. In machine translation,
it can be used to improve the alignment of bitexts,
and for low-resource languages with a related lan-
guage of larger resources, it can help to decode
out-of-vocabulary words. For example, suppose
we have to translate degustazione del vino with-
out any occurrence of degustazione in any train-
ing corpora, but we do know that in a related lan-
guage dégustation de vin means wine tasting, we
can use string similarity to infer the meaning of
degustazione.

String similarity metrics typically assume that
the strings are in the same script, but many cross-
lingual tasks such as machine translation often in-
volve multiple scripts. If we can romanize text
from a non-Latin script to Latin, standard string
similarity metrics can be applied, including edit

distance-based metrics (Levenshtein, 1966; Win-
kler, 1990) and phonetic-based metrics such as
Metaphone (Philips, 2000).

Hindi, for example, is written in the Devanagari
script and Urdu in the Arabic script, so any words
between those two languages will superficially
appear to be very different, even though the two
languages are closely related. After romanization,
however, the similarities become apparent, as can
be seen in Table 1:

Table 1: Example of Hindi and Urdu romanization

Foreign scripts also present a massive cognitive
barrier to humans who are not familiar with them.
We devised a utility that allows people to trans-
late text from languages they don’t know, using
the same information available to a machine trans-
lation system (Hermjakob et al., 2018). We found
that when we asked native English speakers to use
this utility to translate text from languages such as
Uyghur or Bengali to English, they strongly pre-
ferred working on the romanized version of the
source language compared to its original form and
indeed found using the native, unfamiliar script to
be a nearly impossible task.

1.1 Scope of Romanization

Romanization maps characters or groups of char-
acters in one script to a character or group of char-
acters in the Latin script (ASCII) with the goal to
approximate the pronunciation of the original text
and to map cognates in various languages to simi-
lar words in the Latin script, typically without the



14

Table 2: Romanization examples for 10 scripts

use of any large-scale lexical resources. As a sec-
ondary goal, romanization standards tend to pre-
fer reversible mappings. For example, as stand-
alone vowels, the Greek letters ι (iota) and υ (up-
silon) are romanized to i and y respectively, even
though they have the same pronunciation in Mod-
ern Greek.

uroman generally follows such preference, but
uroman is not always fully reversible. For exam-
ple, since uroman maps letters to ASCII charac-
ters, the romanized text does not contain any dia-
critics, so the French word ou (“or”) and its homo-
phone où (“where”) both map to romanized ou.

uroman provides the option to map to a plain
string or to a lattice of romanized text, which al-
lows the system to output alternative romaniza-
tions. This is particularly useful for source lan-
guages that use the same character for significantly
different sounds. The Hebrew letter Pe for exam-
ple can stand for both p and f. Lattices are output
in JSON format.

Note that romanization does not necessarily
capture the exact pronunciation, which varies
across time and space (due to language change
and dialects) and can be subject to a number of
processes of phonetic assimilation. It also is not
a translation of names and cognates to English
(or any other target language). See Table 3 for
examples for Greek.

A romanizer is not a full transliterator. For
example, this tool does not vowelize text that
lacks explicit vowelization such as normally

Modern Greek Κρήτη γεωλογία μπανάνα

Pronunciation Kriti yeoloyia banana
Romanization Krete geologia banana
English Crete geology banana
German Kreta Geologie Banane

Table 3: Examples of Greek romanization

occurring text in Arabic and Hebrew (i.e., without
diacritics/points); see Table 4.

Table 4: Romanization with and without diacritics

1.2 Features
uroman has the following features:

1. Input: UTF8-encoded text and an optional
ISO-639-3 language code

2. Output: Romanized text (default) or lattice of
romanization alternatives in JSON format

3. Nearly universal romanization1

4. N-to-m mapping for groups of characters that
are non-decomposable with respect to roman-
ization

5. Context-sensitive and source language-
specific romanization rules

1See Section 4 for a few limitations.



15

6. Romanization includes (digital) numbers

7. Romanization includes punctuation

8. Preserves capitalization

9. Freely and publicly available

Romanization tools have long existed for spe-
cific individual languages such as the Kakasi2

kanji-to-kana/romaji converter for Japanese, but to
the best of our knowledge, we present the first pub-
licly available (near) universal romanizer that han-
dles n-to-m character mappings. Many romaniza-
tion examples are shown in Table 2 and examples
of n-to-m character mapping rules are shown in
Table 7.

2 System Description

2.1 Unicode Data

As its basis, uroman uses the character descrip-
tions of the Unicode table.3 For the characters of
most scripts, the Unicode table contains descrip-
tions such as CYRILLIC SMALL LETTER SHORT
U or CYRILLIC CAPITAL LETTER TE WITH
MIDDLE HOOK. Using a few heuristics, uroman
identifies the phonetic token in that description,
i.e. U and TE for the examples above. The heuris-
tics use a list of anchor keywords such as letter
and syllable as well as a number of modifier pat-
terns that can be discarded. Given the phonetic
token of the Unicode description, uroman then
uses a second set of heuristics to predict the ro-
manization for these phonetic tokens, i.e. u and t.
For example, if the phonetic token is one of more
consonants followed by one or more vowels, the
predicted romanization is the leading sequence of
consonants, e.g. SHA→ sh.

2.2 Additional Tables

However, these heuristics often fail. An exam-
ple of a particularly spectacular failure is SCHWA
→ schw instead of the desired e. Addition-
ally, there are sequences of characters with non-
compositional romanization. For example, the
standard romanization for the Greek sequence
omikron+upsilon, (ου) is the Latin ou rather than
the character-by-character romanization oy.

As a remedy, we manually created additional
correction tables that map sequences of one or
more characters to the desired romanization, with

2http://kakasi.namazu.org
3ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt

currently 1,088 entries. The entries in these tables
can be restricted by conditions, for example to spe-
cific languages or to the beginning of a word, and
can express alternative romanizations. This data
table is a core contribution of the tool.

uroman additionally includes a few special
heuristics cast in code, such as for the voweliza-
tions of a number of Indian languages and Ti-
betan, dealing with diacritics, and a few language-
specific idiosyncrasies such as the Japanese
sokuon and Thai consonant-vowel swaps.

Building these uroman resources has been
greatly facilitated by information drawn from
Wikipedia,4 Richard Ishida’s script notes,5 and
ALA-LC Romanization Tables.6

2.3 Characters without Unicode Description

The Unicode table does not include character de-
scriptions for all scripts.

For Chinese characters, we use a Mandarin
pinyin table for romanization.

For Korean, we use a short standard Hangul ro-
manization algorithm.7

For Egyptian hieroglyphs, we added single-
sound phonetic characters and numbers to uro-
man’s additional tables.

2.4 Numbers

uroman also romanizes numbers in digital form.
For some scripts, number characters map one-

to-one to Western Arabic numerals 0-9, e.g. for
Bengali, Eastern Arabic and Hindi.

For other scripts, such as Amharic, Chinese,
and Egyptian hieroglyphics, written numbers
are structurally different, e.g. the Amharic num-
ber character sequence 10·9·100·90·8 = 1998
and the Chinese number character sequence
2·10·5·10000·6·1000 = 256000. uroman includes
a special number module to accomplish this latter
type of mapping. Examples are shown in Table 5.

Note that for phonetically spelled-out numbers
such as Greek οκτώ, uroman romanizes to the
spelled-out Latin okto rather than the digital 8.

4https://en.wikipedia.org
5https://r12a.github.io/scripts/featurelist
6https://www.loc.gov/catdir/cpso/roman.html
7http://gernot-katzers-spice-pages.com/var/

korean hangul unicode.html

http://kakasi.namazu.org
ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
https://en.wikipedia.org
https://r12a.github.io/scripts/featurelist
https://www.loc.gov/catdir/cpso/roman.html
http://gernot-katzers-spice-pages.com/var/korean_hangul_unicode.html
http://gernot-katzers-spice-pages.com/var/korean_hangul_unicode.html


16

Figure 1: Screenshot of Uyghur romanization on demo site at bit.ly/uroman

Table 5: Romanization/Arabization of numbers

2.5 Romanization of Latin Text

Some Latin script-based languages have words for
which spelling and pronunciation differ substan-
tially, e.g. the English name Knight (IPA: /naIt/)
and French Bordeaux (/bOK.do/), which compli-
cates string similarity matching if the correspond-
ing spelling of the word in the non-Latin script is
based on pronunciation.

uroman therefore offers alternative romaniza-
tions for words such as Knight and Bordeaux
(see Table 6 for an example of the former), but,
as a policy uroman always preserves the original
Latin spelling, minus any diacritics, as the top
romanization alternative.

Table 6: Romanization with alternatives

Table 7 includes examples of the Romanization
rules in uroman, including n-to-m mappings.

2.6 Caching

uroman caches token romanizations for speed.

Table 7: Romanization rules with two examples
each for Greek, Uyghur, Japanese, and English,
with a variety of n-to-m mappings.
(::s = source; ::t = target; ::lcode = language code)

3 Download and Demo Sites

uroman v1.2 is publicly available for download
at bit.ly/isi-nlp-software. The fully self-sufficient
software package includes the implementation of
uroman in Perl with all necessary data tables. The
software is easy to install (gunzip and tar), with-
out any need for compilation or any other software
(other than Perl).
Typical call (for plain text output):

uroman.pl --lc uig < STDIN > STDOUT

where –lc uig specifies the (optional) language
code (e.g. Uyghur).

There is also an interactive demo site at
bit.ly/uroman. Users may enter text in the lan-
guage and script of their choice, optionally specify
a language code, and then have uroman romanize
the text.

Additionally, the demo page includes sample
texts in 290 languages in a wide variety of scripts.
Texts in 21 sample languages are available on the
demo start page and more are accessible as ran-

bit.ly/uroman
bit.ly/isi-nlp-software
bit.ly/uroman


17

dom texts. After picking the first random text,
additional random texts will be available from
three corpora to choose from (small, large, and
Wikipedia articles about the US). Users can then
restrict the randomness in a special option field.
For example, --l will exclude texts in Latin+
scripts. For further information about possible re-
strictions, hover over the word restriction (a dot-
ted underline indicates that additional info will be
shown when a user hovers over it).

The romanization of the output at the demo site
is mouse sensitive. Hovering over characters of
either the original or romanized text, the page will
highlight corresponding characters. See Figure 1
for an example. Hovering over the original text
will also display additional information such as
the Unicode name and any numeric value. To sup-
port this interactive demo site, the uroman package
also includes fonts for Burmese, Tifinagh, Klin-
gon, and Egyptian hieroglyphs, as they are some-
times missing from standard browser font pack-
ages.

4 Limitations and Future Work

The current version of uroman has a few limita-
tions, some of which we plan to address in fu-
ture versions. For Japanese, uroman currently ro-
manizes hiragana and katakana as expected, but
kanji are interpreted as Chinese characters and ro-
manized as such. For Egyptian hieroglyphs, only
single-sound phonetic characters and numbers are
currently romanized. For Linear B, only phonetic
syllabic characters are romanized. For some other
extinct scripts such as cuneiform, no romanization
is provided.

uroman allows the user to specify an ISO-639-3
source language code, e.g. uig for Uyghur. This
invokes any language-specific romanization rules
for languages that share a script with other lan-
guages. Without source language code specifi-
cation, uroman assumes a default language, e.g.
Arabic for text in Arabic script. We are consid-
ering adding a source language detection com-
ponent that will automatically determine whether
an Arabic-script source text is Arabic, Farsi, or
Uyghur etc.

5 Romanization Applications

5.1 Related Work
Gey (2009) reports that romanization based on
ALA-LC romanization tables (see Section 2.2) is

useful in cross-lingual information retrieval.
There is a body of work mapping text to pho-

netic representations. Deri and Knight (2016)
use Wiktionary and Wikipedia resources to learn
text-to-phoneme mappings. Phonetic representa-
tions are used in a number of end-to-end translit-
eration systems (Knight and Graehl, 1998; Yoon
et al., 2007). Qian et al. (2010) describe the
toolkit ScriptTranscriber, which extracts cross-
lingual transliteration pairs from comparable cor-
pora. A core component of ScriptTranscriber
maps text to an ASCII variant of the International
Phonetic Alphabet (IPA).

Andy Hu’s transliterator8 is a fairly universal
romanizer in JavaScript, limited to romanizing one
Unicode character at a time, without context.

5.2 Applications Using uroman

Ji et al. (2017) and Mayfield et al. (2017) use
uroman for named entity recognition. Mayhew
et al. (2016) use uroman for (end-to-end) translit-
eration. Cheung et al. (2017) use uroman for ma-
chine translation of low-resource languages.

uroman has also been used in our aforemen-
tioned translation utility (Hermjakob et al., 2018),
where humans translate text to another language,
with computer support, with high fluency in the
target language (English), but no prior knowledge
of the source language.

uroman has been partially ported by third par-
ties to Python and Java.9

6 Conclusion

Romanization tools have long existed for specific
individual languages, but to the best of our knowl-
edge, we present the first publicly available (near)
universal romanizer that handles n-to-m character
mappings. The tool offers both simple plain text
as well as lattice output with alternatives, and in-
cludes romanization of numbers in digital form.
It has been successfully deployed in a number of
multi-lingual natural language systems.

Acknowledgment

This work is supported by DARPA (HR0011-15-
C-0115).

8https://github.com/andyhu/transliteration
9https://github.com/BBN-E/bbn-transliterator

https://github.com/andyhu/transliteration
https://github.com/BBN-E/bbn-transliterator


18

References

Leon Cheung, Thamme Gowda, Ulf Hermjakob, Nel-
son Liu, Jonathan May, Alexandra Mayn, Nima
Pourdamghani, Michael Pust, Kevin Knight, Niko-
laos Malandrakis, et al. 2017. Elisa system descrip-
tion for LoReHLT 2017.

Aliya Deri and Kevin Knight. 2016. Grapheme-to-
phoneme models for (almost) any language. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 399–408.

Fredric Gey. 2009. Romanization–an untapped re-
source for out-of-vocabulary machine translation for
CLIR. In SIGIR Workshop on Information Access in
a Multilingual World, pages 49–51.

Ulf Hermjakob, Jonathan May, Michael Pust, and
Kevin Knight. 2018. Translating a language you
don’t know in the Chinese Room. In Proceedings
of the 56th Annual Meeting of Association for Com-
putational Linguistics, Demo Track.

Heng Ji, Xiaoman Pan, Boliang Zhang, Joel Nothman,
James Mayfield, Paul McNamee, and Cash Costello.
2017. Overview of TAC-KBP2017 13 languages en-
tity discovery and linking. In Text Analysis Confer-
ence – Knowledge Base Population track.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

James Mayfield, Paul McNamee, and Cash Costello.
2017. Language-independent named entity analysis
using parallel projection and rule-based disambigua-
tion. In Proceedings of the 6th Workshop on Balto-
Slavic Natural Language Processing, pages 92–96.

Stephen Mayhew, Christos Christodoulopoulos, and
Dan Roth. 2016. Transliteration in any lan-
guage with surrogate languages. arXiv preprint
arXiv:1609.04325.

Lawrence Philips. 2000. The double Metaphone search
algorithm. C/C++ Users J., 18(6):38–43.

Ting Qian, Kristy Hollingshead, Su-youn Yoon,
Kyoung-young Kim, and Richard Sproat. 2010.
A Python toolkit for universal transliteration. In
LREC.

William E. Winkler. 1990. String comparator metrics
and enhanced decision rules in the Fellegi-Sunter
model of record linkage. In Proceedings of the Sec-
tion on Survey Research Methods, pages 354–359.
ERIC.

Su-Youn Yoon, Kyoung-Young Kim, and Richard
Sproat. 2007. Multilingual transliteration using fea-
ture based phonetic method. In Proceedings of the
45th annual meeting of the Association of Computa-
tional Linguistics, pages 112–119.


