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Abstract

Standard named entity recognizers can ef-
fectively recognize entity mentions that
consist of contiguous tokens and do not
overlap with each other. However, in prac-
tice, there are many domains, such as the
biomedical domain, in which there are
nested, overlapping, and discontinuous en-
tity mentions. These complex mentions
cannot be directly recognized by conven-
tional sequence tagging models because
they may break the assumptions based
on which sequence tagging techniques are
built. We review the existing methods
which are revised to tackle complex entity
mentions and categorize them as token-
level and sentence-level approaches. We
then identify the research gap, and discuss
some directions that we are exploring.

1 Introduction

Named entity recognition (NER), the task of iden-
tifying and classifying named entities (NE) within
text, has received substantial attention. This is
largely due to its crucial role in conducting several
downstream tasks, such as entity linking (Lim-
sopatham and Collier, 2016; Pan et al., 2017), re-
lation extraction (Zeng et al., 2014), question an-
swering (Mollá et al., 2007) and knowledge base
construction (Zhang, 2015).

Traditionally, the NER problem can be defined
as: given a sequence of tokens, output a list of tu-
ples < Is, Ie, t >, each of which is a NE mention
in text. Here, Is and Ie are the starting and end-
ing index of the NE mention, respectively, and t
is the type of the entity from a pre-defined cate-
gory scheme. There are two assumptions associ-
ated with this perspective:

1. An NE mention consists of contiguous to-
kens, where all the tokens indexed between
Is and Ie are part of the mention; and,

2. These linear spans do not overlap with each
other. In other words, no token in the text can
belong to more than one NE mention.

Based on these two assumptions, the most com-
mon approach to NER is to use sequence tagging
techniques with a BIO or BIOLU label set. Each
token is assigned with a tag which is usually com-
posed of a position indicator and an entity type.
The position indicator is used to represent the to-
ken’s role in a NE mention. In the BIOLU schema,
B stands for the beginning of a mention, I for the
intermediate of a mention, O for outside a men-
tion, L for the last token of a mention, and U for a
mention having only one token (Ratinov and Roth,
2009).

Sequential tagging models, such as linear-chain
CRFs and BiLSTM-CRF, have achieved start-of-
the-art effectiveness in many NER data sets (Lam-
ple et al., 2016; Ma and Hovy, 2016; Chiu and
Nichols, 2016), since most training data sets are
also annotated based on these two assumptions.

However, in practice, there are many domains,
such as the biomedical domain, which involve
nested, overlapping, discontinuous NE mentions
that break the two assumptions mentioned above.
We categorize these mentions as complex entity
mentions, and note that standard tagging tech-
niques cannot be applied directly to recognize
these mentions (Muis and Lu, 2016; Dai et al.,
2017). In the following paragraphs, we explain
these complex entity mentions in details.

Nested NE mentions One NE mention is com-
pletely contained by the other. We call both of the
mentions involved as nested entity mentions. Fig-
ure 1a is an example taken from the GENIA cor-
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Figure 1: Examples involving overlapping, discontinuous and nested NE mentions. In (a), ‘HIV-1 en-
hancer’ and ‘HIV-1’ are nested NE mentions. In (b), ‘intense pelvic pain’ and ‘back pain’ overlap,
meanwhile, ‘intense pelvic pain’ is a discontinuous mention.

pus (Kim et al., 2003). Here, ‘HIV-1 enhancer’ is
a DNA mention, and it contains another mention
‘HIV-1’, which is a virus.

Multi-type NE mentions An extreme case of
nested NE mentions is one on which an NE men-
tion has multiple entity types. For example, in the
EPPI corpus (Alex et al., 2007), proteins can also
be annotated as drug/compound, indicating that
the protein is used as a drug to affect the function
of a cell. Such a mention should be classified as
both protein and drug/compound. In this case, we
consider this mention as two mentions of different
types, and these two mentions contain each other.

Overlapping NE mentions Two NE mentions
overlap, but no one is completely contained by
the other. Figure 1b is an example taken from the
CADEC corpus (Karimi et al., 2015), which is an-
notated for adverse drug events (ADE) and rele-
vant concepts. In this example, two ADEs: ‘in-
tense pelvic pain’ and ‘back pain’, share a com-
mon token ‘pain’, and neither is contained by the
other.

Discontinuous NE mentions The mention
consists of discontiguous tokens. In other words,
the mention contains at least one gap. In Fig-
ure 1b, ‘intense pelvic pain’ is a discontinuous
NE mention since it is interrupted by ‘and back’.

These complex NE mentions can hold very use-
ful information for downstream tasks. Some-
times, the nested and overlapping structure itself
are already good indicators of the relationship be-
tween different entities involved. For example,
an ORG mention ‘University of Sydney’ contains
a LOC mention ‘Sydney’. This structure has im-
plied the location of the organization, and recog-
nition of these mentions can potentially speed up
the construction of a knowledge base. In addi-
tion, such entities often have fixed representations

in different languages. Therefore, recognizing NE
mentions, especially these discontinuous NE men-
tions, can improve the performance of a machine
translation system (Klementiev and Roth, 2006).
Furthermore, we notice that similar complex struc-
tures also exist in other NLP tasks, such as multi-
word expressions recognition (Baldwin and Kim,
2010). The ideas proposed for a NER task can thus
be applied to tackle similar difficulties in other
tasks.

Below, we briefly review existing methods to
recognize complex mentions and discuss their
strengths and limitations. We also discuss the re-
search directions we are exploring to address the
research gaps.

2 Token-level Approach

Sequence tagging techniques take the representa-
tion of each token as input and output a label for
each token. These local decisions are chained to-
gether to perform joint inference. Figure 2 is an
illustration of a linear-chain CRF model where the
tag of one token depends on both the features of
that token in context and the tag of the previous
token. The tag sequence predicted by the tagger
is finally decoded into NE mentions using explicit
rules. Here, the intermediate outputs for each to-
ken are usually BIO tags in standard NER tasks.
However, since the BIO tags cannot effectively
represent complex NE mentions, a natural direc-
tion is to expand the BIO tag set so that different
kinds of complex entity mentions can be captured.
We categorize the methods based on conventional
sequence tagging as token-level approach.

Metke-Jimenez and Karimi (2015) introduced
a BIO variant schema to represent discontinuous
and overlapping NE mentions. Concretely, in
addition to the BIO tags, four new position in-
dicators, BD, ID, BH, and IH are proposed to
denote Beginning of Discontinuous body, Inside
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...

Figure 2: In a linear-chain CRF model, the out-
put for each token depends on the features of that
token in context and the output for the previous
token.

Figure 3: An encoding example of two NE men-
tions: ‘intense pelvic pain’ and ‘back pain’. Here,
we keep only the position indicator and remove
the entity type, since this schema can only repre-
sent overlapping mentions of the same entity type.

of Discontinuous body, Beginning of Head, and
Inside of Head. Here, the word sequences which
are shared by multiple mentions are called head,
and the remaining parts of the discontinuous men-
tion are called body. Figure 3 is an encoding ex-
ample using this schema. ‘pain’ is the beginning
of the head that is shared by two mentions, and
therefore tagged as BH. ‘intense pelvic’ is the body
of a discontinuous mention, while ‘back’ is the be-
ginning of a continuous mention. We note that,
even in this simple example, it is still impossible
to represent several discontinuous mentions unam-
biguously. For example, this encoding can also be
decoded as having three mentions: ‘intense pelvic
pain’, ‘back pain’ and ‘pain’. Muis and Lu (2016)
introduced the notion of model ambiguity and the-
oretically demonstrated that the models based on
BIO variants usually have high ambiguity level,
and therefore low precision in practice. Another
limitation of this schema is that it supports only
overlapping mentions of the same entity type.

Schneider et al. (2014) also proposed several
BIO schema variants to encode multiword expres-
sions with gaps and nested structure. They include
two strict restrictions which are motivated linguis-
tically in their work:

1. An expression can be completely contained
within another expression, but no overlap-
ping is allowed; and,

2. A contained expression cannot contain other
expressions. In other words, the nested struc-
ture has maximum two levels.

We note that these strict restrictions cannot be ap-
plied directly on our NER tasks.

Alex et al. (2007) proposed three approaches
based on a maximum entropy model (Curran and
Clark, 2003) to deal with nested NE mentions:

Layering The tagger first identifies the innermost
(or outermost) mentions, then the following
taggers are used to identify increasingly next
level mentions. Finally, the output of the tag-
gers on different layers is combined by taking
the union.

Joined labeling Each word is assigned a tag by
concatenating the tags of all levels of nesting.
Then a tagger is trained on the data contain-
ing the joined labels. During inference, the
joined labels are decoded into their original
BIO format for each entity type.

Cascade Separate models are trained for each en-
tity type or by grouping several entity types
without nested structures. Similar to the lay-
ering approach, the latter models can utilize
the outputs from previous models as input
features. Despite the difficulty of ordering
and grouping entity models and the fact that
this approach cannot deal with nested men-
tions of the same entity type, the cascade ap-
proach still achieves the best results among
these three approaches.

Byrne (2007) and Xu et al. (2017) used a sim-
ilar approach to deal with nested NE mentions.
They concatenated adjacent tokens (up to a certain
length) into potential mention spans. Then these
spans, together with their left and right contexts,
are fed into a classifier (a maximum entropy tag-
ger in (Byrne, 2007) and a feedforward neural net-
work in (Xu et al., 2017)). The classifier is trained
to first predict whether the span is a valid NE men-
tion, and then its entity type if it is a NE mention.

3 Sentence-level Approach

Instead of predicting whether a specific token or
several tokens belong to a NE mention and its role
in the mention, some methods predict directly a
combination of NE mentions within a sentence.
We categorize these methods as sentence-level ap-
proach.
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Figure 4: An example of sentence with three NE
mentions. P(ER) and L(OC) refer to the entity
types.

McDonald et al. (2005) proposed a new per-
spective of NER as structured multi-label classifi-
cation. Instead of starting index and ending index,
they represent each NE mention using the set of to-
ken positions that belong to the mention. Figure 4
is an example of this representation, with each to-
ken tagged using an I/O schema. This representa-
tion is very flexible as it allows NE mentions con-
sisting of discontiguous tokens and does not re-
quire mentions to exclude each other. Using this
representation, the NER problem is converted into
the multi-label classification problem of finding up
to k correct labels among all possible labels, where
k is a hyper-parameter of the model. Labels can
be decoded to all possible NE mentions in the sen-
tence. They do not come from a pre-defined cate-
gory but depend on the sentence being processed.
McDonald et al. (2005) used large-margin online
learning algorithms to train the model, so that the
scores of correct labels (NE mentions) are higher
than those of all other possible incorrect mentions.
Another advantage of this method is that the out-
puts of the model are unambiguous for all kinds of
complex entity mentions and easy to be decoded,
although the method suffers from a O(n3T ) infer-
ence algorithm, where n is the length of the sen-
tence and T is the number of entity types.

Finkel and Manning (2009) used a discrimina-
tive constituency parser to recognize nested NE
mentions. They represent each sentence as a con-
stituency tree, where each mention corresponds to
a phrase in the tree. In addition, each node needs
to be annotated with its parent and grandparent la-
bels, so that the CRF-CFG parser can learn how
NE mentions nest. Ringland (2016) also explored
a joint model using the Berkeley parser (Petrov
et al., 2006), and showed that it performed well
even without specialized NER features. However,
one disadvantage of their models, as in (McDonald
et al., 2005), is that their time complexity is cubic
in the number of tokens in the sentence. Further-
more, the high quality parse training data, which

Figure 5: An example sub-hypergraph with two
nested NE mentions: ‘University of Iowa’ (ORG)
and ‘Iowa’ (LOC). Here, one mention corresponds
to a path consisting of (AETI+X) nodes. Note
that this hypergraph cannot be used to represent
discontinuous mentions, but, in (Muis and Lu,
2016), they expand the hypergraph representation
to capture discontinuous mentions through two
new node types: B for within the mention, and O
for part of the gap.

is not always available, plays a crucial role in the
success of the joint model (Li et al., 2017).

Lu and Roth (2015), extended by Muis and
Lu (2016), proposed a novel hypergraph to
compactly represent exponentially many possible
nested mentions in one sentence, and one sub-
hypergraph of the complete hypergraph can there-
fore be used to represent a combination of men-
tions in the sentence. Figure 5 is an example
of such a sub-hypergraph, which represents two
nested NE mentions.

The training objectives of these models are to
maximize the log-likelihood of training instances
consisting of the sentence and mention-encoded
hypergraph. During inference, the model will first
predict a sub-hypergraph among all possible sub-
hypergraph of the complete hypergraph, and pre-
dicted mentions can be decoded from the output
sub-hypergraph.

This hypergraph representation still suffers
from some degree of ambiguity during decod-
ing stage. For example, when one mention is
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contained by another mention with the same en-
tity type and their boundaries are all different,
the hypergraph can be decoded in different ways.
This ambiguity comes from the fact that, if one
node has multiple parent nodes and multiple child
nodes, there is no mechanism to decide which of
the parent node is paired with which child node.

4 Research Plan

We note that the drawbacks of existing meth-
ods can be broadly categorized into: (1) lack of
expressivity; and (2) computational complexity.
Most of token-level approaches were proposed for
some specific scenarios or data sets, therefore usu-
ally with strict restrictions. For example, the BIO
variant schema in (Schneider et al., 2014) was de-
signed for nested structure with maximum depth
of two. Therefore, it is difficult to be applied on
GENIA corpus (Kim et al., 2003), which contains
nested entities up to four layers of embedding. In
addition, these token-level methods are usually de-
vised to deal with only either nested or discontinu-
ous mentions, and seldom can be used to tackle all
kinds of complex entity mentions simultaneously.

In contrast, sentence-level approaches are over-
all more flexible and less ambiguous, however
with higher computational cost. For example, both
Finkel and Manning (2009) and McDonald et al.
(2005) methods suffer from a high time complex-
ity which is cubic in the number of tokens in the
sentence. Our aim is to propose a model that rec-
ognizes all kinds of complex entity mentions, with
low ambiguity level and low computational com-
plexity. Some specific directions include:

• The representation in (McDonald et al.,
2005), introduced in Section 3, is most flex-
ible and straightforward among all schemes
designed for representing complex entity
mentions. It can be used to represent all
nested, overlapping and discontinuous entity
mentions with unbounded length and depth.
We are exploring recent advances in multi-
label classification methods (Xu et al., 2016;
Shi et al., 2017) to reduce the computational
complexity of this approach.

• Sequence-to-sequence models (Sutskever
et al., 2014; Cho et al., 2014) had achieved
great success in machine translation and text
generation tasks, especially after enhanced
by attention mechanisms (Luong et al.,

2015). We are exploring extending the
encoder-decoder architecture to recognize
complex entity mentions. During inference
stage, instead of one tag sequence capturing
all mentions in the sentence, the decoder
can produce multiple sequences, each of
which corresponds to one possible mention
combination, analogous to several possible
target sentences in machine translation tasks.

• Supervised learning NER methods are af-
fected by the quantity and quality of the
available annotated corpora. However, since
annotating mentions with complex structure
requires more human efforts than annotat-
ing only the outermost or longest continu-
ous spans, training data for complex entity
mention recognition is rare. Furthermore, the
medical domain is where complex mentions
widely exist, such as disorder mentions and
adverse drug events. The cost of producing
gold standard corpus in such a domain is very
high, due to the expertise required and the
limited access to some medical text, such as
electronic health records.

Active learning aims to reduce the cost of
constructing a labeled dataset by allowing
a human-in-the-loop (Settles and Craven,
2008; Stanovsky et al., 2017). The model
selects one or several most informative in-
stances and presents these instances to the an-
notators. Since only these most informative
instances need to be manually annotated by
human experts, it can reduce the need for hu-
man effort and therefore the cost of construct-
ing large labeled dataset. We are exploring
this method to relieve the pain of lacking
training data.

• Finally, we are going to utilize recent ad-
vances in NER domain to improve the ef-
fectiveness of complex entity mentions rec-
ognizers, such as character-level embedding
(Kuru et al., 2016) and joint models (Luo
et al., 2015).

Besides employing active learning to create spe-
cific data set with nested, overlapping, discontinu-
ous entity mentions, we notice that there are some
off-the-shelf corpora in biomedical domain that
we can use to evaluate our proposed methods, al-
though, to our knowledge, none of these data sets
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contains all three kinds of complex mentions, e.g.,
GENIA (Kim et al., 2003) only contains nested en-
tity mentions, and CADEC (Karimi et al., 2015)
and SemEval2014 (Pradhan et al., 2014) contain
overlapping and discontinuous mentions. In ad-
dition, ACE 1 and NNE (Ringland, 2016) are
newswire corpora with nested entity mentions.

On these data sets, we will use standard evalua-
tion metrics for NER tasks, namely micro-average
precision, recall and f1-score, to evaluate the ef-
fectiveness of proposed methods in recognizing
both complex and simple mentions. However,
due to the complexity of complex NE mentions,
we will include different boundary matching re-
laxation, such as partial match and approximate
match (Tsai et al., 2006), to measure the proposed
methods in identifying these complex mentions.

5 Summary

We reviewed the existing methods of recogniz-
ing nested, overlapping and discontinuous en-
tity mentions, categorizing them as token-level
and sentence-level approaches, and discussed their
strengths and limitations. We also identified the
research gap and introduce some directions we are
exploring.
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