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Introduction

Welcome to the ACL 2018 Student Research Workshop!

The ACL 2018 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a unique opportunity for student
participants to present their work and receive valuable feedback from the international research
community as well as from selected mentors.

Following the tradition of the previous years’ student research workshops, we have two tracks: research
papers and research proposals. The research paper track is a venue for Ph.D. students, Masters students,
and advanced undergraduates to describe completed work or work-in-progress along with preliminary
results. The research proposal track is offered for advanced Masters and Ph.D. students who have decided
on a thesis topic and are interested in feedback on their proposal and ideas about future directions for
their work.

We received 66 submissions in total: 12 research proposals and 54 research papers. We accepted 26
papers, for an acceptance rate of 39%. After withdrawals, 22 papers are appearing in these proceedings,
including 6 research proposals and 16 research papers. All of the accepted papers will be presented as
posters in lunchtime sessions as a part of the main conference, split across two days (July 17th and 18th).

Mentoring is at the heart of the SRW. In keeping with previous years, students had the opportunity
to participate in a pre-submission mentoring program prior to the submission deadline. This program
offered students a chance to receive comments from an experienced researcher, in order to improve the
quality of the writing and presentation before making their submission. Eleven authors participated in the
pre-submission mentoring. In addition, authors of accepted SRW papers are matched with mentors who
will meet with the students in person during the workshop. Each mentor prepares in-depth comments and
questions prior to the student’s presentation, and provides discussion and feedback during the workshop.

We are deeply grateful to our sponsors whose support will enable a number of students to attend the
conference, including the Don and Betty Walker Scholarship Fund, Roam Analytics, Google, and the
National Science Foundation under award No. 1827830. We would also like to thank our program
committee members for their careful reviews of each paper, and all of our mentors for donating their
time to provide feedback to our student authors.

Thank you to our faculty advisors Marie-Catherine de Marneffe, Wanxiang Che, and Malvina Nissim
for their essential advice and guidance, and to the members of the ACL 2018 organizing committee, in
particular Claire Cardie, Yusuke Miyao, and Priscilla Rasmussen for their helpful support. Finally, thank
you to our student participants!
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Ivan Vulić, University of Cambridge
Olivia Winn, Columbia University
Zhou Yu, University of California, Davis
Omnia Zayed, Insight Centre for Data Analytics, National University of Ireland Galway
Meishan Zhang, Heilongjiang University, China
Yuan Zhang, Google

vi



Table of Contents

Towards Opinion Summarization of Customer Reviews
Samuel Pecar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Sampling Informative Training Data for RNN Language Models
Jared Fernandez and Doug Downey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Learning-based Composite Metrics for Improved Caption Evaluation
Naeha Sharif, Lyndon White, Mohammed Bennamoun and Syed Afaq Ali Shah . . . . . . . . . . . . . . .14

Recursive Neural Network Based Preordering for English-to-Japanese Machine Translation
Yuki Kawara, Chenhui Chu and Yuki Arase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Pushing the Limits of Radiology with Joint Modeling of Visual and Textual Information
Sonit Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Recognizing Complex Entity Mentions: A Review and Future Directions
Xiang Dai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Automatic Detection of Cross-Disciplinary Knowledge Associations
Menasha Thilakaratne, Katrina Falkner and Thushari Atapattu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Language Identification and Named Entity Recognition in Hinglish Code Mixed Tweets
Kushagra Singh, Indira Sen and Ponnurangam Kumaraguru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

German and French Neural Supertagging Experiments for LTAG Parsing
Tatiana Bladier, Andreas van Cranenburgh, Younes Samih and Laura Kallmeyer . . . . . . . . . . . . . . 59

SuperNMT: Neural Machine Translation with Semantic Supersenses and Syntactic Supertags
Eva Vanmassenhove and Andy Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Unsupervised Semantic Abstractive Summarization
Shibhansh Dohare, Vivek Gupta and Harish Karnick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Biomedical Document Retrieval for Clinical Decision Support System
Jainisha Sankhavara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Computational Approach to Feature Extraction for Identification of Suicidal Ideation in Tweets
Ramit Sawhney, Prachi Manchanda, Raj Singh and Swati Aggarwal . . . . . . . . . . . . . . . . . . . . . . . . . 91

BCSAT : A Benchmark Corpus for Sentiment Analysis in Telugu Using Word-level Annotations
Sreekavitha Parupalli, Vijjini Anvesh Rao and Radhika Mamidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Reinforced Extractive Summarization with Question-Focused Rewards
Kristjan Arumae and Fei Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Graph-based Filtering of Out-of-Vocabulary Words for Encoder-Decoder Models
Satoru Katsumata, Yukio Matsumura, Hayahide Yamagishi and Mamoru Komachi . . . . . . . . . . . 112

Exploring Chunk Based Templates for Generating a subset of English Text
Nikhilesh Bhatnagar, Manish Shrivastava and Radhika Mamidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Trick Me If You Can: Adversarial Writing of Trivia Challenge Questions
Eric Wallace and Jordan Boyd-Graber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



Alignment Analysis of Sequential Segmentation of Lexicons to Improve Automatic Cognate Detection
Pranav A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Mixed Feelings: Natural Text Generation with Variable, Coexistent Affective Categories
Lee Kezar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Automatic Spelling Correction for Resource-Scarce Languages using Deep Learning
Pravallika Etoori, Manoj Chinnakotla and Radhika Mamidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Automatic Question Generation using Relative Pronouns and Adverbs
Payal Khullar, Konigari Rachna, Mukul Hase and Manish Shrivastava . . . . . . . . . . . . . . . . . . . . . . 153

viii



Conference Program

Tuesday July 17, 2018

Towards Opinion Summarization of Customer Reviews
Samuel Pecar

Sampling Informative Training Data for RNN Language Models
Jared Fernandez and Doug Downey

Learning-based Composite Metrics for Improved Caption Evaluation
Naeha Sharif, Lyndon White, Mohammed Bennamoun and Syed Afaq Ali Shah

Recursive Neural Network Based Preordering for English-to-Japanese Machine
Translation
Yuki Kawara, Chenhui Chu and Yuki Arase

Pushing the Limits of Radiology with Joint Modeling of Visual and Textual Informa-
tion
Sonit Singh

Recognizing Complex Entity Mentions: A Review and Future Directions
Xiang Dai

Automatic Detection of Cross-Disciplinary Knowledge Associations
Menasha Thilakaratne, Katrina Falkner and Thushari Atapattu

Language Identification and Named Entity Recognition in Hinglish Code Mixed
Tweets
Kushagra Singh, Indira Sen and Ponnurangam Kumaraguru

German and French Neural Supertagging Experiments for LTAG Parsing
Tatiana Bladier, Andreas van Cranenburgh, Younes Samih and Laura Kallmeyer

SuperNMT: Neural Machine Translation with Semantic Supersenses and Syntactic
Supertags
Eva Vanmassenhove and Andy Way

Unsupervised Semantic Abstractive Summarization
Shibhansh Dohare, Vivek Gupta and Harish Karnick

ix



Wednesday July 18, 2018

Biomedical Document Retrieval for Clinical Decision Support System
Jainisha Sankhavara

A Computational Approach to Feature Extraction for Identification of Suicidal
Ideation in Tweets
Ramit Sawhney, Prachi Manchanda, Raj Singh and Swati Aggarwal

BCSAT : A Benchmark Corpus for Sentiment Analysis in Telugu Using Word-level
Annotations
Sreekavitha Parupalli, Vijjini Anvesh Rao and Radhika Mamidi

Reinforced Extractive Summarization with Question-Focused Rewards
Kristjan Arumae and Fei Liu

Graph-based Filtering of Out-of-Vocabulary Words for Encoder-Decoder Models
Satoru Katsumata, Yukio Matsumura, Hayahide Yamagishi and Mamoru Komachi

Exploring Chunk Based Templates for Generating a subset of English Text
Nikhilesh Bhatnagar, Manish Shrivastava and Radhika Mamidi

Trick Me If You Can: Adversarial Writing of Trivia Challenge Questions
Eric Wallace and Jordan Boyd-Graber

Alignment Analysis of Sequential Segmentation of Lexicons to Improve Automatic
Cognate Detection
Pranav A

Mixed Feelings: Natural Text Generation with Variable, Coexistent Affective Cate-
gories
Lee Kezar

Automatic Spelling Correction for Resource-Scarce Languages using Deep Learn-
ing
Pravallika Etoori, Manoj Chinnakotla and Radhika Mamidi

Automatic Question Generation using Relative Pronouns and Adverbs
Payal Khullar, Konigari Rachna, Mukul Hase and Manish Shrivastava

x



Proceedings of ACL 2018, Student Research Workshop, pages 1–8
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Towards Opinion Summarization of Customer Reviews

Samuel Pecar
Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies
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Abstract

In recent years, the number of texts has
grown rapidly. For example, most review-
based portals, like Yelp or Amazon, con-
tain thousands of user-generated reviews.
It is impossible for any human reader to
process even the most relevant of these
documents. The most promising tool to
solve this task is a text summarization.
Most existing approaches, however, work
on small, homogeneous, English datasets,
and do not account to multi-linguality,
opinion shift, and domain effects. In
this paper, we introduce our research plan
to use neural networks on user-generated
travel reviews to generate summaries that
take into account shifting opinions over
time. We outline future directions in sum-
marization to address all of these issues.
By resolving the existing problems, we
will make it easier for users of review-sites
to make more informed decisions.

1 Introduction

In recent years, amount of available text corpora
has been growing rapidly with increasing popular-
ity of web. Users produce a huge amount of text
every day. With a larger amount of text and infor-
mation included within it, it becomes impossible
for people to read all the texts and it leads to in-
formation overload. For a common human, it is
not possible to read all the available text even if he
reads only all the most relevant ones. The task
of text summarization is known for a very long
period. In late 50s Luhn (Luhn, 1958) tried to
create abstract of documents automatically. Over
decades there have been many summarization sys-
tems dealing with different forms of summariza-
tion. This task belongs to one of the most chal-

lenging tasks in natural language processing. The
task of text summarization can be particularly im-
portant for decision making or relevance judg-
ments (Nenkova and McKeown, 2011).

Automatic text summarization became very
useful and also important tool to help the user ob-
tain as much information as possible without the
necessity to read all the original documents. Many
definitions of text summarization exist. Text sum-
mary can be defined as a text produced from one
or more texts that contains the same information as
the original text and is no longer than half of the
original text (Hovy and Lin, 1998). Mani (Mani,
2001) defined the goal of summarization as a pro-
cess of finding the source of information, extract-
ing content from it and presenting the most impor-
tant content to the user in a concise form and in a
manner sensitive to needs of user’s application.

We can divide techniques of summarization into
two categories: abstractive and extractive summa-
rization (Gambhir and Gupta, 2017). Extractive
summarization aims to choose parts of the original
document such as sentence part, whole sentence
or paragraph. Abstractive summarization wants
to get paraphrase content of the original docu-
ment with respect to cohesion and concise of out-
put summary. Selection of the text section in ex-
tractive summarization leads to a partial loss of an
output cohesion, which abstractive summarization
tries to accomplish.

In last few years, approaches based on neural
networks became very popular for summarization
task (Rush et al., 2015). A specific branch of
text summarization is a summarization of opinions
from the human-generated text. We can summa-
rize opinions from customer reviews or comments
on social networks. This problem differs from a
standard summarization task due to a number of
repetitive and redundant information. There can
be also a problem with polarity of opinions be-
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tween different users. This types of summary can
be very useful for both a customer of products and
a product owner. Opinion summarization can be
particularly important for decision making (Yuan
et al., 2015). This summarization type can also
show trends in opinions collected from comments
on social networks, especially when a number of
text entries grows very fast.

In this work, we also discuss analysis of spe-
cific aspect of opinion summarization: sentiment
analysis of customer reviews. In summarization
task, sentiment information can be viewed as one
of the inputs along with text corpora itself. A dif-
ference between sentiment of text fragments and
sentiment of whole summarization is a very inter-
esting aspect to consider.

The expected contributions of our research are:
(1) overview of a recent development in opin-
ion summarization, (2) assembly of a reason-
ably big dataset for opinion summarization (from
travel based portals), (3) a novel method for opin-
ion summarization based on state-of-the-art neural
network architectures.

The rest of this paper is structured as follows.
Section 2 explains recent advances in text summa-
rization. In Section 3, we focus on possibilities in
the area of opinion mining and summarization of
opinions. Future directions in summarization are
drawn in Section 4. The research proposal includ-
ing opinion summarization along with a possible
dataset and a planned experiment are described in
Section 5. Final observations and conclusions are
mentioned in Section 6.

2 Text Summarization

In recent years, text summarization has been fo-
cusing on the abstractive summarization with a use
of neural models. In (Rush et al., 2015), the au-
thors showed a way to use a neural network based
on encoder-decoder architecture for creating ab-
stractive summarization on the sentence level. Us-
ing this type of model originates from a task of
machine translation where these models were used
before. The approach presented in (Chopra et al.,
2016) can be considered as a follower of the pre-
vious work. Instead of a feed-forward neural net-
work a recurrent neural network (RNN) was used.
RNN emphasizes the order of input words. The
authors presented conditional RNN with convolu-
tional attention-based encoder.

Ferreira et al. presented a sentence clustering

algorithm to deal with the redundancy and infor-
mation diversity problems (Ferreira et al., 2014).
The algorithm uses the text representation to con-
vert input text into graph model along with four
types of relations between sentences.

A specific yet not very widely used technique is
Abstract Meaning Representation (AMR). For text
summarization, a framework for abstractive sum-
marization based on the recent development of a
treebank for AMR (Liu et al., 2015) can be em-
ployed. This framework parses source text into a
set of AMR graphs, then the graph is transformed
into a summary graph from which the output sum-
mary is generated.

The use of neural architecture from machine
translation became widely popular and many au-
thors made research in this area. Nallapati et al.
(Nallapati et al., 2016) presented a neural model
for abstractive summarization along with the in-
troduction of a whole new dataset for evaluation
of summarization.

The use of attention mechanism in neural net-
works became widely spread and very popular.
Many works showed usefulness of this mechanism
in other tasks. In summarization task, a work
proposed by See et al. (See et al., 2017) intro-
duced a method based on the principle of encoder-
decoder along with attention distribution of input
text. They used hybrid pointer-generator architec-
ture with a use of the coverage. The pointer mech-
anism tries to solve problem of choosing words ei-
ther to use original word or generate a new one.
The coverage part ensures minimizing repetition
during the text generation in the later parts of the
output. Interesting modification was introduced
by Paulus et al. (Paulus et al., 2017). Their
mechanism modifies standard attention mecha-
nism and also objective function with a combi-
nation of maximum likelihood and cross-entropy
loss. This mechanism is used in a phase of rein-
forcement learning. Tan et al. (Tan et al., 2017)
proposed another modification of attention mech-
anism and their graph-based attention mechanism
was used in a sequence-to-sequence framework.
The goal of the encoder is mapping the input doc-
uments to the vector representation. Then decoder
is used to generate the output sentences. Novelty
of their method lies in using graph-based atten-
tion mechanism in a hierarchical encoder-decoder
framework.

Neural models are widely used for both abstrac-
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tive and extractive summarization. Nallapati et al.
(Nallapati et al., 2017) presented a neural sequen-
tial model for the extractive summarization of doc-
uments. Visualizing impact of a particular parts of
the input text to output summarization we can con-
sider as other contribution of this paper.

Similarly to other tasks of natural language
processing, convolutional neural networks can be
used for summarization. Yasunaga et al. (Ya-
sunaga et al., 2017) incorporates sentence rela-
tions using Graph Convolutional Network on re-
lation graphs along with the sentence embeddings
obtained from RNN, which were taken as input
node features. This system tries to exploit a repre-
sentational power of neural networks and sentence
relation information which can be encoded in the
graph representation of document clusters.

Much research has been conducted in this field
in recent years. Other interesting modification
can employ latent structure modeling presented in
a framework based on sequence-to-sequence ori-
ented encoder-decoder model which incorporates
a latent structure modeling component (Li et al.,
2017). This model generates abstractive summary
of the latent variables but also of the the discrimi-
native deterministic states.

All aforementioned summarization works were
primarily aimed at summarization of news arti-
cles. There can be also other summarization types
like a summarization of emails (Carenini et al.,
2008; Yousefi-Azar and Hamey, 2017), event-
based summarization (Glavaš and Šnajder, 2014;
Kedzie et al., 2015), personalized summarization
(Díaz and Gervás, 2007; Moro and Bielikova,
2012) and also sentiment-based or opinion sum-
marization described in the next section.

3 Opinion Mining and Summarization

Summarization of opinions is a special type of
summarization. Product and services along with
comments on social networks could consist of
hundreds of entries and could lead to information
overload. Repetition of opinions is one of the ma-
jor differences that contrasts with the summariza-
tion of news. User-generated text often remark-
ably differentiate from news text which is com-
monly widely revised.

3.1 Summarization of Customer Opinions

Summarization of opinions from product reviews
is the most common example of opinion summa-

rization. These reviews often come from stores of
electronics like Amazon. Yuan et al. (Yuan et al.,
2015) presented user study how opinion summa-
rization can help in decision making before con-
sumer purchase.

One of the first works in opinion summarization
could be considered the work of Hu and Liu (Hu
and Liu, 2004). They proposed a set of techniques
for mining and summarizing product reviews. The
main goal of their opinion summarization system
is to provide a feature-based summary.

Tadano et al. proposed method based on evalu-
ative sentence extraction where aspects are judged
by their ratings, tf-idf value and number of men-
tions with similar topic (Tadano et al., 2010).

Summarization approach based on the topical
structure was introduced by Zhan et al. (Zhan
et al., 2009). They presented a topical structure
as a list of significant topics related from a docu-
ment set. To reduce redundancy of sentences they
implemented a method of maximal marginal rele-
vance.

The Opinosis project presented a graph-based
summarization framework (Ganesan et al., 2010).
This framework tries to generate abstractive sum-
marization of highly redundant opinions. Authors
showed that their summaries have better agree-
ment with human summaries compared to the
baseline extractive methods.

Dalal and Zaveri presented application of a
multi-step approach for automatic opinion min-
ing consisting of various phases (Dalal and Za-
veri, 2013). Authors showed that this multi-step
feature-based semi-supervised opinion mining ap-
proach can be successful in identification of opin-
ionated sentences from user reviews.

Aspect-based sentiment analysis can help to
produce a structured summary based on positive
and negative opinion about features of the prod-
uct (Kansal and Toshniwal, 2014). The system
takes into consideration not only sentence infor-
mation, but also pieces of information from other
sentences or reviews called contextual informa-
tion. The authors also showed that polarity of
words can be different even within one domain.

Kurian and Asokan presented a method with
the cross-domain sentiment classification along
with the distributional similarity of opinion words
(Kurian and Asokan, 2015). This method helps
to classify and summarize product reviews and, in
contrast with other methods, it does not require la-
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beled data from the target domain or other lexical
resources.

Unlike other opinion summarization systems
dealing with sentiment polarity, another study for-
mulated opinion summarization as a community
leader detection problem (Zhu et al., 2015). Au-
thors proposed a graph-based method to identify
informative sentences and evaluated method on
product reviews. The study proposed algorithms
for leaders detection in the sentence graph.

A system named Gist (Lovinger et al., 2017) in-
tends to deal with a large amount of text and au-
tomatically summarizes it into informative and ac-
tionable key sentences. Gist tries to summarize
original reviews into the short text consisting of
a few key sentences that will capture the overall
sentiment about the product.

A kind of opinion summarization could be a
summarization of travel reviews to give feedback
for quality of hotels, restaurants or other services.
A clustering based method for summarization of
hotel reviews was proposed by Hu et al. (Hu et al.,
2017). They also showed additional information
as author’s reputation or creation date could have
a huge impact on relevant summary creation. Raut
et al. (Raut and Londhe, 2014) presented machine
learning and Senti-WordNet method for mining
opinions from hotel reviews and also a method for
sentence relevant scoring.

3.2 Summarization of Community Answers

Along with the summarization of customer re-
views, a very important summarization type con-
siders comments on social networks or answers in
question answering (QA) systems as input entries.
Investigation in this forms of text entries can lead
to easier decision making.

A sub-modular function-based framework was
presented by Wang et al. (Wang et al., 2014). This
framework can be used for query-focused opinion
summarization. Authors evaluated this framework
in QA and blog dataset. Statistically learned sen-
tence relevance along with information coverage
with respect to diverse topics are encoded as sub-
modular functions.

Work of Lloret et al. (Lloret et al., 2015) deals
both with the summarization of opinions in social
networks and opinions in product reviews. Their
method can be characterized with an integration
of sentence simplification, but also regeneration of
sentence and also internal concept representation

in the summarization task. The method tries to be
able to generate abstractive summaries.

There are many topics in this area which can
lead to very interesting observations. Guo et al.
(Guo et al., 2015) proposed a model for opin-
ion summarization of highly contrastive opinions
particularly for controversial issues. They inte-
grated expert opinions with ordinary opinions to
create an output of contrastive sentence pairs. The
study also presented this method as a unified way
for users to better summarize opinions concerning
controversial issues.

Another study explores opinion summarization
of the spontaneous conversation (Wang and Liu,
2015). Phone conversation corpus was annotated
in this study and authors investigated two methods
of extractive summarization, graph-based with in-
corporating topic and sentiment information and
supervised method which cast this problem as a
classification problem.

A study from Li et al. deals also with opinion
summarization in blogging (Li et al., 2016). They
proposed a convolutional neural network for opin-
ion summarization based on recent deep-learning
research. Maximal marginal relevance is used for
extraction of representative opinion sentences.

A very important problem of the volume and
volatility of opinionated data published in social
media was presented by Tsirakis et al. (Tsirakis
et al., 2016). They discussed that most of methods
deal only with a small volume of data, where they
are quite effective, but usually do not scale up.

4 Future Directions

As presented in the previous sections, many chal-
lenges are still present in summarization. Stan-
dard text summarization usually applied to news
articles deals still with the problem of abstractive
summarization. Text summarization techniques
can be on a different level of abstraction and usu-
ally are not fully abstractive (See et al., 2017).

Another big challenge lies in summarization of
text in languages other than English. Most of
methods were evaluated only on English and inter-
esting could be an evaluation in other ones along
with their specifics. Another aspect could be sum-
marization over multiple languages where input
text does not need to be in only one language.

Summarization of user-generated content has to
deal with a problem of the noisy and ungram-
matical documents but also with very diverse and
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conflicting opinions included within these docu-
ments (Murray et al., 2017). This problem is even
more protuberant in minor languages where opin-
ion mining and sentiment analysis is not well de-
veloped (Krchnavy and Simko, 2017).

In opinion summarization with thousands of in-
put entries a researcher should deal with a change
of opinions during the time. When summarizing
customer reviews for services like hotels or restau-
rants, change of quality should be considered. It
can lead to a specific time-based summary which
considers progress of opinions over the time. This
problem is also relevant in summarization of text
in social networks, especially with controversial
topics reports to the specific mood in society or
can be effected by community leaders. Lack of
available large datasets for this task is other cru-
cial subject of research in next years, since most
of research was evaluated only on small ones.

A significant problem is present in the evalu-
ation phase. Automatic evaluation can be quite
controversial as there exist not only one correct
summarization. Automatic evaluation measures
like ROUGE and its modifications (Lin, 2004) can
partially deal with these problems using n-grams,
but still do not handle a use of synonyms. Same
problems based on multiple formulation of ground
truth can cause problems with human evaluation
as well. Experiments evaluated with more human
participants have to deal with an agreement be-
tween users which can be quite low.

In next few years, we expect the opinion sum-
marization to deal with the domain specifics and
also with the user satisfaction. The growth of user-
generated content in the future can lead to focus on
reduction of information overload and also to text
summarization itself.

5 Research Proposal

As we described earlier, we would like to focus
on a specific type of summarization: creation of
opinion summaries. Nowadays, travel sites in-
clude thousands of reviews from users which vis-
ited one of reviewed places. These reviews are
very important in decision making of future pos-
sible customers but also for owners of services.
With tens of new reviews every day it is impossible
to read all the reviews and it is often very difficult
to choose only the relevant ones. For owners, it is
not possible to manually read all the reviews that
could be very helpful in service improvement.

Recent advances in neural networks and also
in the text summarization showed that employing
encoder-decoder architecture can be very useful.
The problem of summarization of customer re-
views differs from standard single document sum-
marization where the models were applied before.
In this task, we should consider multi-modular
framework.

The main idea of this proposal lies in getting
better user satisfaction with review summary and
also in examining of time aspect on opinion sum-
marization. Opinion summarization should pro-
cess in several phases:

1. aspect detection,

2. clustering opinionated features,

3. sentence generation.

The first step of our proposal lies in the detec-
tion of aspects. Before creation of any summary,
we need to identify aspects discussed in these re-
views. Another mechanism would be needed to
distinguish similarity of aspects. A taxonomy of
aspects could be a very useful tool to avoid a sepa-
ration of similar aspects but other approaches uti-
lizing a distributional and vector space should be
also examined. We plan to use a bidirectional
LSTM neural network with convolutional atten-
tion mechanism to identify aspects within text and
also to determine polarity of each aspect.

In the second step, we have to cluster opinion-
ated sentences by aspects they talk about. In each
cluster, a sentiment and polarity of opinions need
to be determined. Whereas in the task of senti-
ment analysis only overall or average sentiment is
typically provided, in the summarization all polar-
ity opinions should be included in the output sum-
mary. To reach this goal, all the opinionated sen-
tences and opinions should be identified.

In the final phase, we would like to employ neu-
ral network architecture to generate output sen-
tences from collected aspect-oriented information.
In this phase, we need to generate sentence to out-
put summary based on clustered aspects and also
use the polarity of aspects. We plan to use LSTM
network for this stage and generate sentence from
extracted aspects and their polarity.

There is also another important point of inter-
est in task of summarization that has not been dis-
cussed yet. The time horizon is often a neglected
feature which should be considered in opinion
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summarization of customer reviews, as opinions
of customers can develop over the time in a posi-
tive, but also a negative way. We plan to include
information about created time to process of clus-
tering opinions along with other information about
the reviewer, what can lead to better accuracy of
summarization as well as resulting user satisfac-
tion with an output summary.

Another significant point to discuss is employ-
ing end-to-end deep learning in the task of opinion
summarization. The major problem is lack of large
dataset which is necessary for such learning. Cre-
ation of this kind of dataset is expensive and could
take hundreds of hours, if performed manually.

5.1 Dataset

To create an appropriate dataset, we plan to gather
customer reviews from large travel portals (e.g.,
TripAdvisor, Booking.com). All reviews come
along with other useful information such as score
ranking, which should be included too. However
any public information about reviewers could be
very useful too as it shows reviewer relevance and
also importance.

5.2 Experiments

To evaluate the quality of generated summaries a
few experiments are required. We will have to cre-
ate our ground truth or reference summaries to au-
tomatically evaluate quality of summary. As we
mentioned before, it is not a sufficient way for
evaluation and other experiments including human
evaluation would be needed. As this type of eval-
uation is very time consuming and difficult for
resources, a posteriori evaluation is more feasi-
ble way to assess the quality of generated sum-
maries. Very interesting view for opinion sum-
maries is comparison of the sentiment of gener-
ated summaries and the sentiment of original input
reviews. In human evaluation, we would like to
provide users a list of original reviews, generated
summary and ask about their satisfaction. We also
plan to use some other automatic measures like
ROUGE (Lin, 2004) and compare generated sum-
mary with summary created by humans. Another
important measure is aspect coverage and ratio of
included aspect in generated summaries from orig-
inal reviews.

6 Conclusion

In this paper, we described the background for
summarization task. More importantly, we de-
scribed recent contributions and development in
this area with many problems the research deals
with. We emphasized the main problems and fu-
ture research directions in process of summariza-
tion and also particularly for opinion summariza-
tion. We also introduced our future research inten-
tions along with a design of the first experiments
and possible model and dataset. We demonstrated
that summarization task and especially opinion
summarization still have big open issues will be
researched in the next few years.
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Abstract

We propose an unsupervised importance
sampling approach to selecting training
data for recurrent neural network (RNN)
language models. To increase the infor-
mation content of the training set, our
approach preferentially samples high per-
plexity sentences, as determined by an eas-
ily queryable n-gram language model. We
experimentally evaluate the heldout per-
plexity of models trained with our var-
ious importance sampling distributions.
We show that language models trained on
data sampled using our proposed approach
outperform models trained over randomly
sampled subsets of both the Billion Word
(Chelba et al., 2014) and Wikitext-103
benchmark corpora (Merity et al., 2016).

1 Introduction

The task of statistical language modeling seeks
to learn a joint probability distribution over se-
quences of natural language words. In recent
work, recurrent neural network (RNN) language
models (Mikolov et al., 2010) have produced state-
of-the-art perplexities in sentence-level language
modeling, far below those of traditional n-gram
models (Melis et al., 2017). Models trained on
large, diverse benchmark corpora such as the Bil-
lion Word Corpus and Wikitext-103 have seen re-
ported perplexities as low as 23.7 and 37.2, respec-
tively (Kuchaiev and Ginsburg, 2017; Dauphin
et al., 2017).

However, building models on large corpora is
limited by prohibitive computational costs, as the
number of training steps scales linearly with the
number of tokens in the training corpus. Sentence-
level language models for these large corpora can
be learned by training on a set of sentences sub-
sampled from the original corpus. We seek to de-
termine whether it is possible to select a set of

training sentences that is significantly more infor-
mative than a randomly drawn training set. We
hypothesize that by training on higher informa-
tion and more difficult training sentences, RNN
language models can learn the language distribu-
tion more accurately and produce lower perplexi-
ties than models trained on similar-sized randomly
sampled training sets.

We propose an unsupervised importance sam-
pling technique for selecting training data for
sentence-level RNN language models. We lever-
age n-gram language models’ rapid training and
query time, which often requires just a single pass
over the training data. We determine a prelimi-
nary heuristic for each sentence’s importance and
information content by calculating its average per-
word perplexity. Our technique uses an offline n-
gram model to score sentences and then samples
higher perplexity sentences with increased proba-
bility. Selected sentences are then used for training
with corrective weights to remove the sampling
bias. As entropy and perplexity have a monotonic
relationship, selecting sentences with higher aver-
age n-gram perplexity also increases the average
entropy and information content.

We experimentally evaluate the effectiveness of
multiple importance sampling distributions at se-
lecting training data for RNN language models.
We compare the heldout perplexities of models
trained with randomly sampled and importance
sampled training data on both the One Billion
Word and Wikitext-103 corpora. We show that
our importance sampling techniques yield lower
perplexities than models trained on similarly sized
random samples. By using an n-gram model to de-
termine the sampling distribution, we limit added
computational costs of our importance sampling
approach. We also find that applying perplexity-
based importance sampling requires maintaining
a relatively high weight on low perplexity sen-
tences. We hypothesize that this is because low
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perplexity sentences frequently contain common
subsequences that are useful in modeling other
sentences.

2 Related Work

Standard stochastic gradient descent (SGD) iter-
atively selects random examples from the train-
ing set to perform gradient updates. In con-
trast, weighted SGD has been proven to acceler-
ate the convergence rates of SGD by leveraging
importance sampling as a means of variance re-
duction (Needell et al., 2014; Zhao and Zhang,
2015). Weighted SGD selects examples from an
importance sampling distribution and then trains
on the selected examples with corrective weights.
Weights of each training example i are set to be

1
Pr(i) , where Pr(i) is the probability of selecting
example i. The weighting provides an unbiased
estimator of overall loss by removing the bias of
the importance sampling distribution. In expecta-
tion, each example’s contribution to the total loss
function is the same as if the example had been
drawn uniformly at random.

Alain et al. (2015) developed an importance
sampling technique for training deep neural net-
works by sampling examples directly accord-
ing to their gradient norm. To avoid the high
computational costs of gradient computations,
Katharopoulos and Fleuret (2018) sample accord-
ing to losses as approximated by a lightweight
RNN model trained along side their larger pri-
mary RNN model. Both techniques observed in-
creased convergence rates and reduced errors in
image classification tasks. In comparison, we
use a fixed offline n-gram model to compute our
sampling distribution, which can be trained and
queried much more efficiently than a neural net-
work model.

In natural language processing, subsampling of
large corpora has been used to speed up training
for both language modeling and machine trans-
lation. For domain specific language modeling,
Moore and Lewis (2010) used an n-gram model
trained on in-domain data to score sentences and
then selected the sentences with low perplexities
for training. Both Cho et al. (2014) and Koehn
and Haddow (2012) used similar perplexity-based
sampling to select training data for domain spe-
cific machine translation systems. Importance
sampling has also been used to increase rate of
convergence for a class of neural network lan-

guage models which use a set of binary classifiers
to determine sequence likelihood, rather than cal-
culating the probabilities jointly (Xu et al., 2011).

Because these subsampling techniques are used
to learn domain specific distributions different
from the distribution of the original corpus, they
target lower perplexity sentences and have no need
for corrective weighting. In contrast, we study
how training sets generated using weighted im-
portance sampling can be selected to maximize
knowledge of the entire corpus for the standard
language modeling task.

3 Methodology

First, we train an offline n-gram model over sen-
tences randomly sampled from the training corpus.
Using the n-gram model, we score perplexities for
the remaining sentences in the training corpus.

We propose multiple importance sampling and
likelihood weighting schemes for selecting train-
ing sequences for an RNN language model. Our
proposed sampling distributions (discussed in de-
tail below) bias the training set to select higher
perplexity sentences in order to increase the train-
ing set’s information content. We then train an
RNN language model on the sampled sentences
with weights set to the reciprocal of the sentence’s
selection probability.

3.1 Z-Score Sampling (Zfull)
This sampling distribution naively selects sen-
tences according to their z-score, as calculated in
terms of their n-gram perplexities. The selection
probability of sequence s is set as:

PKeep(s) = kpr

(
ppl(s)− µppl

σppl
+ 1

)
,

where ppl(s) is the n-gram perplexity of sentence
s, µppl is the average n-gram perplexity, σppl is
the standard deviation of n-gram perplexities, and
kpr is a normalizing constant to ensure a proper
probability distribution.

For sentences with z-scores less than −1.00 or
sequences where ppl(s) was in the 99th percentile
of n-gram perplexities, sequences are assigned
Pkeep(s) = kpr. This ensured all sequences had
positive selection probability and limited bias to-
wards the selection of high perplexity sequences
in the tail of the distribution. Upon examination,
sequences with perplexities in the 99th percentile
were generally esoteric or nonsensical. Selection
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of these high perplexity sentences provided min-
imal accuracy gain in exchange for their boosted
selection probability.

3.2 Limited Z-Score Sampling (Zα)
Training on low perplexity sentences can be help-
ful in learning to model higher perplexity sen-
tences which share common sub-sequences. How-
ever, naive z-score sampling results in the selec-
tion of few low perplexity sentences. Additionally,
the low perplexity sentences that are selected tend
to dominate the training weight space due to their
low selection probability.

To smooth the distribution in the weight space,
selection probability is only determined using z-
scores for sentences where their perplexities are
greater than the mean. Thus, the selection proba-
bility of sentence s is:
PKeep(s) =

{
kpr

(
α
ppl(s)−µppl

σppl
+ 1
)
, if ppl(s) > µppl.

kpr, else.

where α is a constant parameter that determines
the weight of the z-score in calculating the se-
quence’s selection probability.

3.3 Squared Z-Score Sampling (Z2)
To investigate the effects of sampling from more
complex distributions, we also evaluate an impor-
tance sampling scheme where sentences are sam-
pled according to their squared z-score.
PKeep(s) =




kpr

(
α
(
ppl(s)−µppl

σppl

)2
+ 1

)
, if ppl(s) > µppl.

kpr, else.

4 Experiments

We experimentally evaluate the effectiveness of
the Zfull and Z2 sampling methods, as well as the
Zα method for various values of parameter α.

4.1 Dataset Details
Sentence-level models were trained and evaluated
on samples from Wikitext-103 and the One Bil-
lion Word Benchmark corpus. To create a dataset
of independent sentences, the Wikitext-103 corpus
was parsed to remove headers and to create indi-
vidual sentences. The training and heldout sets
were combined, shuffled, and then split to cre-
ate new 250k token test and validation sets. The

remaining sequences were set as a new training
set of approximately 99 million tokens. In Bil-
lion Word experiments, training sequences were
sampled from a 500 million subset of the released
training split. Billion Word models were evaluated
on 250k token test and validation sets randomly
sampled from the released heldout split.

Models were trained on 500 thousand, 1 mil-
lion, and 2 million token training sets sampled
from each training split. Rare words were replaced
with <unk> tokens, resulting in vocabularies of
267K and 250K for the Wikitext and Billion Word
corpora, respectively.

4.2 Model Details

To calculate the sampling distribution, an n-gram
model was trained on a heldout set with the same
number tokens used to train each RNN model
(Hochreiter and Schmidhuber, 1997). For exam-
ple, the sampling distribution used to build a 1
million token RNN training set was determined
using perplexities calculated by an n-gram model
also trained on 1 million tokens. N-gram mod-
els were trained as 5-gram models with Kneser-
Ney discounting (Kneser and Ney, 1995) using
SRILM (Stolcke, 2002). For efficient calculation
of sentence perplexities, we query our models us-
ing KenLM (Heafield, 2011).

RNN models were built using a two-layer long
short-term memory (LSTM) neural network, with
200-dimensional hidden and embedding layers.
Each training set was trained on for 10 epochs us-
ing the Adam gradient optimizer (Kingma and Ba,
2014) with a mini-batch size of 12.

5 Results

In Tables 1 and 2, we summarize the performances
of models trained on samples from Wikitext-103
and the Billion Word Corpus, respectively. We re-
port the Random and n-gram baseline perplexities
for RNN and n-gram language models trained on
randomly sampled data. We also report µngram
and σngram for each training set, which are the
mean and standard deviation in sentence perplex-
ity as evaluated by the offline n-gram model.

In all experiments, RNN language models
trained using our sampling approaches yield a de-
crease in model perplexity as compared to RNN
models trained on similar sized randomly sam-
pled sets. As size of the training set increases,
the RNNs trained on importance sampling datasets

11



Model Tokens µngram σngram ppl
n-gram 500k — — 492.3
Random 500k 449.0 346.4 749.1
Z0.5 500k 497.1 398.8 643.9
Z1.0 500k 544.1 440.1 645.2
Z2.0 500k 615.7 481.3 593.2
Z4.0 500k 729.0 523.6 571.4
Z2 500k 576.5 499.7 720.0
Zfull 500k 627.1 451.9 663.7
n-gram 1M — — 502.7
Random 1M 448.9 380.2 550.6
Z0.5 1M 495.7 431.8 545.73
Z1.0 1M 540.4 475.4 435.4
Z2.0 1M 615.6 528.4 426.9
Z4.0 1M 732.9 584.4 420.1
Z2 1M 571.5 535.7 435.7
ZFull 1M 608.6 489.9 416.3
n-gram 2M — — 502.6
Random 2M 430.45 392.1 341.3
Z0.5 2M 471.8 445.2 292.7
Z1.0 2M 514.6 493.9 289.8
Z2.0 2M 582.8 544.6 346.9
Z4.0 2M 684.6 604.7 294.6
Z2 2M 518.4 522.9 287.9
ZFull 2M 568.4 506.5 312.5

Table 1: Perplexities for Wikitext models. All pro-
posed models outperform the random and n-gram
baselines as number of training tokens increases.

also yield significantly lower perplexities than
the n-gram models trained on randomly sampled
training sets. As expected, µngram and σngram in-
crease substantially for training sets generated us-
ing our proposed sampling methods.

Overall, the Z4.0 sampling method produced
the most consistent reductions in average perplex-
ity of 102.9 and 54.2 compared to the Random
and n-gram baselines, respectively. ZFull and Z2

exhibit higher variance in their heldout perplex-
ity as compared to the Zα and baseline methods.
We expect that this is because these methods se-
lect higher perplexity sequences with significantly
higher probability than Zα methods. As a result,
low perplexity sentences, which may contain com-
mon subsequences helpful in modeling other sen-
tences, are ignored in training.

6 Conclusions and Future Work

We introduce a weighted importance sampling
scheme for selecting RNN language model train-
ing data from large corpora. We demonstrate that
models trained with data generated using this ap-
proach yield perplexity reductions of up to 24%
when compared to models trained over randomly
sampled training sets of similar size. This tech-
nique leverages higher perplexity training sen-

Model Tokens µngram σngram ppl
n-gram 1M — — 432.5
Random 1M 433.2 515.4 484.0
Z0.5 1M 476.8 410.9 436.6
Z1.0 1M 543.8 529.0 421.5
Z4.0 1M 726.4 517.3 427.3
Zfull 1M 635.19 458.69 495.75
Z2 1M 639.2 593.7 435.3

Table 2: Perplexities for Billion Word models. Zα
and Z2 both outperform the random baseline and
are comparable to the n-gram baseline.

tences to learn more accurate language models,
while limiting added computational cost of impor-
tance calculations.

In future work, we will examine the perfor-
mance of our proposed selection techniques in ad-
ditional parameter settings, with various values of
α and thresholds in the limited z-score methods
Zα. We will evaluate the performance of sam-
pling distributions based on perplexities calculated
using small, lightweight RNN language models
rather than n-gram language models. Addition-
ally, we will also be evaluating the performance of
sampling distributions calculated based on a sen-
tence’s subsequences and unique n-gram content.
Furthermore, we plan on adapting this importance
sampling approach to use online n-gram models
trained alongside the RNN language models for
determining the importance sampling distribution.
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Abstract

The evaluation of image caption quality is
a challenging task, which requires the as-
sessment of two main aspects in a caption:
adequacy and fluency. These quality as-
pects can be judged using a combination of
several linguistic features. However, most
of the current image captioning metrics fo-
cus only on specific linguistic facets, such
as the lexical or semantic, and fail to meet
a satisfactory level of correlation with hu-
man judgements at the sentence-level. We
propose a learning-based framework to in-
corporate the scores of a set of lexical
and semantic metrics as features, to cap-
ture the adequacy and fluency of captions
at different linguistic levels. Our experi-
mental results demonstrate that composite
metrics draw upon the strengths of stand-
alone measures to yield improved correla-
tion and accuracy.

1 Introduction

Automatic image captioning requires the under-
standing of the visual aspects of images to gen-
erate human-like descriptions (Bernardi et al.,
2016). The evaluation of the generated captions
is crucial for the development and fine-grained
analysis of image captioning systems (Vedantam
et al., 2015). Automatic evaluation metrics aim
at providing efficient, cost-effective and objective
assessments of the caption quality. Since these
automatic measures serve as an alternative to the
manual evaluation, the major concern is that such
measures should correlate well with human as-
sessments. In other words, automatic metrics are
expected to mimic the human judgement process
by taking into account various aspects that humans
consider when they assess the captions.

The evaluation of image captions can be charac-
terized as having two major aspects: adequacy and

fluency. Adequacy is how well the caption reflects
the source image, and fluency is how well the cap-
tion conforms to the norms and conventions of hu-
man language (Toury, 2012). In the case of man-
ual evaluation, both adequacy and fluency tend to
shape the human perception of the overall caption
quality. Most of the automatic evaluation metrics
tend to capture these aspects of quality based on
the idea that “the closer the candidate description
to the professional human caption, the better it is
in quality” (Papineni et al., 2002). The output in
such case is a score (the higher the better) reflect-
ing the similarity.

The majority of the commonly used metrics for
image captioning such as BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)
are based on the lexical similarity. Lexical mea-
sures (n-gram based) work by rewarding the n-
gram overlaps between the candidate and the ref-
erence captions. Thus, measuring the adequacy
by counting the n-gram matches and assessing the
fluency by implicitly using the reference n-grams
as a language model (Mutton et al., 2007). How-
ever, a high number of n-gram matches cannot al-
ways be indicative of a high caption quality, nor
a low number of n-gram matches can always be
reflective of a low caption quality (Giménez and
Màrquez, 2010). A recently proposed semantic
metric SPICE (Anderson et al., 2016), overcomes
this deficiency of lexical measures by measuring
the semantic similarity of candidate and reference
captions using Scene Graphs. However, the major
drawback of SPICE is that it ignores the fluency of
the output caption.

Integrating assessment scores of different mea-
sures is an intuitive and reasonable way to improve
the current image captioning evaluation methods.
Through this methodology, each metric plays the
role of a judge, assessing the quality of captions
in terms of lexical, grammatical or semantic accu-
racy. For this research, we use the scores conferred
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by a set of measures that are commonly used for
captioning and combine them through a learning-
based framework. In this work:
1. We evaluate various combinations of a chosen
set of metrics and show that the proposed com-
posite metrics correlate better with human judge-
ments.
2. We analyse the accuracy of composite metrics
in terms of differentiating between pairs of cap-
tions in reference to the ground truth captions.

2 Literature Review

The success of any captioning system depends
on how well it transforms the visual informa-
tion to natural language. Therefore, the signifi-
cance of reliable automatic evaluation metrics is
undeniable for the fine-grained analysis and ad-
vancement of image captioning systems. While
image captioning has drawn inspiration from the
Machine Translation (MT) domain for encoder-
decoder based captioning networks (Vinyals et al.,
2015), (Xu et al., 2015), (Yao et al., 2016), (You
et al., 2016), (Lu et al., 2017), it has also benefited
from automatic metrics which were initially pro-
posed to evaluate machine translations/text sum-
maries, such as BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014) and ROUGE
(Lin, 2004).

In the past few years, two metrics CIDEr
(Vedantam et al., 2015) and SPICE (Anderson
et al., 2016) were developed specifically for im-
age captioning. Compared to the previously used
metrics, these two show a better correlation with
human judgements. The authors in (Liu et al.,
2016) proposed a linear combination of SPICE
and CIDEr called SPIDEr and showed that op-
timizing image captioning models for SPIDEr’s
score can lead to better quality captions. How-
ever, SPIDEr was not evaluated for its correlation
with human judgements. Recently, (Kusner et al.,
2015) proposed the use of a document similar-
ity metric Word Mover’s Distance (WMD), which
uses the word2vec (Mikolov et al., 2013) embed-
ding space to determine the distance between two
texts.

The metrics used for caption evaluation can be
broadly categorized as lexical and semantic mea-
sures. Lexical metrics reward the n-gram matches
between candidate captions and human generated
reference texts (Giménez and Màrquez, 2010), and
can be further categorized as unigram and n-gram

based measures. Unigram based methods such as
BLEU-1 (Papineni et al., 2002), assess only the
lexical correctness of the candidate. However, in
the case of METEOR or WMD, where some sort
of synonym-matching/stemming is also involved,
unigram-overlaps help to evaluate both the lexi-
cal and to some degree the semantic aptness of
the output caption. N-gram based metrics such
as ROUGE and CIDEr primarily assess the lex-
ical correctness of the caption, but also measure
some amount of syntactic accuracy by capturing
the word order.

The lexical measures have received criticism
based on the argument that the n-gram overlap
is neither an adequate nor a necessary indicative
measure of the caption quality (Anderson et al.,
2016). To overcome this limitation, semantic met-
rics such as SPICE, capture the sentence meaning
to evaluate the candidate captions. Their perfor-
mance however is highly dependent on a success-
ful semantic parsing. Purely syntactic measures,
which capture the grammatical correctness, exist,
and have been used in MT (Mutton et al., 2007),
but not in the captioning domain.

While fluency (well-formedness) of a candidate
caption can be attributed to the syntactic and lexi-
cal correctness (Fomicheva et al., 2016), adequacy
(informativeness) depends on the lexical and se-
mantic correctness (Rios et al., 2011). We hypoth-
esize that by combining scores from different met-
rics, which have different strengths in measuring
adequacy and fluency, a composite metric that is
of overall higher quality is created (Sec. 5).

Machine learning offers a systematic approach
to integrate the scores of stand-alone metrics.
In the MT evaluation, various successful learn-
ing paradigms have been proposed (Bojar et al.,
2016), (Bojar et al., 2017) and the existing
learning-based metrics can be categorized as
binary functions–“which classify the candidate
translation as good or bad” (Kulesza and Shieber,
2004), (Guzmán et al., 2015) or continuous func-
tions–“which score the quality of translation on an
absolute scale” (Song and Cohn, 2011), (Albrecht
and Hwa, 2008). Our research is conceptually
similar to the work in (Kulesza and Shieber, 2004),
which induces a “human-likeness” criteria. How-
ever, our approach differs in terms of the learning
algorithm as well as the features used. Moreover,
the focus of this work is to assess various combina-
tions of metrics (that capture the caption quality at
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Figure 1: Overall framework of the proposed Composite Metrics

different linguistic levels) in terms of their correla-
tion with human judgements at the sentence level.

3 Proposed Approach

In our approach, we use scores conferred by a set
of existing metrics as an input to a multi-layer
feed-forward neural network. We adopt a training
criteria based on a simple question: is the caption
machine or human generated? Our trained classi-
fier sets a boundary between good and bad quality
captions, thus classifying them as human or ma-
chine produced. Furthermore, we obtain a contin-
uous output score by using the class-probability,
which can be considered as some “measure of be-
lievability” that the candidate caption is human
generated. Framing our learning problem as a
classification task allows us to create binary train-
ing data using the human generated captions and
machine generated captions as positive and nega-
tive training examples respectively.

Our proposed framework shown in Figure 1 first
extracts a set of numeric features using the can-
didate “C” and the reference sentences “S”. The
extracted feature vector is then fed as an input to
our multi-layer neural network. Each entity of the
feature vector corresponds to the score generated
by one of the four measures: METEOR, CIDEr,
WMD1 and SPICE respectively. We chose these
measures because they show a relatively better
correlation with human judgements compared to

1We convert the WMD distance score to similarity by us-
ing a negative exponential, to use it as a feature.

the other commonly used ones for captioning (Kil-
ickaya et al., 2016). Our composite metrics are
named EvalMS , EvalCS , EvalMCS , EvalWCS ,
EvalMWS and EvalMWCS . The subscript let-
ters in each name corresponds to the first letter
of each individual metric. For example, EvalMS

corresponds to the combination of METEOR and
SPICE. Figure 2 shows the linguistic aspects cap-
tured by the stand-alone2 and the composite met-
rics. SPICE is based on sentence meanings, thus it
evaluates the semantics. CIDEr covers the syntac-
tic and lexical aspects, whereas Meteor and WMD
assess the lexical and semantic components. The
learning-based metrics mostly fall in the region
formed by the overlap of all three major linguis-
tics facets, leading to better a evaluation.

We train our metrics to maximise the classifica-
tion accuracy on the training dataset. Since we are
primarily interested in maximizing the correlation
with human judgements, we perform early stop-
ping based on Kendalls τ (rank correlation) with
the validation set.

4 Experimental Setup

To train our composite metrics, we source data
from Flicker30k dataset (Plummer et al., 2015)
and three image captioning models namely: (1)
show and tell (Vinyals et al., 2015), (2) show, at-
tend and tell (soft-attention) (Xu et al., 2015), and
(3) adaptive attention (Lu et al., 2017). Flicker30k

2The stand-alone metrics marked with an * in the Figure 2
are used as features for this work.
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Figure 2: Various automatic measures (stand-
alone and combined) and their respective linguis-
tic levels. See Sec. 3 for more details.

dataset consists of 31,783 photos acquired from
Flicker3, each paired with 5 captions obtained
through the Amazon Mechanical Turk (AMT)
(Turk, 2012). For each image in Flicker30k, we
randomly select three of the human generated cap-
tions as positive training examples, and three ma-
chine generated (one from each image captioning
model) captions as negative training examples. We
combined the Microsoft COCO (Chen et al., 2015)
training and validation set (containing 123,287 im-
ages in total, each paired with 5 or more captions),
to train the image captioning models using their
official codes. These image captioning models
achieved state-of-the-art performance when they
were published.

In order to obtain reference captions for each
training example, we again use the human writ-
ten descriptions of Flicker30k. For each neg-
ative training example (machine-generated cap-
tion), we randomly choose 4 out of 5 human writ-
ten captions originally associated with each im-
age. Whereas, for each positive training example
(human-generated caption), we use the 5 human
written captions associated with each image, se-
lecting one of these as a human candidate caption
(positive example) and the remaining 4 as refer-
ences. In Figure 3, a possible pairing scenario is
shown for further clarification.

For our validation set, we source data from
Flicker8k (Young et al., 2014). This dataset
contains 5,822 captions assessed by three expert
judges on a scale of 1 (the caption is unrelated
to the image) to 4 (the caption describes the im-

3https://www.flickr.com/

Table 1: Kendall’s correlation co-efficient of au-
tomatic evaluation metrics and proposed compos-
ite metrics against human quality judgements. All
correlations are significant at p<0.001

Individual
Metrics

Kendall
τ

Composite
Metrics

Kendall
τ

BLEU 0.202 EvalMS 0.386
ROUGE-L 0.216 EvalCS 0.384
METEOR 0.352 EvalMCS 0.386
CIDEr 0.356 EvalWCS 0.379
SPICE 0.366 EvalMWS 0.367
WMD 0.336 EvalMWCS 0.378

age without any errors). From our training set,
we remove the captions of images which overlap
with the captions in the validation and test sets
(discussed in Sec. 5), leaving us with a total of
132,984 non-overlapping captions for the training
of the composite metrics.

5 Results and Discussion

5.1 Correlation

The most desirable characteristic of an automatic
evaluation metric is its strong correlation with hu-
man scores (Zhang and Vogel, 2010). A stronger
correlation with human judgements indicates that
a metric captures the information that humans use
to assess a candidate caption. To evaluate the
sentence-level correlation of our composite met-
rics with human judgements, we source data from
a dataset collected by the authors in (Aditya et al.,
2017). We use 6993 manually evaluated human
and machine generated captions from this set,
which were scored by AMT workers for correct-
ness on the scale of 1 (low relevance to image) to
5 (high relevance to image). Each caption in the
dataset is accompanied by a single judgement. In
Table 1, we report the Kendalls τ correlation co-
efficient for the proposed composite metrics and
other commonly used caption evaluation metrics.

It can be observed from Table 1 that composite
metrics outperform stand-alone metrics in terms
of sentence-level correlation. The combination
of Meteor and SPICE (EvalMS) and METEOR,
CIDEr and SPICE (EvalMCS) showed the most
promising results. The success of these com-
posite metrics can be attributed to the individ-
ual strengths of Meteor, CIDEr and SPICE. ME-
TEOR is a strong lexical measure based on un-
igram matching, which uses additional linguistic
knowledge for word matching, such as the mor-
phological variation in words via stemming and
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Figure 3: Shows an example of a candidate and reference pairing that is used in the training set. (a)
Image, (b) human and machine generated captions for the image, and (c) candidate and reference pairings
for the image.

dictionary based look-up for synonyms and para-
phrases (Banerjee and Lavie, 2005). CIDEr uses
higher order n-grams to account for fluency and
down-weighs the commonly occurring (less infor-
mative) n-grams by performing Term Frequency
Inverse Document Frequency (TF-IDF) weighting
for each n-gram in the dataset (Vedantam et al.,
2015). SPICE on the other hand is a strong in-
dicator of the semantic correctness of a caption.
Together these metrics assess the lexical, seman-
tic and syntactic information. The composite met-
rics which included WMD in the combination
achieved a lower performance, compared to the
ones in which WMD was not included. One possi-
ble reason is that WMD heavily penalizes shorter
candidate captions when the number of words be-
tween the output and the reference captions are not
equal (Kusner et al., 2015). This penalty might not
be consistently useful as it is possible for a shorter
candidate caption to be both fluent and adequate.
Therefore, WMD is a better suited metric for mea-
suring document distance.

5.2 Accuracy

We follow the framework introduced in (Vedan-
tam et al., 2015) to analyse the ability of a met-
ric to discriminate between pairs of captions with
reference to the ground truth caption. A met-
ric is considered accurate if it assigns a higher
score to the caption preferred by humans. For
this experiment, we use PASCAL-50s (Vedan-
tam et al., 2015), which contains human judge-
ments for 4000 triplets of descriptions (one refer-
ence caption with two candidate captions). Based
on the pairing, the triplets are grouped into four
categories (comprising of 1000 triplets each) i.e.,

Table 2: Comparative accuracy results (in percent-
age) on four kinds of pairs tested on PASCAL-50s

Metrics HC HI HM MM AVG
BLEU 53.7 93.2 85.6 61.0 73.4
ROUGE-L 56.5 95.3 93.4 58.5 75.9
METEOR 61.1 97.6 94.6 62.0 78.8
CIDEr 57.8 98.0 88.8 68.2 78.2
SPICE 58.0 96.7 88.4 71.6 78.7
WMD 56.2 98.4 91.7 71.5 79.5
EvalMS 62.8 97.9 93.5 69.6 80.9
EvalCS 59.5 98.3 90.7 71.3 79.9
EvalMCS 60.2 98.3 91.8 71.8 80.5
EvalWCS 58.2 98.7 91.7 70.6 79.8
EvalMWS 56.9 98.4 91.3 71.2 79.4
EvalMWCS 59.0 98.5 90.7 70.2 79.6

Human-Human Correct (HC), Human-Human In-
correct (HI), Human-Machine (HM), Machine-
Machine (MM). We follow the original approach
of (Vedantam et al., 2015) and use 5 reference
captions per candidate to assess the accuracy of
the metrics and report them in Table 2. Table 2
shows that on average composite measures pro-
duce better accuracy compared to the individual
metrics. Amongst the four categories, HC is the
hardest, in which all metrics show the worst per-
formance. Differentiating between two good qual-
ity (human generated) correct captions is challeng-
ing as it involves a fine-grained analysis of the two
candidates. EvalMS achieves the highest accu-
racy in HC category which shows that as caption-
ing systems continue to improve, this combination
of lexical and semantic metrics will continue to
perform well. Moreover, human generated cap-
tions are usually fluent. Therefore, a combination
of strong indicators of adequacy such as SPICE
and METEOR is the most suitable for this task.
EvalMCS shows the highest accuracy in differ-
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entiating between machine captions, which is an-
other important category as one of the main goals
of automatic evaluation is to distinguish between
two machine algorithms. Amongst the composite
metrics, EvalMS is again the best in distinguish-
ing human captions (good quality) from machine
captions (bad quality) which was our basic train-
ing criteria.

6 Conclusion and Future Works

In this paper we propose a learning-based ap-
proach to combine various metrics to improve cap-
tion evaluation. Our experimental results show
that metrics operating along different linguistic di-
mensions can be successfully combined through
a learning-based framework, and they outperform
the existing metrics for caption evaluation in term
of correlation and accuracy, with EvalMS and
EvalMCS giving the best overall performance.

Our study reveals that the proposed approach is
promising and has a lot of potential to be used for
evaluation in the captioning domain. In the fu-
ture, we plan to integrate features (components)
of metrics instead of their scores for a better per-
formance. We also intend to use syntactic mea-
sures, which to the best of our knowledge have
not yet been used for caption evaluation (except
in an indirect way by the n-gram measures which
capture the word order) and study how they can
improve the correlation at the sentence level. Ma-
jority of the metrics for captioning focus more on
adequacy as compared to fluency. This aspect also
needs further attention and a combination of met-
rics/features that can specifically assess the flu-
ency of captions needs to be devised.
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Abstract

The word order between source and tar-
get languages significantly influences the
translation quality in machine translation.
Preordering can effectively address this
problem.　 Previous preordering methods
require a manual feature design, making
language dependent design costly. In this
paper, we propose a preordering method
with a recursive neural network that learns
features from raw inputs. Experiments
show that the proposed method achieves
comparable gain in translation quality to
the state-of-the-art method but without a
manual feature design.

1 Introduction

The word order between source and target
languages significantly influences the transla-
tion quality in statistical machine translation
(SMT) (Tillmann, 2004; Hayashi et al., 2013;
Nakagawa, 2015). Models that adjust orders
of translated phrases in decoding have been
proposed to solve this problem (Tillmann, 2004;
Koehn et al., 2005; Nagata et al., 2006). However,
such reordering models do not perform well for
long-distance reordering. In addition, their com-
putational costs are expensive. To address these
problems, preordering (Xia and McCord, 2004;
Wang et al., 2007; Xu et al., 2009; Isozaki et al.,
2010b; Gojun and Fraser, 2012; Nakagawa,
2015) and post-ordering (Goto et al., 2012,
2013; Hayashi et al., 2013) models have been
proposed. Preordering reorders source sentences
before translation, while post-ordering reorders
sentences translated without considering the word
order after translation. In particular, preorder-
ing effectively improves the translation quality
because it solves long-distance reordering and

computational complexity issues (Jehl et al.,
2014; Nakagawa, 2015).

Rule-based preordering methods either man-
ually create reordering rules (Wang et al.,
2007; Xu et al., 2009; Isozaki et al., 2010b;
Gojun and Fraser, 2012) or extract reordering
rules from a corpus (Xia and McCord, 2004;
Genzel, 2010). On the other hand, studies in
(Neubig et al., 2012; Lerner and Petrov, 2013;
Hoshino et al., 2015; Nakagawa, 2015) apply
machine learning to the preordering problem.
Hoshino et al. (2015) proposed a method that
learns whether child nodes should be swapped at
each node of a syntax tree. Neubig et al. (2012)
and Nakagawa (2015) proposed methods that con-
struct a binary tree and reordering simultaneously
from a source sentence. These methods require
a manual feature design for every language
pair, which makes language dependent design
costly. To overcome this challenge, methods
based on feed forward neural networks that do
not require a manual feature design have been
proposed (de Gispert et al., 2015; Botha et al.,
2017). However, these methods decide whether
to reorder child nodes without considering the
sub-trees, which contains important information
for reordering.

As a preordering method that is free of man-
ual feature design and makes use of information in
sub-trees, we propose a preordering method with
a recursive neural network (RvNN). RvNN cal-
culates reordering in a bottom-up manner (from
the leaf nodes to the root) on a source syntax
tree. Thus, preordering is performed consid-
ering the entire sub-trees. Specifically, RvNN
learns whether to reorder nodes of a syntax tree1

with a vector representation of sub-trees and
syntactic categories. We evaluate the proposed

1In this paper, we used binary syntax trees.
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method for English-to-Japanese translations us-
ing both phrase-based SMT (PBSMT) and neu-
ral MT (NMT). The results confirm that the pro-
posed method achieves comparable translation
quality to the state-of-the-art preordering method
(Nakagawa, 2015) that requires a manual feature
design.

2 Preordering with a Recursive Neural
Network

We explain our design of the RvNN to conduct
preordering after describing how to obtain gold-
standard labels for preordering.

2.1 Gold-Standard Labels for Preordering
We created training data for preordering by label-
ing whether each node of the source-side syntax
tree has reordered child nodes against a target-
side sentence. The label is determined based
on Kendall’s τ (Kendall, 1938) as in (Nakagawa,
2015), which is calculated by Equation (1).

τ =
4

∑|y|−1
i=1

∑|y|
j=i+1 δ(yi < yj)

|y|(|y| − 1)
− 1,(1)

δ(x) =

{
1 (x is true),

0 (otherwise),

where y is a vector of target word indexes that are
aligned with source words. The value of Kendall’s
τ is in [−1, 1]. When it is 1, it means the se-
quence of y is in a complete ascending order,
i.e., target sentence has the same word order with
the source in terms of word alignment. At each
node, if Kendall’s τ increases by reordering child
nodes, an “Inverted” label is assigned; otherwise,
a “Straight” label, which means the child nodes
do not need to be reordered, is assigned. When
a source word of a child node does not have an
alignment, a “Straight” label is assigned.

2.2 Preordering Model
RvNN is constructed given a binary syntax tree. It
predicts the label determined in Section 2.1 at each
node. RvNN decides whether to reorder the child
nodes by considering the sub-tree. The vector of
the sub-tree is calculated in a bottom-up manner
from the leaf nodes. Figure 1 shows an example
of preordering of an English sentence “My parents
live in London.” At the VP node corresponding to
“live in London,” the vector of the node is calcu-
lated by Equation (2), considering its child nodes

VP
PP

My parents live in London

My parents liveinLondon

PRP$ NNS VBP IN NNP

NP

S

Figure 1: Preordering an English sentence “My
parents live in London” with RvNN (Nodes with a
horizontal line mean “Inverted”).

correspond to “live” and “in London.”

p = f([pl;pr]W + b), (2)

s = pWs + bs, (3)

where f is a rectifier, W ∈ R2λ×λ is a weight ma-
trix, pl and pr are vector representations of the left
and right child nodes, respectively. [·; ·] denotes
the concatenation of two vectors. Ws ∈ Rλ×2 is a
weight matrix for the output layer, and b,bs ∈ Rλ

are the biases. s ∈ R2 calculated by Equation (3)
is a weight vector for each label, which is fed into
a softmax function to calculate the probabilities of
the “Straight” and “Inverted” labels.

At a leaf node, a word embedding calculated by
Equations (4) and (5) is fed into Equation (2).

e = xWE , (4)

pe = f(eWl + bl), (5)

where x ∈ RN is a one-hot vector of an input
word with a vocabulary size of N , WE ∈ RN×λ

is an embedding matrix, and bl ∈ Rλ is the bias.
The loss function is the cross entropy defined by
Equation (6).

L(θ) = − 1

K

K∑

k=1

∑

n∈T
lnk log p(lnk ; θ), (6)

where θ is the parameters of the model, n is the
node of a syntax tree T , K is a mini batch size, and
lnk is the label of the n-th node in the k-th syntax
tree in the mini batch.

With the model using POS tags and syntactic
categories, we use Equation (7) instead of Equa-
tion (2).

p = f([pl;pr; et]Wt + bt), (7)
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where et represents a vector of POS tags or syn-
tactic categories, Wt ∈ R3λ×λ is a weight matrix,
and bt ∈ Rλ is the bias. et is calculated in the
same manner as Equations (4) and (5), but the in-
put is a one-hot vector of the POS tags or syntactic
categories at each node. λ is tuned on a develop-
ment set, whose effects are investigated in Section
3.2.

3 Experiments

3.1 Settings

We conducted English-to-Japanese transla-
tion experiments using the ASPEC corpus
(Nakazawa et al., 2016). This corpus provides 3M
sentence pairs as training data, 1, 790 sentence
pairs as development data, and 1, 812 sentence
pairs as test data. We used Stanford CoreNLP2

for tokenization and POS tagging, Enju3 for
parsing of English, and MeCab4 for tokenization
of Japanese. For word alignment, we used
MGIZA.5 Source-to-target and target-to-source
word alignments were calculated using IBM
model 1 and hidden Markov model, and they were
combined with the intersection heuristic following
(Nakagawa, 2015).

We implemented our RvNN preordering model
with Chainer.6 The ASPEC corpus was created
using the sentence alignment method proposed in
(Utiyama and Isahara, 2007) and was sorted based
on the alignment confidence scores. In this pa-
per, we used 100k sentences sampled from the top
500k sentences as training data for preordering.
The vocabulary size N was set to 50k. We used
Adam (Kingma and Ba, 2015) with a weight de-
cay and gradient clipping for optimization. The
mini batch size K was set to 500.

We compared our model with the state-of-the-
art preordering method proposed in (Nakagawa,
2015), which is hereafter referred to as BTG.
We used its publicly available implementation,7

and trained it on the same 100k sentences as our
model.

We used the 1.8M source and target sentences
as training data for MT. We excluded part of the
sentence pairs whose lengths were longer than

2http://stanfordnlp.github.io/CoreNLP/
3http://www.nactem.ac.uk/enju/
4http://taku910.github.io/mecab/
5http://github.com/moses-smt/giza-pp
6http://chainer.org/
7http://github.com/google/topdown-btg-preordering
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Figure 2: Learning curve of our preordering
model.

Node dimensions 100 200 500

w/o preordering 22.73

w/o tags and categories 24.63 24.95 25.02

w/ tags and categories 25.22 25.41 25.38

Table 1: BLEU scores with preordering by our
model and without preordering under different λ
settings (trained on a 500k subset of the training
data).

50 words or the source to target length ratio ex-
ceeded 9. For SMT, we used Moses.8 We trained
the 5-gram language model on the target side of
the training corpus with KenLM.9 Tuning was
performed by minimum error rate training (Och,
2003). We repeated tuning and testing of each
model 3 times and reported the average of scores.
For NMT, we used the attention-based encoder-
decoder model of (Luong et al., 2015) with 2-layer
LSTM implemented in OpenNMT.10 The sizes
of the vocabulary, word embedding, and hidden
layer were set to 50k, 500, and 500, respectively.
The batch size was set to 64, and the number of
epochs was set to 13. The translation quality was
evaluated using BLEU (Papineni et al., 2002) and
RIBES (Isozaki et al., 2010a) using the bootstrap
resampling method (Koehn, 2004) for the signifi-
cance test.

3.2 Results
Figure 2 shows the learning curve of our preorder-
ing model with λ = 200.11 Both the training and

8http://www.statmt.org/moses/
9http://github.com/kpu/kenlm

10http://opennmt.net/
11The learning curve behaves similarly for different λ val-

ues.
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Avogadro  ’s  hypothesis  (  1811  )  contributed  to  the  development  in  since  then

Figure 4: Example of a syntax tree with a parse-error (the phrase “(1811)” was divided in two phrases by
mistake). Our preordering result was affected by such parse-errors. (Nodes with a horizontal line means
“Inverted”.)

PBSMT NMT
BLEU RIBES BLEU RIBES

w/o preordering 22.88 64.07 32.68 81.68
w/ BTG 29.51 77.20 28.91 79.58
w/ RvNN 29.16 76.39 29.01 79.63

Table 2: BLEU and RIBES scores on the test set.
(All models are trained on the entire training cor-
pus of 1.8M sentence pairs.) Numbers in bold in-
dicate the best systems and the systems that are
statistically insignificant at p < 0.05 from the best
systems.
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Figure 3: Distribution of Kendall’s τ in the train-
ing data without preordering, preordering by BTG,
and preordering by our RvNN.

the development losses decreased until 2 epochs.
However, the development loss started to increase
after 3 epochs. Therefore, the number of epochs
was set up to 5, and we chose the model with the
lowest development loss. The source sentences
in the translation evaluation were preordered with
this model.

Next, we investigated the effect of λ. Table
1 shows the BLEU scores with different λ val-
ues, as well as the BLEU score without preorder-

ing. In this experiment, PBSMT was trained with
a 500k subset of training data, and the distortion
limit was set to 6. Our RvNNs consistently out-
performed the plain PBSMT without preordering.
The BLEU score improved as λ increased when
only word embedding was considered. In addi-
tion, RvNNs involving POS tags and syntactic cat-
egories achieved even higher BLEU scores. This
result shows the effectiveness of POS tags and
syntactic categories in reordering. For these mod-
els, setting λ larger than 200 did not contribute to
the translation quality. Based on these, we further
evaluated the RvNN with POS tags and syntactic
categories where λ = 200.

Table 2 shows BLEU and RIBES scores of the
test set on PBSMT and NMT trained on the en-
tire training data of 1.8M sentence pairs. The dis-
tortion limit of SMT systems trained using pre-
ordered sentences by RvNN and BTG was set to 0,
while that without preordering was set to 6. Com-
pared to the plain PBSMT without preordering,
both BLEU and RIBES increased significantly
with preordering by RvNN and BTG. These scores
were comparable (statistically insignificant at p <
0.05) between RvNN and BTG,12 indicating that
the proposed method achieves a translation quality
comparable to BTG. In contrast to the case of PB-
SMT, NMT without preordering achieved a signif-
icantly higher BLEU score than NMT models with
preordering by RvNN and BTG. This is the same
phenomenon in the Chinese-to-Japanese transla-
tion experiment reported in (Sudoh and Nagata,
2016). We assume that one reason is the isola-
tion between preordering and NMT models, where
both models are trained using independent opti-
mization functions. In the future, we will investi-
gate this problem and consider a model that unifies

12The p-value for BLEU and RIBES were 0.068 and
0.226, respectively.
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Preordered examples
Source sentence because of the embedding heterostructure, current leakage around the threshold was minimal.
BTG of the embedding heterostructure because, the threshold around current leakage minimal was.
RvNN embedding heterostructure the of because, around threshold the current leakage minimal was.

Translation examples by PBSMT
Reference 埋込みヘテロ構造のため、しきい値近くでの漏れ電流は非常に小さかった。

(embedding heterostructure of because, threshold around leakage very minimal.)
w/o preordering 埋込みヘテロ構造のため、漏れ電流のしきい値付近では最低であった。

(embedding heterostructure of because, leakage threshold around minimal.)
BTG　 の埋込みヘテロ構造のため、このしきい値付近での漏れ電流の最小であった。

(of embedding heterostructure of because, the threshold around leakage minimal.)
RvNN 埋込みヘテロ構造のため、周辺のしきい値の電流漏れは認められなかった。

(embedding heterostructure of because, around threshold leakage recognized not.)

Table 3: Example where preordering improves translation. (Literal translations are given in the paren-
thesis under the Japanese sentences.)

Preordered examples
Source sentence avogadro’s hypothesis (1811) contributed to the development in since then.
BTG avogadro’s hypothesis (1811) the then since in development to contributed .
RvNN avogadro’s hypothesis (1811 then since in to development the contributed).

Translation examples by PBSMT
Reference Avogadroの仮説 (1811)は，以後の発展に貢献した。

(Avogadro’s hypothesis (1811), since then development to contributed.)
w/o preordering Avogadroの仮説 (1811)の開発に貢献し以後である。

(Avogadro’s hypothesis (1811) development to contributed since then.)
BTG Avogadroの仮説 (1811)以後の発展に貢献した。

(Avogadro’s hypothesis (1811) since then development to contributed.)
RvNN Avogadroの仮説 (1811以降のこれらの開発に貢献した。　

(Avogadro’s hypothesis (1811 since then these development to contributed.)

Table 4: Example of a parse-error disturbed preordering in our method. (Literal translations are given in
the parenthesis under the Japanese sentences.)

preordering and translation in a single model.

Figure 3 shows the distribution of Kendall’s τ
in the original training data as well as the dis-
tributions after preordering by RvNN and BTG.
The ratio of high Kendall’s τ largely increased in
the case of RvNN, suggesting that the proposed
method learns preordering properly. Furthermore,
the ratio of high Kendall’s τ by RvNN is more than
that of BTG, implying that preordering by RvNN
is better than that by BTG.

We also manually investigated the preordering
and translation results. We found that our model
improved both. Table 3 shows a successful pre-
ordering and translation example on PBSMT. The
word order is notably different between source and
reference sentences. After preordering, the word
order between the source and reference sentences
became the same. Because RvNN depends on
parsing, sentences with a parse-error tended to fail
in preordering. For example, the phrase “(1811)”
in Figure 4 was divided in two phrases by mistake.
Consequently, preordering failed. Table 4 shows
preordering and translation examples for the sen-
tence in Figure 4. Compared to the translation

without preordering, the translation quality after
preordering was improved to deliver correct mean-
ing.

4 Conclusion

In this paper, we proposed a preordering method
without a manual feature design for MT. The ex-
periments confirmed that the proposed method
achieved a translation quality comparable to the
state-of-the-art preordering method that requires
a manual feature design. As a future work, we
plan to develop a model that jointly parses and pre-
orders a source sentence. In addition, we plan to
integrate preordering into the NMT model.
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Abstract

Recently, there has been increasing in-
terest in the intersection of computer vi-
sion and natural language processing. Re-
searchers have studied several interesting
tasks, including generating text descrip-
tions from images and videos and lan-
guage embedding of images. More re-
cent work has further extended the scope
of this area to combine videos and lan-
guage, learning to solve non-visual tasks
using visual cues, visual question answer-
ing, and visual dialog. Despite a large
body of research on the intersection of
vision-language technology, its adaption
to the medical domain is not fully ex-
plored. To address this research gap, we
aim to develop machine learning models
that can reason jointly on medical images
and clinical text for advanced search, re-
trieval, annotation and description of med-
ical images.

1 Introduction

Integrating information from various modalities
is deeply rooted in human lives. Humans com-
bine vision, language, speech and touch to ac-
quire knowledge about the world and comprehend
the world (Hall and McKevitt, 1995). Vision and
Language are the most common ways of express-
ing our knowledge about the world. Both Com-
puter Vision (CV) and Natural Language Process-
ing (NLP) demonstrated successful results on var-
ious general purpose tasks such as image classi-
fication, object detection, semantic segmentation,
and machine translation. Although research at the
intersection of CV and NLP is gaining pace, its
applications to healthcare are still under-explored.
The success of Artificial Intelligence (AI) tech-

nologies in general purpose tasks is mainly at-
tributed to publicly available large-scale datasets,
enhanced compute power due to rise of Graph-
ics Processing Units (GPUs), and due to advance-
ments in Machine Learning (ML) algorithms and
its various architectures. One of the biggest hur-
dles in deploying ML (especially Deep Learning)
models in healthcare is a lack of annotated data.
Although it is easy to get annotated data for gen-
eral purpose tasks by crowdsourcing, it is almost
impossible for medical data because of limited ex-
pertise, privacy and ethical issues. On the pos-
itive side, a lot of medical data in the form of
medical images and accompanying text reports is
stored in hospitals’ Picture Archival and Commu-
nication Systems (PACS). For instance, Beth Is-
rael Deaconnes Medical Center (Harvard) gener-
ates approximately 20 terabytes of image data and
one terabyte of text data per year (Mastanduno,
2017). Also, the drive toward structured reporting
in radiology definitely enhance NLP accuracy (Cai
et al., 2016). Interpreting medical images and
summarising them in natural text is a challeng-
ing, complex and tedious task. Various research
studies show that the general rate of missed radi-
ological findings can be as much as 30% (Berlin,
2001; Berlin and Hendrix, 1998). These errors are
mainly due to limited expertise, increasing patient
volumes, the subjectivity of human perception, fa-
tigue, and inability to locate critical and subtle
findings (Sohani, 2013). Based on a recent esti-
mate one billion radiology examinations are per-
formed worldwide annually. This equates to about
40 million radiologist errors per annum (Brady,
2017). In order to reduce these errors, there is a
need to develop automated clinical decision sup-
port systems (CDSS) (Eickhoff et al., 2017) that
can interpret medical images and generate written
reports to augment radiologist’s work.

Our research aims to develop machine learning
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models that reason jointly on medical images and
clinical text for advanced search, retrieval, anno-
tation and description of medical images. Specif-
ically, we aim to automatically generate descrip-
tion of medical images, to develop medical visual
question answering system and to develop medical
dialog agents that interact with patients to answer
their queries based on their medical data.

2 Background

Deep Neural Networks (DNNs) are a special class
of machine learning algorithms that learn in multi-
ple levels, corresponding to different levels of ab-
straction. In this section, we provide an overview
of two of the most common DNNs namely Con-
volutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs). Also, we provide a
profile of architectures and various successful ap-
plications in CV and NLP.

2.1 Convolutional Neural Networks

In the past, problems such as image classifica-
tion and object detection were approached using
a traditional CV pipeline where hand-crafted fea-
tures were first extracted, followed by learning
algorithms (Srinivas et al., 2016). The perfor-
mance of these systems highly depends upon the
quality of the extracted features and the ability of
the learning algorithms (Fu and Rui, 2017). As
CV progressed, extracting these complex features
became a tedious task, giving rise to algorithms
that can learn directly from the raw data with-
out the need for hand-crafted feature engineering.
The major breakthrough happened in 2012 when
object classification on ImageNet (Russakovsky
et al., 2015) improved vastly from top-5 error
of 25% in 2011 to 16% in 2012. This was the
result of shift from hand-engineered features to
learned deep features (Felsberg, 2017). AlexNet
was the first deep learning model that won the
ILSVRC championship in 2012 by drastically re-
ducing the top-5 error rate on the ImageNet Chal-
lege compared to the previous shallow networks.
Since AlexNet, a series of CNN models have
been proposed that advanced state-of-the-art such
as VGG-16 (Simonyan and Zisserman, 2014),
GoogleNet (Szegedy et al., 2015), and Residual
Networks (ResNet) (He et al., 2016). All these
models differ in terms of various structural decom-
positions which led them to have better learning
ability and high predictive performance.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are special
networks that process sequential or temporal data
including language, speech, and handwriting.
Learning sequential data requires memory of pre-
vious states and a feedback mechanism. RNNs
form an internal state of the network where con-
nections between units form a cycle, which al-
lows it to exhibit dynamic temporal behavior (Lee
et al., 2017). Simple RNNs suffer from the
vanishing or exploding gradients problem when
trained with gradient based techniques. To over-
come these challenges, Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Cho et al., 2014)
were introduced which are able to learn very deep
RNNs and can successfully remember sequences
having duration of varying lengths.

2.3 Joint Image and Language Modeling

Due to the success of deep learning techniques in
individual domains of AI including vision, speech
and language, researchers are aiming at problems
at the intersection of vision, language, knowledge
representation and common-sense reasoning. An
ultimate goal of CV is to have comprehensive vi-
sual understanding that involves not only naming
the classes of objects present in a scene, but also
describe their attributes and recognize relation-
ship between objects (Krishna et al., 2017). Much
progress has been made towards this goal, includ-
ing object classification (Krizhevsky et al., 2012),
object detection and localisation (Girshick et al.,
2014), and object and instance segmentation (He
et al., 2017a). On the other hand, the overall goal
of NLP is to understand, draw inferences from,
summarise, translate and generate accurate natu-
ral text and language. State-of-the-art results on
various NLP tasks, including Part-of-Speech tag-
ging (Collobert et al., 2011), Parsing (Dyer et al.,
2015; Vinyals et al., 2015), Named Entity Recog-
nition (Collobert et al., 2011), Semantic Role La-
beling (Zhou and Xu, 2015; He et al., 2017b),
and machine translation (Sutskever et al., 2014;
Wu et al., 2016) are pushing towards that goal.
Early work combining vision with language in-
cludes image annotation, where the task is to as-
sign labels to an image. However, image annota-
tion only associates isolated words with the image
content and ignores the relationships between ob-
jects and their relation to the world. To generate
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a coherent interpretation of a scene and describe
it in a natural way, the task of image caption-
ing emerged within the language-vision commu-
nity, together with large-scale captioning datasets
including Flickr30k 1 and MSCOCO 2. Caption-
ing involves generating a textual description that
verbalizes the most salient aspects (objects, at-
tributes, scene properties) of the image by ana-
lyzing it. In order to tackle more complex tasks
that combine vision and language and to develop
high-level reasoning, Visual Question Answer-
ing (VQA) (Stanislaw et al., 2015) was proposed
which is equivalent to Visual Turing Test. In VQA,
the goal is to predict the answer correctly after rea-
soning over the image and a question in natural
text (Teney et al., 2017). To further extend this
task, Visual Dialog (Das et al., 2017a,b) was pro-
posed that requires an AI agent to hold meaning-
ful dialog with humans in natural language about
visual content. Apart from this, research is mov-
ing towards linking language to actions in the real
world, also known as language grounding (Chen
and Mooney, 2011), which finds applications in
human-robot interaction, robotic navigation and
manipulation. Although there has been language-
vision research for these general purpose tasks, its
progress has been underutilised in healthcare.

3 Related Work

Developing clinical decision support has long
been a major research focus in medical image pro-
cessing. In recent years, deep learning models
have outperformed conventional machine learning
approaches in tasks such as dermatologist level
classification of skin lesions (Esteva et al., 2017),
detection of liver lesions (Ben-Cohen et al., 2016),
detection of pathological-image findings (Zhang
et al., 2017a), automated detection of pneumo-
nia from chest X-rays (Rajpurkar et al., 2017),
and segmentation of brain MRI (Milletari et al.,
2016). Although there are many publicly available
datasets for general purpose tasks (Ferraro et al.,
2015), there are few publicly available datasets
in the medical domain. Recently, (Wang et al.,
2017) introduced a large-scale Chest X-ray dataset
named ChestX-ray8 that is publicly available. The
dataset consists of 112, 120 frontal-view chest X-
rays images of 30, 805 patients. The labels of

1http://shannon.cs.illinois.edu/
DenotationGraph/

2http://cocodataset.org/

the images are automatically assigned by applying
NLP techniques to the paired radiology reports.
(Zhang et al., 2017b) proposed MD-Net, that can
read pathology bladder cancer images, can gener-
ate diagnostic reports, retrieve images by symp-
tom descriptions, and provide justification of the
decision process by highlighting image regions us-
ing an attention mechanism. Moreover, (Shin
et al., 2016) proposed CNN-RNN model that can
efficiently detect a disease in medical image, find
the context (e.g. location and severity of affected
organ) and also correlate the salient regions of
the image with Medical Subject Headings (MeSH)
terms. They work on Open-i (U.S. NLM), a pub-
licly available dataset that consists of 3955 radi-
ology reports from the Indiana Network for Pa-
tient Care, and 7, 470 associated chest X-rays from
the hospitals' PACS. Evaluation in terms of BLEU
score (Papineni et al., 2002) demonstrates that the
model is able to locate diseases and able to gener-
ate Medical Subject Headings (MeSH) terms with
high precision.

In addition, ImageCLEF challenges3 have been
leading advances in the medical field by promot-
ing evaluation of technologies for annotation, in-
dexing and retrieval of textual data and medical
images (Ionescu et al., 2017). Motivated by the
need for automated image understanding meth-
ods in the healthcare domain, ImageCLEF orga-
nized its first concept detection and caption pre-
diction tasks in 2017 (Eickhoff et al., 2017). The
ImageCLEFcaption challenge consists of two sub
tasks including Concept detection and Caption
prediction. The concept detection task consists of
identifying the UMLS Concept Unique Identifiers
(CUIs). Majority of the submissions consider con-
cept detection as a multi-label classification task.
As both of these tasks are inter-related, there has
been work where first concepts in the medical im-
ages are identified and then captions are gener-
ated based on the predicted concepts. (Abacha
et al., 2017) consider CUIs in the training set as
the labels to be assigned. Two methods namely
CNN based approach and the Binary Relevance
via Decision Trees (BR-DT) were used. In (Hasan
et al., 2017), an encoder-decoder based framework
is used where image features are extracted using
CNN and RNN-based architecture with attention
mechanism is used to translate the image features
to relevant captions. In (Rahman et al., 2017), a

3http://www.imageclef.org/
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Content Based Image Retrieval (CBIR) based ap-
prroach is used where first images in both training
and validation sets are indexed by extracting sev-
eral low-level color, texture and edge-related vi-
sual features. The similarity search is then used
to find the closest matching image in the train (or
validation set) for each each query (test) image for
caption prediction. For similarity matching, each
feature is concatenated to form a combined fea-
ture vector and Euclidean distance is used for k-
Nearest Neighbor image similarity.

In the ImageCLEF challenge, submissions var-
ried in their usage of external resources. For
instance (Hasan et al., 2017) do semantic pre-
processing of captions using MetaMap and UMLS
meta-thesaurus. Pre-training CNN models on
PubMed Central images helped in boosting effec-
tiveness compared to training on general purpose
ImageNet dataset. Although these challenges pro-
vide labeled medical images for modality clas-
sification and concept predictions, the datasets
are still much smaller (thousands of images) than
the ImageNet dataset (Russakovsky et al., 2015)
which contains 1.2 million natural images. More-
over, there are issues with ImageCLEFcaption
dataset as the UMLS concepts are extracted using
probabilistic process which introduces errors. The
analysis of dataset showed that some of the images
had no concepts attached.

Learning image context from the correspond-
ing clinical text and generating textual reports very
similar to radiologists has not yet been achieved.
With recent advancements in machine learning
(specially deep learning), it is not hard to imagine
an opportunity to aid radiologists by developing
multimodal clinical decision support systems.

4 Proposed Research

We identify research gaps in the intersection of
medical imaging, computer vision and natural lan-
guage processing as listed in in the following re-
search questions. Our work will address some of
these gaps.

How to automatically generate a radiology
report for a given medical image?
In medical imaging, the accurate diagnosis or as-
sessment of a disease depends on both image ac-
quisition and image interpretation. While im-
age acquisition has improved substantially due to
faster rates and increased resolution of the acqui-
sition devices, image interpretation is still per-

formed by a radiologist, where the radiologist has
only a few minutes with an imaging study to de-
scribe the findings in the form of radiology report.
Such reporting is a time-consuming task and of-
ten represents a bottleneck in the clinical diagno-
sis pipeline (Ionescu et al., 2017). We will develop
machine learning models that automatically gener-
ate radiology reports by interpreting medical im-
ages in order to augment the radiology practice.

How to develop a question answering system
that can reason over medical images?

There has been growing interest in AI to support
clinical decision making and in improving clini-
cal work-flow by better patient engagement. Au-
tomated systems that can interpret complex med-
ical images and provide findings in natural lan-
guage text can significantly enhance the produc-
tivity of hospitals, reduce burden on radiologists
and provide a “second opinion”, leading to re-
duced errors in radiology practice. VQA (Stanis-
law et al., 2015) has been successful on generic
images, but it has not been explored in the med-
ical domain. We will develop machine learning
models that combine NLP and CV techniques to
answer clinically relevant questions based on med-
ical images. Subsequently, clinical visual dialog
systems could be developed based on the models
for medical VQA. The dialog agent will respond
to patient’s queries in an interactive manner based
on medical images, clinical text reports and past
history of the patient.

How to annotate medical images from the
accompanied radiology reports in a weakly
supervised manner?

A large volume of medical imaging data and text
is accumulated in hosptitals' PACS. To harness
this data for advancing healthcare is challeng-
ing. Manual annotation of medical data is almost
impossible due to the complex nature of medi-
cal images, requirement of domain expertise, pri-
vacy, ethics and healthcare data regulations. The
processing of clinical text is challenging due to
combinations of ad-hoc formatting, eliding words
which can be inferred from context, and liberal use
of parenthetical expressions, jargon and acronyms
to increase the information density. We will ex-
plore NLP techniques to annotate medical images
from the accompanying radiology reports.
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How to highlight the relevant area in a medical
image based on the features extracted from
radiology reports?
Although machine learning, especially deep learn-
ing, models have been successful in various do-
mains, they are often treated as black boxes. While
this might not be a problem in other more deter-
ministic domains such as image annotation (where
the end user can objectively validate the tags as-
signed to the images), in health care, not only the
quantitative algorithmic performance is important,
but also the reason why the algorithms works is
relevant. In fact, model interpretability is crucial
for convincing medical professionals of the valid-
ity of actions recommended by predictive systems.
We will develop models using CV, NLP and atten-
tion mechanisms which highlight the relevant area
in a medical image based on the feature extracted
from the radiology reports.

How to train machine learning models when
data is small or classes are imbalanced?
Obtaining datasets in the medical imaging domain
that are as comprehensively annotated as Ima-
geNet remains a challenge. When sufficient data
is not available, transfer learning or fine tuning are
the ways to proceed. In transfer learning, CNN
models pre-trained from natural image dataset or
from a different medical domain are used for a
new medical task at hand. On the other hand, in
fine-tuning, when a medium sized dataset does ex-
ist for the task at hand, one suggested scheme is to
use a pre-trained CNN as initialisation of the net-
work, following which further supervised training
is conducted, of selected network layers, using the
new data for the task at hand. In this task, we will
explore the effectiveness of transfer learning and
fine-tuning in the medical domain.

How to incorporate the temporal nature of
diseases in machine learning models?
Diseases evolve and change over time in a non-
deterministic manner. The existing deep learning
models assume static vector-based inputs, which
do not take time factor into consideration. In or-
der to understand the temporal nature of healthcare
data, we need to develop deep learning models
whose parameters gets incrementally updated with
time. Considering that the time factor is impor-
tant in all kinds of healthcare problems, training
a time-sensitive machine learning model is critical
for a better understanding of the patient condition

and providing timely clinical decision support. We
will work towards exploring ways of how to incor-
porate temporal information in the machine learn-
ing models to have temporal reasoning. This will
help in understanding the progressive nature of
diseases and to alert medical staff about the chang-
ing conditions of patients at right time.

How to increase the number of features to
improve performance and robustness of
CDSS?
Due to rise of Electronic Health Records (or
EHR), hospitals store data in various forms in-
cluding patient’s medical history, demographics,
progress notes, medications, vital signs, immu-
nizations, laboratory data, genetics and genomics
data, and radiology reports. Combining two or
more modalities allows integration of the strengths
of individual modalities. We will work towards
combining various data sources in healthcare so
that better decisions can be made, in turn re-
sulting in achieving the overall goal of precision
medicine.

How to develop bi-directional models for
medical indexing and retrieval?
With the widespread use of EHR and PACS tech-
nology in hospitals, the size of medical data is
growing rapidly, which in turn demands effective
and efficient retrieval systems. Clinical and radi-
ology practices heavily rely on processing stored
medical data providing aid in decision making and
increasing productivity. Existing medical retrieval
systems have limitations in terms of the seman-
tic gap (between the low level visual information
captured by imaging devices and the high level
semantics perceived by humans) (Qayyum et al.,
2017). We will develop bi-directional multimodal
machine learning models that perform retrieval
based on both textual and visual content. The pro-
posed approach can retrieve medical images either
based on the textual query as an input or by pro-
viding sample query images. In addition, the de-
veloped model can also align images and text in
large medical data collections.

5 Expermental Framework

5.1 Datasets
The proposed research work has approval from
Macquarie University Human Research Ethics
Committee to use medical data from Macquarie
University Hospital. We will also use datasets
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that are publicly available such as ChestX-Ray8,
Open-i 4, and ImageCLEF 5 challenge datasets.
These datasets comprise of medical images and
their accompanied text in the form of disease la-
bels or caption, mined from open source biomedi-
cal literature and image collections.

5.2 Evaluation Metrics

For medical captioning task, we will use
standard image captioning metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), and SPICE (An-
derson et al., 2016). For VQA in the medical do-
main, we will use accuracy for multiple-choice
questions, but to measure how much a predicted
answer differs from ground truth based on differ-
ences in their semantic meaning, Wu-Palmer Simi-
larity (Wu and Palmer, 1994) will be used. For the
Visual-Dialog task in the medical domain, an algo-
rithm has to return candidate answers for a given
medical image, dialog history, question, and a list
of candidate answers. We will use two standard re-
trieval metrics namely, recall@k and mean recip-
rocal rank (MRR) (Das et al., 2017a). In the task
of medical retrieval system, the evaluation task is
to measure how effectively an algorithm is able to
produce search results to satisfy the user’s query
in the form of sample image or complex textual
query. For this task, standard information retrieval
metrics such as Precision, Recall, and F-score will
be used.

5.3 Baseline Methods

There are three main approaches to generate im-
age captions: (1) Using templates that rely on
detectors and map the output to linguistic struc-
tures; (2) Using language models that yield more
expressive captions overcoming the limitations of
template based approach; and, (3) Caption re-
trieval and recombination that involves retrieving
captions based on training data instead of gen-
erating new captions. We will work on CNN-
RNN framework and caption retrieval approaches.
The model proposed by Hasan et al. (2017) was
ranked first in the caption prediction task in the
ImageCLEF challenge, which was based on deep
learning approach using language models. Apart
from this, deep learning methods have demon-

4https://openi.nlm.nih.gov/
5http://www.imageclef.org/

strated successful results in general purpose im-
age captioning, therefore the first baseline method
is to incorporate an encoder-decoder based archi-
tecture. Specifically, initial image features will
be extracted using a CNN model, namely VGG-
19, which is pre-trained on the ImageNet dataset
and is fine-tuned on the given ImageCLEF train-
ing dataset to extract the image features from a
lower convolution layer such that the decoder can
focus on the salient aspects of the image via an at-
tention mechanism. Second, text features will be
extracted and pre-processed. Two reserved words
namely start and end are appended to indicate the
start and end of the captions. While training, the
output of the last hidden layer of the CNN model
(Encoder) is given to the first time step of the
LSTM (decoder). We set x1 = start and the de-
sired label, y1 = first word of the caption. Simi-
larly, we set the all the remaining words and finally
the last target label yT = end token. The model
will be trained with an adaptive learning rate op-
timization algorithm, and dropout as a regulariza-
tion mechanism. The model hyper-parameters are
tuned based on the BLEU score on the validation
set. Once the model is trained, captions are gen-
erated on the test images by predicting one word
at every time step based on the context vector, the
previous hidden state, and the previously gener-
ated words.

6 Conclusion

We argue the need for language and vision re-
search in the medical domain by showing its suc-
cessful applications on general purpose tasks. We
identify various research directions in the medi-
cal imaging applications that have not been fully
explored, and can be solved by combining vision
and language processing. This research aims to
develop machine learning models that jointly rea-
son over medical images and accompanying clin-
ical text in radiology. The proposed research is
fruitful in advancing healthcare by building vari-
ous clinical decision support systems to augment
radiologist's work.
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Abstract

Standard named entity recognizers can ef-
fectively recognize entity mentions that
consist of contiguous tokens and do not
overlap with each other. However, in prac-
tice, there are many domains, such as the
biomedical domain, in which there are
nested, overlapping, and discontinuous en-
tity mentions. These complex mentions
cannot be directly recognized by conven-
tional sequence tagging models because
they may break the assumptions based
on which sequence tagging techniques are
built. We review the existing methods
which are revised to tackle complex entity
mentions and categorize them as token-
level and sentence-level approaches. We
then identify the research gap, and discuss
some directions that we are exploring.

1 Introduction

Named entity recognition (NER), the task of iden-
tifying and classifying named entities (NE) within
text, has received substantial attention. This is
largely due to its crucial role in conducting several
downstream tasks, such as entity linking (Lim-
sopatham and Collier, 2016; Pan et al., 2017), re-
lation extraction (Zeng et al., 2014), question an-
swering (Mollá et al., 2007) and knowledge base
construction (Zhang, 2015).

Traditionally, the NER problem can be defined
as: given a sequence of tokens, output a list of tu-
ples < Is, Ie, t >, each of which is a NE mention
in text. Here, Is and Ie are the starting and end-
ing index of the NE mention, respectively, and t
is the type of the entity from a pre-defined cate-
gory scheme. There are two assumptions associ-
ated with this perspective:

1. An NE mention consists of contiguous to-
kens, where all the tokens indexed between
Is and Ie are part of the mention; and,

2. These linear spans do not overlap with each
other. In other words, no token in the text can
belong to more than one NE mention.

Based on these two assumptions, the most com-
mon approach to NER is to use sequence tagging
techniques with a BIO or BIOLU label set. Each
token is assigned with a tag which is usually com-
posed of a position indicator and an entity type.
The position indicator is used to represent the to-
ken’s role in a NE mention. In the BIOLU schema,
B stands for the beginning of a mention, I for the
intermediate of a mention, O for outside a men-
tion, L for the last token of a mention, and U for a
mention having only one token (Ratinov and Roth,
2009).

Sequential tagging models, such as linear-chain
CRFs and BiLSTM-CRF, have achieved start-of-
the-art effectiveness in many NER data sets (Lam-
ple et al., 2016; Ma and Hovy, 2016; Chiu and
Nichols, 2016), since most training data sets are
also annotated based on these two assumptions.

However, in practice, there are many domains,
such as the biomedical domain, which involve
nested, overlapping, discontinuous NE mentions
that break the two assumptions mentioned above.
We categorize these mentions as complex entity
mentions, and note that standard tagging tech-
niques cannot be applied directly to recognize
these mentions (Muis and Lu, 2016; Dai et al.,
2017). In the following paragraphs, we explain
these complex entity mentions in details.

Nested NE mentions One NE mention is com-
pletely contained by the other. We call both of the
mentions involved as nested entity mentions. Fig-
ure 1a is an example taken from the GENIA cor-
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Figure 1: Examples involving overlapping, discontinuous and nested NE mentions. In (a), ‘HIV-1 en-
hancer’ and ‘HIV-1’ are nested NE mentions. In (b), ‘intense pelvic pain’ and ‘back pain’ overlap,
meanwhile, ‘intense pelvic pain’ is a discontinuous mention.

pus (Kim et al., 2003). Here, ‘HIV-1 enhancer’ is
a DNA mention, and it contains another mention
‘HIV-1’, which is a virus.

Multi-type NE mentions An extreme case of
nested NE mentions is one on which an NE men-
tion has multiple entity types. For example, in the
EPPI corpus (Alex et al., 2007), proteins can also
be annotated as drug/compound, indicating that
the protein is used as a drug to affect the function
of a cell. Such a mention should be classified as
both protein and drug/compound. In this case, we
consider this mention as two mentions of different
types, and these two mentions contain each other.

Overlapping NE mentions Two NE mentions
overlap, but no one is completely contained by
the other. Figure 1b is an example taken from the
CADEC corpus (Karimi et al., 2015), which is an-
notated for adverse drug events (ADE) and rele-
vant concepts. In this example, two ADEs: ‘in-
tense pelvic pain’ and ‘back pain’, share a com-
mon token ‘pain’, and neither is contained by the
other.

Discontinuous NE mentions The mention
consists of discontiguous tokens. In other words,
the mention contains at least one gap. In Fig-
ure 1b, ‘intense pelvic pain’ is a discontinuous
NE mention since it is interrupted by ‘and back’.

These complex NE mentions can hold very use-
ful information for downstream tasks. Some-
times, the nested and overlapping structure itself
are already good indicators of the relationship be-
tween different entities involved. For example,
an ORG mention ‘University of Sydney’ contains
a LOC mention ‘Sydney’. This structure has im-
plied the location of the organization, and recog-
nition of these mentions can potentially speed up
the construction of a knowledge base. In addi-
tion, such entities often have fixed representations

in different languages. Therefore, recognizing NE
mentions, especially these discontinuous NE men-
tions, can improve the performance of a machine
translation system (Klementiev and Roth, 2006).
Furthermore, we notice that similar complex struc-
tures also exist in other NLP tasks, such as multi-
word expressions recognition (Baldwin and Kim,
2010). The ideas proposed for a NER task can thus
be applied to tackle similar difficulties in other
tasks.

Below, we briefly review existing methods to
recognize complex mentions and discuss their
strengths and limitations. We also discuss the re-
search directions we are exploring to address the
research gaps.

2 Token-level Approach

Sequence tagging techniques take the representa-
tion of each token as input and output a label for
each token. These local decisions are chained to-
gether to perform joint inference. Figure 2 is an
illustration of a linear-chain CRF model where the
tag of one token depends on both the features of
that token in context and the tag of the previous
token. The tag sequence predicted by the tagger
is finally decoded into NE mentions using explicit
rules. Here, the intermediate outputs for each to-
ken are usually BIO tags in standard NER tasks.
However, since the BIO tags cannot effectively
represent complex NE mentions, a natural direc-
tion is to expand the BIO tag set so that different
kinds of complex entity mentions can be captured.
We categorize the methods based on conventional
sequence tagging as token-level approach.

Metke-Jimenez and Karimi (2015) introduced
a BIO variant schema to represent discontinuous
and overlapping NE mentions. Concretely, in
addition to the BIO tags, four new position in-
dicators, BD, ID, BH, and IH are proposed to
denote Beginning of Discontinuous body, Inside
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Figure 2: In a linear-chain CRF model, the out-
put for each token depends on the features of that
token in context and the output for the previous
token.

Figure 3: An encoding example of two NE men-
tions: ‘intense pelvic pain’ and ‘back pain’. Here,
we keep only the position indicator and remove
the entity type, since this schema can only repre-
sent overlapping mentions of the same entity type.

of Discontinuous body, Beginning of Head, and
Inside of Head. Here, the word sequences which
are shared by multiple mentions are called head,
and the remaining parts of the discontinuous men-
tion are called body. Figure 3 is an encoding ex-
ample using this schema. ‘pain’ is the beginning
of the head that is shared by two mentions, and
therefore tagged as BH. ‘intense pelvic’ is the body
of a discontinuous mention, while ‘back’ is the be-
ginning of a continuous mention. We note that,
even in this simple example, it is still impossible
to represent several discontinuous mentions unam-
biguously. For example, this encoding can also be
decoded as having three mentions: ‘intense pelvic
pain’, ‘back pain’ and ‘pain’. Muis and Lu (2016)
introduced the notion of model ambiguity and the-
oretically demonstrated that the models based on
BIO variants usually have high ambiguity level,
and therefore low precision in practice. Another
limitation of this schema is that it supports only
overlapping mentions of the same entity type.

Schneider et al. (2014) also proposed several
BIO schema variants to encode multiword expres-
sions with gaps and nested structure. They include
two strict restrictions which are motivated linguis-
tically in their work:

1. An expression can be completely contained
within another expression, but no overlap-
ping is allowed; and,

2. A contained expression cannot contain other
expressions. In other words, the nested struc-
ture has maximum two levels.

We note that these strict restrictions cannot be ap-
plied directly on our NER tasks.

Alex et al. (2007) proposed three approaches
based on a maximum entropy model (Curran and
Clark, 2003) to deal with nested NE mentions:

Layering The tagger first identifies the innermost
(or outermost) mentions, then the following
taggers are used to identify increasingly next
level mentions. Finally, the output of the tag-
gers on different layers is combined by taking
the union.

Joined labeling Each word is assigned a tag by
concatenating the tags of all levels of nesting.
Then a tagger is trained on the data contain-
ing the joined labels. During inference, the
joined labels are decoded into their original
BIO format for each entity type.

Cascade Separate models are trained for each en-
tity type or by grouping several entity types
without nested structures. Similar to the lay-
ering approach, the latter models can utilize
the outputs from previous models as input
features. Despite the difficulty of ordering
and grouping entity models and the fact that
this approach cannot deal with nested men-
tions of the same entity type, the cascade ap-
proach still achieves the best results among
these three approaches.

Byrne (2007) and Xu et al. (2017) used a sim-
ilar approach to deal with nested NE mentions.
They concatenated adjacent tokens (up to a certain
length) into potential mention spans. Then these
spans, together with their left and right contexts,
are fed into a classifier (a maximum entropy tag-
ger in (Byrne, 2007) and a feedforward neural net-
work in (Xu et al., 2017)). The classifier is trained
to first predict whether the span is a valid NE men-
tion, and then its entity type if it is a NE mention.

3 Sentence-level Approach

Instead of predicting whether a specific token or
several tokens belong to a NE mention and its role
in the mention, some methods predict directly a
combination of NE mentions within a sentence.
We categorize these methods as sentence-level ap-
proach.
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Figure 4: An example of sentence with three NE
mentions. P(ER) and L(OC) refer to the entity
types.

McDonald et al. (2005) proposed a new per-
spective of NER as structured multi-label classifi-
cation. Instead of starting index and ending index,
they represent each NE mention using the set of to-
ken positions that belong to the mention. Figure 4
is an example of this representation, with each to-
ken tagged using an I/O schema. This representa-
tion is very flexible as it allows NE mentions con-
sisting of discontiguous tokens and does not re-
quire mentions to exclude each other. Using this
representation, the NER problem is converted into
the multi-label classification problem of finding up
to k correct labels among all possible labels, where
k is a hyper-parameter of the model. Labels can
be decoded to all possible NE mentions in the sen-
tence. They do not come from a pre-defined cate-
gory but depend on the sentence being processed.
McDonald et al. (2005) used large-margin online
learning algorithms to train the model, so that the
scores of correct labels (NE mentions) are higher
than those of all other possible incorrect mentions.
Another advantage of this method is that the out-
puts of the model are unambiguous for all kinds of
complex entity mentions and easy to be decoded,
although the method suffers from a O(n3T ) infer-
ence algorithm, where n is the length of the sen-
tence and T is the number of entity types.

Finkel and Manning (2009) used a discrimina-
tive constituency parser to recognize nested NE
mentions. They represent each sentence as a con-
stituency tree, where each mention corresponds to
a phrase in the tree. In addition, each node needs
to be annotated with its parent and grandparent la-
bels, so that the CRF-CFG parser can learn how
NE mentions nest. Ringland (2016) also explored
a joint model using the Berkeley parser (Petrov
et al., 2006), and showed that it performed well
even without specialized NER features. However,
one disadvantage of their models, as in (McDonald
et al., 2005), is that their time complexity is cubic
in the number of tokens in the sentence. Further-
more, the high quality parse training data, which

Figure 5: An example sub-hypergraph with two
nested NE mentions: ‘University of Iowa’ (ORG)
and ‘Iowa’ (LOC). Here, one mention corresponds
to a path consisting of (AETI+X) nodes. Note
that this hypergraph cannot be used to represent
discontinuous mentions, but, in (Muis and Lu,
2016), they expand the hypergraph representation
to capture discontinuous mentions through two
new node types: B for within the mention, and O
for part of the gap.

is not always available, plays a crucial role in the
success of the joint model (Li et al., 2017).

Lu and Roth (2015), extended by Muis and
Lu (2016), proposed a novel hypergraph to
compactly represent exponentially many possible
nested mentions in one sentence, and one sub-
hypergraph of the complete hypergraph can there-
fore be used to represent a combination of men-
tions in the sentence. Figure 5 is an example
of such a sub-hypergraph, which represents two
nested NE mentions.

The training objectives of these models are to
maximize the log-likelihood of training instances
consisting of the sentence and mention-encoded
hypergraph. During inference, the model will first
predict a sub-hypergraph among all possible sub-
hypergraph of the complete hypergraph, and pre-
dicted mentions can be decoded from the output
sub-hypergraph.

This hypergraph representation still suffers
from some degree of ambiguity during decod-
ing stage. For example, when one mention is
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contained by another mention with the same en-
tity type and their boundaries are all different,
the hypergraph can be decoded in different ways.
This ambiguity comes from the fact that, if one
node has multiple parent nodes and multiple child
nodes, there is no mechanism to decide which of
the parent node is paired with which child node.

4 Research Plan

We note that the drawbacks of existing meth-
ods can be broadly categorized into: (1) lack of
expressivity; and (2) computational complexity.
Most of token-level approaches were proposed for
some specific scenarios or data sets, therefore usu-
ally with strict restrictions. For example, the BIO
variant schema in (Schneider et al., 2014) was de-
signed for nested structure with maximum depth
of two. Therefore, it is difficult to be applied on
GENIA corpus (Kim et al., 2003), which contains
nested entities up to four layers of embedding. In
addition, these token-level methods are usually de-
vised to deal with only either nested or discontinu-
ous mentions, and seldom can be used to tackle all
kinds of complex entity mentions simultaneously.

In contrast, sentence-level approaches are over-
all more flexible and less ambiguous, however
with higher computational cost. For example, both
Finkel and Manning (2009) and McDonald et al.
(2005) methods suffer from a high time complex-
ity which is cubic in the number of tokens in the
sentence. Our aim is to propose a model that rec-
ognizes all kinds of complex entity mentions, with
low ambiguity level and low computational com-
plexity. Some specific directions include:

• The representation in (McDonald et al.,
2005), introduced in Section 3, is most flex-
ible and straightforward among all schemes
designed for representing complex entity
mentions. It can be used to represent all
nested, overlapping and discontinuous entity
mentions with unbounded length and depth.
We are exploring recent advances in multi-
label classification methods (Xu et al., 2016;
Shi et al., 2017) to reduce the computational
complexity of this approach.

• Sequence-to-sequence models (Sutskever
et al., 2014; Cho et al., 2014) had achieved
great success in machine translation and text
generation tasks, especially after enhanced
by attention mechanisms (Luong et al.,

2015). We are exploring extending the
encoder-decoder architecture to recognize
complex entity mentions. During inference
stage, instead of one tag sequence capturing
all mentions in the sentence, the decoder
can produce multiple sequences, each of
which corresponds to one possible mention
combination, analogous to several possible
target sentences in machine translation tasks.

• Supervised learning NER methods are af-
fected by the quantity and quality of the
available annotated corpora. However, since
annotating mentions with complex structure
requires more human efforts than annotat-
ing only the outermost or longest continu-
ous spans, training data for complex entity
mention recognition is rare. Furthermore, the
medical domain is where complex mentions
widely exist, such as disorder mentions and
adverse drug events. The cost of producing
gold standard corpus in such a domain is very
high, due to the expertise required and the
limited access to some medical text, such as
electronic health records.

Active learning aims to reduce the cost of
constructing a labeled dataset by allowing
a human-in-the-loop (Settles and Craven,
2008; Stanovsky et al., 2017). The model
selects one or several most informative in-
stances and presents these instances to the an-
notators. Since only these most informative
instances need to be manually annotated by
human experts, it can reduce the need for hu-
man effort and therefore the cost of construct-
ing large labeled dataset. We are exploring
this method to relieve the pain of lacking
training data.

• Finally, we are going to utilize recent ad-
vances in NER domain to improve the ef-
fectiveness of complex entity mentions rec-
ognizers, such as character-level embedding
(Kuru et al., 2016) and joint models (Luo
et al., 2015).

Besides employing active learning to create spe-
cific data set with nested, overlapping, discontinu-
ous entity mentions, we notice that there are some
off-the-shelf corpora in biomedical domain that
we can use to evaluate our proposed methods, al-
though, to our knowledge, none of these data sets
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contains all three kinds of complex mentions, e.g.,
GENIA (Kim et al., 2003) only contains nested en-
tity mentions, and CADEC (Karimi et al., 2015)
and SemEval2014 (Pradhan et al., 2014) contain
overlapping and discontinuous mentions. In ad-
dition, ACE 1 and NNE (Ringland, 2016) are
newswire corpora with nested entity mentions.

On these data sets, we will use standard evalua-
tion metrics for NER tasks, namely micro-average
precision, recall and f1-score, to evaluate the ef-
fectiveness of proposed methods in recognizing
both complex and simple mentions. However,
due to the complexity of complex NE mentions,
we will include different boundary matching re-
laxation, such as partial match and approximate
match (Tsai et al., 2006), to measure the proposed
methods in identifying these complex mentions.

5 Summary

We reviewed the existing methods of recogniz-
ing nested, overlapping and discontinuous en-
tity mentions, categorizing them as token-level
and sentence-level approaches, and discussed their
strengths and limitations. We also identified the
research gap and introduce some directions we are
exploring.
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Abstract

Detecting interesting, cross-disciplinary
knowledge associations hidden in scien-
tific publications can greatly assist scien-
tists to formulate and validate scientifi-
cally sensible novel research hypotheses.
This will also introduce new areas of re-
search that can be successfully linked with
their research discipline. Currently, this
process is mostly performed manually by
exploring the scientific publications, re-
quiring a substantial amount of time and
effort. Due to the exponential growth of
scientific literature, it has become almost
impossible for a scientist to keep track of
all research advances. As a result, sci-
entists tend to deal with fragments of the
literature according to their specialisation.
Consequently, important and hidden asso-
ciations among these fragmented knowl-
edge that can be linked to produce sig-
nificant scientific discoveries remain un-
noticed. This doctoral work aims to de-
velop a novel knowledge discovery ap-
proach that suggests most promising re-
search pathways by analysing the existing
scientific literature.

1 Problem Statement

Formulation of scientifically sensible novel re-
search hypotheses requires a comprehensive anal-
ysis of the existing literature. However, the
voluminous nature of literature (Cheadle et al.,
2016) makes the hypothesis generation process ex-
tremely difficult and time-consuming even in the
narrow specialisation of a scientist. In this re-
gard, Literature-Based Discovery (LBD) research
is highly beneficial as it aims to detect non-trivial
implicit associations by analysing a massive num-

ber of documents that have the potential to gen-
erate novel research hypotheses (Ganiz et al.,
2005). Moreover, LBD outcomes encourage the
progress of cross-disciplinary research by suggest-
ing promising cross domain research pathways,
which are typically unnoticed during manual anal-
ysis (Sebastian et al., 2017b).

Independent of the domain, LBD is highly valu-
able to accelerate knowledge acquisition and re-
search development process. However, the exist-
ing LBD approaches are mostly limited to medi-
cal domain that attempt to find associations among
genes, proteins, drugs, and diseases. The main
reason for this can be the highly specific and de-
scriptive nature of medical literature that is suit-
able for LBD research (Ittipanuvat et al., 2014).
The application of LBD process in domains such
as Computer Science (CS) is challenging due to
the rapidly evolving nature of terms in the content
of research publications. The medical related LBD
approaches are strongly coupled with the medi-
cal domain knowledge by utilising resources such
as Unified Medical Language System (UMLS),
MetaMap, and Medical Subject Headings (MeSH)
descriptors (Sebastian et al., 2017a). This makes
the applicability of these approaches to other do-
mains challenging.

LBD research outside of medical domain is still
in an immature state. There are only a few LBD
studies performed outside of medical domain (e.g.,
Water Purification (Kostoff et al., 2008), Technol-
ogy & Social Issues (Ittipanuvat et al., 2014), Hu-
manities (Cory, 1997)). To date, a work by Gor-
don and Lindsay (2002) is the only available CS-
related LBD research. Hence, in this doctoral re-
search, we attempt to contribute to LBD discipline
outside of medical domain by automating cross-
disciplinary knowledge discovery process. As a
proof of concept, the proposed solution will be ap-
plied to different CS-related concepts.
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2 LBD Discovery Models

Most of the LBD literature are based on the fun-
damental premise introduced by Swanson namely,
ABC Model (Swanson, 1986). It employs a simple
syllogism to identify the potential knowledge as-
sociations. i.e. given two concepts A and C in two
disjoint scientific literature, if A is associated with
concept B, and the same concept B is associated
with C, the model deduces that A is associated
with C. Swanson demonstrated how these com-
bined knowledge pairs contribute to reach solu-
tions by manually making several medical discov-
eries (e.g., Raynaud’s disease↔ Fish Oil (Swan-
son, 1986) and Migraine ↔ Magnesium (Swan-
son, 1988)). These medical discoveries are the ba-
sis of the LBD discipline.

The ABC model has two variants named as
open and closed discovery models (Figure 1)
(Henry and McInnes, 2017). Open discovery starts
with an initial user-defined concept (e.g., Learning
Analytics (LA)) where the LBD process automat-
ically analyses the literature related to the initial
concept to detect the potential interesting and im-
plicit associations. This model is generally used
when there is a single problem (A-concept) with
limited knowledge on what concepts can be in-
volved (B and C concepts). This model greatly
assists in hypothesis generation process. On the
contrary, closed discovery process requires two
user-defined concepts (e.g., LA and Deep Learn-
ing) as the input to output potential hidden asso-
ciations (B-concepts) between these specified two
concepts A and C. This model is generally used
for hypotheses testing and validation. However,
the derived associations of the model can also be
considered to generate more granular hypotheses.
The granularity of the user-defined concepts of the
two discovery models can vary depending on the
researcher’s interest (Ganiz et al., 2005).

3 Related Work

Even though the early work in LBD was per-
formed manually, over the time, different compu-
tational techniques were adopted to automate the
LBD process. Most of the existing LBD research
are semi-automated and requires a human expert
to make decisions during the LBD process (Sebas-
tian et al., 2017a).

Much of the early computational approaches
utilise lexical statistics (Swanson and Smalheiser,
1997) such as term frequency-inverse document
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Figure 1: Open and closed discovery models.

frequency, token frequencies, which can be con-
sidered as the most primitive LBD approach.
Later, Distributional Semantics approaches (Gor-
don and Dumais, 1998) such as Latent Seman-
tic Indexing, Reflective Random Indexing were
introduced. Subsequently, knowledge-based ap-
proaches (Weeber et al., 2001) were adopted in the
LBD process that heavily rely on the existence of
external structured knowledge-based resources to
acquire domain-specific knowledge.

Relations-based approaches (Hristovski et al.,
2006) make use of user-defined explicit predicates
to convey the meaning of the associations. How-
ever, these approaches are restricted to problems
where semantic types and predicates are known
in advance. Another category is Graph-based ap-
proaches (Cameron et al., 2015) that generate a
number of bridging terms to define the associa-
tions. Bibliometrics-based approaches (Kostoff,
2014) utilise bibliographic link structures in the
LBD process to identify potential knowledge as-
sociations. Several attempts have been taken in
LBD literature to employ link prediction tech-
niques (Sebastian et al., 2015). i.e. attributes of
the concepts and observed links are used to predict
the existence of new links between the concepts.

As discussed earlier, majority of the LBD re-
search are in medical domain and dependent on
medical domain knowledge. As a result, it is not
feasible to apply these approaches to other do-
mains. To date, there are only a handful of LBD
research studies performed outside of the medical
domain. This points out the importance of con-
tributing to non-medical LBD research which is
still in an early stage.

4 Goals and Research Questions

Development of an automatic LBD system can
significantly improve the typical research process
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Figure 2: High-level overview of the proposed open discovery model.

followed by the scientists. With such system, sci-
entists can generate scientifically sensible research
hypotheses in a shorter time by considering the
suggestions provided by the system. Moreover,
the cross-domain knowledge discovery process of
LBD facilitates the development of cross disci-
plinary research. Thus, in this study we are aim-
ing to develop a novel knowledge discovery ap-
proach by utilising both the variants of LBD pro-
cess namely, open and closed discovery.

Our main intention is to uplift the LBD pro-
cess in non-medical domains. The ultimate goals
of this doctoral research are; 1) Fully automate
the LBD process: Most of the existing LBD ap-
proaches are semi-automatic and require human
decisions to direct the knowledge discovery pro-
cess at various stages. Thus, automating the en-
tire LBD process will be highly beneficial for the
users of the LBD model. 2) Provide a generic LBD
solution that is independent of domain specific
knowledge: Most of the existing LBD approaches
rely on domain-specific knowledge to identify the
knowledge associations. As a result, the appli-
cability of these approaches to other domains are
limited. Therefore, it is important to generate a
LBD model that is suitable for any domain, with-
out incorporating any domain specific knowledge.

While focusing on technical literature, in par-
ticular, CS domain, the research questions of this
study are; 1) How to leverage NLP and Machine
Learning techniques to enhance the understanding
of content in the literature to accurately detect re-
search areas with different levels of granularity?
2) How bibliometrics analysis can be integrated to
enhance identification of implicit knowledge asso-

ciations? 3) What are the scoring schemes that can
be used to rank the identified associations? 4) How
to improve the existing evaluation approaches to
accurately validate the LBD outcomes? This doc-
toral work plans to answer these research ques-
tions to fulfill the aforementioned goals.

5 Current Work and Future Directions

We have conducted a comprehensive literature
analysis and have defined our research questions
based on the gaps identified in the literature. Cur-
rently, we are carrying out preliminary studies to
identify potential techniques that would be use-
ful to enhance the predictability of the open dis-
covery LBD model. Figure 2 depicts the high-
level overview of our methodology that addresses
research questions 1 and 3. The proposed LBD
approach is based on Swanson’s ABC discovery
model. In this approach we are attempting to iden-
tify the importance of neural word embeddings
(Mikolov et al., 2013b) to accurately capture the
context of the main keywords of the abstracts. As
for the literature database, we are using Web of Sci-
ence Core Collection (WoS)1 to obtain the meta
data of the literature such as title, abstract, and au-
thor keywords.

As shown in Figure 2, initially the frequencies
of the author keywords were analysed to obtain
the B-literature. The retrieved title and abstract
in B-literature were cleaned using several care-
fully picked preprocessing techniques. In sum-
mary, the potential abbreviations in the text are
identified by using multiple regex patterns. Af-
terwards, variable length n-grams in the text were

1https://clarivate.com/products/web-of-science/
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identified by using a formula based on colloca-
tion patterns described in Mikolov et al. (2013a).
We also removed numbers, punctuation marks and
terms constituent of single letters before analysing
the texts.

After the preprocessing phase, we identified
the sentence in the abstract that describes the in-
tention/purpose of the study by using multiple
intention-based word patterns. We further pro-
cessed the identified purpose sentence along with
the title by removing stop words. The intention
of using the purpose sentence and title is that they
typically include the most important concepts that
best describe the study.

For each post-processed n-grams (wi) of the
purpose sentence and title, we calculated a seman-
tic importance (informativeness) score based on
word2vec (Mikolov et al., 2013b) word embed-
ding method. In other words, we measured the
informativeness of wi based on the validity and se-
mantic richness of N neighbouring terms derived
using cosine similarity. To measure the validity
and semantic richness of N neighbouring terms,
we imposed the following three criterions for the
three categories of the neighbouring terms; uni-
grams, abbreviations and n-grams respectively. 1)
valid technical unigram 2) valid detected abbrevia-
tion 3) valid n-gram by eliminating partial n-grams
with different Part of Speech (POS) tag patterns. If
the neighbouring term (ni) fulfills the relevant cri-
teria based on its category, it will be considered
as a valid, quality neighbouring term (ni ∈ N &
N ⊂ N). We excluded wi if its informativeness is
less than or equal to 50%. i.e. the excluded terms
have majority of neighbours that does not fulfill
the valid, quality neighbouring criterions.

informativeness(wi) =
1

N

N∑

i=1

[ni ∈ N ]

The frequency of wi denotes the importance of
the term within B-literature. Therefore, we multi-
plied informativeness(wi) by the number of occur-
rences wi appeared in the title and purpose sen-
tences to obtain the final weighted score. This
score was used to rank the derived wi terms which
represent the important concepts in B-literature
(i.e. seed concepts). Each seed concept was ex-
tended by linking valid quality neighbouring terms
(using the same criteria used to measure the va-
lidity and semantic richness of the neighbouring
terms) in word2vec vector space.

We performed the same steps of the experi-
ment with fastText (Bojanowski et al., 2016) word
embedding method. An important observation
is that with respect to word2vec, we obtained a
broad topic coverage in the same field showing
what areas are connected with the seed concept
whereas with fastText, we obtained topics in a nar-
row range.

We used Learning Analytics (LA) as the A-
concept to evaluate our approach. The reason
for choosing LA is that it is a relatively novel
but rapidly growing area connected to many disci-
plines like education, psychology, machine learn-
ing etc. We utilised intersection evaluation of Gor-
don and Lindsay’s work (2002) to evaluate the C-
concepts obtained for LA. As for the evaluation lit-
erature database, we used WoS and Scopus2 to ob-
tain the intersection frequencies. We categorised
the derived C-concepts as existing, emerging and
novel based on the intersection frequencies. In to-
tal we obtained 564 knowledge associations 3.

Unlike Gordon and Lindsay’s work (2002), the
knowledge discovery process of our approach is
fully automated and does not require any human
intervention to make decisions during the process.
Therefore, verifying the validity of the obtained
concepts is important to ensure that the associ-
ated intersections are meaningful. We performed
an expert-based concept validation by utilising le-
gitimate concept criteria discussed in Hurtado et
al. (2016). From the evaluation performed by
two LA researchers with CS background, we ob-
tained an average accuracy of 97.87%, 98.21%,
95.68% for existing, emerging, and novel associ-
ations respectively. The experts’ agreement for
the valid terms is 93.6%. Through our experi-
ment, we could successfully identify many inter-
esting C-concepts that have the potential to gener-
ate scientifically sensible novel research hypoth-
esis. For example, our existing C-concepts in-
cluded well-established research areas in LA such
as machine learning, data mining, and e-learning
whereas the emerging C-concepts included infre-
quently used potential research areas in LA such
as computer vision, linked open data, and cogni-
tive science. We could also obtain many inter-
esting novel C-concepts such as word embedding
techniques, deep learning architectures such as
LSTM, BLSTM, CNN, that can be utilised in future

2https://www.scopus.com/
3https://bit.ly/2rApl7C
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Table 1: Methodology comparison
(Gordon and
Lindsay, 2002)

Our Approach

Process Requires human
intervention

Fully automatic

Concepts Bi-grams only Uni-grams, ab-
breviations and
variable length
n-grams

Techniques Lexical Statis-
tics

Lexical Statis-
tics & Distribu-
tional Semantics

Output List of bi-grams Detailed contex-
tualised seman-
tics groupings

LA research. Therefore, the suggestions provided
through our approach will greatly influence to up-
lift the process of research in LA. In comparison
with the only existing CS-related LBD approach
(Gordon and Lindsay, 2002), our approach utilises
an improved methodology (Table 1).

To the best of our knowledge, this is the first
non-medical LBD study that utilises neural word
embeddings to detect the target C-concepts. Our
initial results demonstrate the importance of ex-
ploiting neural word embeddings to effectively
identify potential cross-disciplinary knowledge
associations buried in literature. We would like to
further enhance our existing approach by consider-
ing the below-mentioned future directions that are
categorised based on our four research questions
(RQ) described in Section 4.

RQ 1 (Content Analysis): A subtle analysis of
literature is needed to accurately capture the hid-
den knowledge associations. In our current exper-
iment, we are considering concepts at keywords-
level by identifying seed concepts. As an improve-
ment, we would like to have an organised topic
structure with different levels of granularity. In or-
der to achieve that, we are intending to utilise se-
mantic web technologies and pre-existing topical
categories (e.g., Dewey Decimal Classification) to
enhance the understanding of the content. More-
over, the identified topic structure will also be use-
ful to provide a clearly structured, logical output
to the user than merely listing the identified as-
sociations. Due to the lack of LBD research that

is included

includes

is published

publishes

w
ri
te
s

is
w
ri
tt
en

Author

Term VenuePaper

cites

Figure 3: Entity & relation types (Shakibian and
Charkari, 2017).

analyse the effects of topic modeling (Sebastian
et al., 2017b), it is also important to study how top-
ical information propagate among research pub-
lications to detect interesting, implicit knowledge
associations. Another interesting future direction
would be to utilise deep language understanding
techniques to infer ontologies from the scientific
literature automatically which can be utilised to
identify more granular knowledge associations.

RQ 2 (Bibliometrics Analysis): In our cur-
rent experiment, we are utilising the popular ABC
model to discover the knowledge associations.
However, the inference steps introduced through
ABC model is simple and not foolproof. There-
fore, in our future research studies, we are intend-
ing to analyse more complex inference steps to
identify complex knowledge associations that can-
not be identified through ABC model. To achieve
that, we are aiming to integrate a graph-based ap-
proach by analysing the relationships among the
four entity types (i.e. author, term, paper, venue)
illustrated in Figure 3. In other words, we are
intending to utilise different bibliographics-based
link structures such as co-author relationships, di-
rect citation links, co-word analysis, bibliograph-
ics coupling, and co-citation links to uncover com-
plex knowledge associations. For example, when
authors from disjoint research fields collaborate
for a research, it implies a potential association
between the two knowledge areas. This simple
co-author relationship can be further expanded to
more complex associations by analysing shared
authors in the citations of the source and target lit-
erature, analysing authors in source literature that
are cited by the target literature etc. Same as for
the author entity, this procedure can be followed
for the remaining entities (i.e. paper, term, venue)
of the network schema in Figure 3 to derive more
complex and implicit associations. With regards to
term entity, the identified associations can be fur-
ther expanded by leveraging topic modeling and
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topical categories. We are intending to automati-
cally generate all the aforementioned associations
(up to four degree meta path associations) for the
four entity types by traversing through the network
schema in Figure 3. From the derived associations
we would like to identify the most effective asso-
ciation links by comparing the output results. The
identified effective association links will provide
an improved understanding of an implicit associa-
tion than the simple ABC model.

RQ 3 (Associations Ranking): The generated
target concepts list should be ordered in a way
where the most significant knowledge association
should be listed in the top. Therefore, it is impor-
tant to identify the factors that can be utilised to
rank the derived associations. In our current ap-
proach, we are incorporating semantic importance
and frequency to rank the associations. In fre-
quently evolving domains like CS, it is also impor-
tant to consider the temporal factors to accurately
identify the new research advancements. There-
fore, we would like to propose different temporal-
related weighting mechanisms to rank the target
C-concepts. To accomplish this, we need to anal-
yse the concepts in chronologically ordered time
slices. For example, when deriving the tempo-
ral weight of a concept, factors such as the sig-
nificance of the concept in its corresponding time
interval, and changes of the concept’s trend over
the time using a sliding-window mechanism need
to be considered. Moreover, we can also utilise
pre-existing algorithms that analyse the evolution
of topics (e.g., Dynamic Topic Model (Wang and
McCallum, 2006), Topics over Time Model (Blei
and Lafferty, 2006)) in this regard.

RQ 4 (Evaluation): Evaluating the validity of
the identified knowledge associations outside of
medical domain is very challenging due to the
unavailability of gold standard datasets. Medi-
cal LBD literature mostly attempted to replicate
Swanson’s manually detected medical discoveries
(e.g., Raynaud’s Disease ↔ Fish Oil) to evaluate
their results (Sebastian et al., 2017a). However,
when dealing with other domains, the possible
evaluation approaches that can be utilised are in-
tersection evaluation (Gordon and Lindsay, 2002),
time-sliced evaluation (Yetisgen-Yildiz and Pratt,
2009) and expert based evaluation (Gordon and
Lindsay, 2002) that have number of inherent limi-
tations in accurately validating the results. There-
fore, we would like to improve the existing LBD

evaluation approaches to accurately evaluate our
results. In our current evaluation, we are using in-
tersection evaluation along with expert-based con-
cept validation. In our future experiments, we
would like to quantitatively evaluate the knowl-
edge associations by utilising information retrieval
metrics such as precision and recall (to evaluate
the complete set of target C-concepts) and 11-
point average interpolated precision curves, preci-
sion at k, and mean average precision (to evaluate
the rankings of the target C-concepts). To quanti-
tatively evaluate the overall quality of the results a
ground truth is required. For this purpose, we are
intending to create a time-sliced dataset described
in the work of Yetisgen-Yildiz and Pratt (2009). In
other words, the literature is divided into two sets
namely, pre-cut-off set (includes literature before
a cut-off date) and post-cut-off set (includes liter-
ature after the cut-off date). Afterwards, the LBD
methodology is applied to pre-cut-off set to obtain
the implicit knowledge associations. Later, the
existence of these identified associations (that do
not exist explicitly in pre-cut-off set) is checked in
the post-cut-off set. A major limitation of this ap-
proach is that a knowledge association considered
as a false positive can become a true positive once
a new research is published. This limitation can be
overcome upto some extent by incorporating hu-
man experts to further evaluate validity of the false
positives. Another interesting avenue for evalu-
ation would be user performance evaluation by
incorporating users with diversified range of ex-
pertise such as users with limited prior knowledge
and experts in the field (Qi and Ohsawa, 2016).
Through this approach, we can evaluate the extent
to which the proposed LBD approach assist differ-
ent levels of users to generate hypotheses by util-
ising the suggested knowledge associations.

Thus, this doctoral work can be expanded in nu-
merous ways since LBD outside of medical do-
main is still in an early stage. Our next phase is
to address the above discussed four focus points.
Moreover, in our future work, we are also aim-
ing to test our proposed LBD methodology on the
better studied medical domain as well as on other
domains such as humanities and social sciences.
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Abstract

While growing code-mixed content on
Online Social Networks (OSNs) provides
a fertile ground for studying various as-
pects of code-mixing, the lack of auto-
mated text analysis tools render such stud-
ies challenging. To meet this challenge, a
family of tools for analyzing code-mixed
data such as language identifiers, parts-
of-speech (POS) taggers, chunkers have
been developed. Named Entity Recogni-
tion (NER) is an important text analysis
task which is not only informative by it-
self, but is also needed for downstream
NLP tasks such as semantic role labeling.
In this work, we present an exploration of
automatic NER of code-mixed data. We
compare our method with existing off-the-
shelf NER tools for social media content,
and find that our systems outperforms the
best baseline by 33.18 % (F1 score).

1 Introduction

Code-switching or code-mixing occurs when
“lexical items and grammatical features from two
languages appear in one sentence” (Muysken,
2000). 1 It is frequently seen in multilingual com-
munities and is of interest to linguists due to its
complex relationship with societal factors (Sridhar
and Sridhar, 1980).

With the rise of Web 2.0, the volume of text
on online social networks (OSN) such as Twitter,
Facebook, Reddit has grown. It is estimated that
around 240 Million Indian users, alone, are active
on Twitter 2. A significant fraction of these users

1Many researchers use code-mixing and code-switching
interchangeably, which we follow in this work

2https://www.statista.com/statistics/381832/twitter-users-
india/

are bilingual, or even trilingual, and their tweets
can be monolingual in English or their vernacular,
or code-mixed. Past research has looked at multi-
ple dimensions of this behaviour such as its rela-
tionship to emotion expression (Rudra et al., 2016)
and identity. Code-mixing or multilingualism of
tweets poses a significant problem to both the
OSNs’ underlying text mining algorithms as well
as researchers trying to study online discourse,
since most existing tools for analyzing OSN text
content caters to monolingual data. For exam-
ple, Twitter’s abuse detection systems fail to flag
code-mixed tweets as offensive. 3 Recent efforts
to build tools for code-mixed content include lan-
guage identifiers (Solorio and Liu, 2008), parts-
of-speech(POS) taggers (Vyas et al., 2014), and
chunking (Sharma et al., 2016). A natural exten-
sion of these set of automated natural language
processing (NLP) tools is a Named Entity Rec-
ognizer (NER) for code-mixed social media data,
which we present in this paper. Additionally, as
language tags are an essential feature for NLP
tasks, including NER, we also present a neural net-
work based language identifier.

Our main contributions are:

1. Building a token-level language identifica-
tion system for Hindi-English (Hi-En) code
mixed tweets, described in detail in Section 3.

2. Building an NER for En-Hi code-mixed
tweets, which we explain in Section 4. We
also show, in Section 5, that our NER per-
forms better than existing baselines.

2 Related Work

In this section we briefly describe the approaches
for automatic language identification and extrac-

3http://timesofindia.indiatimes.com/india/to-
avoid-social-media-police-indian-trolls-go-
vernacular/articleshow/60139671.cms
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tion of named entities.
Language Identification for code-mixed content

has been previously explored in Barman et al.
(2014). Particularly close to our work is the use
of deep-learning approaches for detecting token-
level language tags for code-mixed content (Jaech
et al., 2016).

We particularly focus on efforts to building
NERs for social media content and, NERs for
Indian languages and code-mixed corpora. So-
cial Media text, including and especially tweets,
have subtle variations from written and spoken
text. These include slacker grammatical struc-
ture, spelling variations, ad-hoc abbreviations and
more. See Ritter et al. (2011) for detailed dif-
ferences between tweets and traditional textual
sources. Monolingual NER for tweets include
(Ritter et al., 2011; Li et al., 2012). We build on
these approaches to account for code-mixing and
use the former as a baseline to test our method
against.

3 Language Identification using
Transliteration

We build a token level language identification
model (LIDF) for code-mixed tweets using mono-
lingual corpora available for both the languages,
supplemented by a small set of annotated code-
mixed tweets. We hypothesize that words or char-
acter sequences of different languages encode dif-
ferent structures. Therefore, we aim to capture
this character structure for both languages. Sub-
sequently, given a token, we try to see which lan-
guage fits better. Our LIDF algorithm comprises
of multiple steps, described in Figure 1. Each of
the steps have been explained in detail below.

3.1 Roman-Devanagari transliteration

We restrict ourselves to instances of En-Hi code-
mixing where the Hindi component is written in
Roman script. 4 Therefore, any model trained on
Hindi corpora (which will be in Devanagari) is not
directly usable. To make use of such a corpus, we
first transliterate words written in Roman to De-
vanagari script.

We train a model T , that takes a token writ-
ten in Roman characters and generates its Devana-
gari equivalent (given token school, T generates
-k� l). We follow an approach used by (Rosca

4This is followed in previous studies since the quantity of
code-mixed content with non-Roman Hindi is negligible.

Figure 1: Different steps of our language identi-
fication pipeline. We extract features using lan-
guage models trained on monolingual corpora,
and train a classifier based on these features.

and Breuel, 2016) for English-Arabic translitera-
tion and, and train an Attention Sequence to Se-
quence (Seq2Seq) model (Bahdanau et al., 2014).
Given an input sequence of Roman characters, T
generates a sequence of Devanagari characters.

We train T using Roman-Devanagari translit-
eration pairs mined by (Gupta et al., 2012) and
(Khapra et al., 2014). After combining the two
sets and removing duplicates, we were left with
41,383 unique pairs.

We explore multiple Seq2Seq models, experi-
menting with different RNN cells, encoder and de-
coder depths, output activation functions and the
number of RNN cells in each layer. We evalu-
ate their performance using the character error rate
metric, comparing with LITCM (Bhat et al., 2015)
as a baseline. We report the performance of our
top five models in Table 1, all of which perform
better than the baseline.

Our best model comprises of a 2 layer bidi-
rectional RNN encoder and a 2 layer RNN de-
coder, each layer comprising of 128 GRU units
with ReLU activation. We use the Adagrad op-
timizer to train T , adding a dropout of 0.5 after
each layer and use the early stopping technique to
prevent over fitting. Larger and deeper networks
perform relatively poorer since they start overfit-
ting quickly.

We observe that Hindi words which have mul-
tiple spellings when written in Roman script are
all transliterated to the same Hindi token. There-
fore, T could also be used for normalization and
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Model Depth # Units Cell CER

LITCM – – – 18.88
Seq2Seq 3 256 LSTM 17.23
Seq2Seq 2 64 GRU 17.09
Seq2Seq 3 128 GRU 16.99
Seq2Seq 2 128 LSTM 16.67
Seq2Seq 2 128 GRU 16.54

Table 1: Performance of different transliteration
models. Reported CER is in percentage and was
calculated after a 5-fold cross validation. Depth
was kept the same for both encoding and decoding
layers.

we hope to investigate this in more detail in future.

3.2 Extracting features using monolingual
corpora

For both languages, we learn the structure of the
language at a character level. We do this by train-
ing a model which for a token of length n, learns
to predict the last character given the first n − 1
characters as input. More formally, for each to-
ken {c1, c2, ..., cn}, the model learns to predict cn
given the input sequence {c1, c2, ..., cn−1}. We
model this as a sequence classification problem us-
ing LSTM RNNs (Hochreiter and Schmidhuber,
1997). We use ELM to refer to the English lan-
guage model, and HLM to refer to the Hindi lan-
guage model.

The same architecture is used for both ELM and
HLM, as shown in Figure 1. Both comprise of
two RNN layers with 128 LSTM cells each, using
ReLU activation. The output of the second RNN
layer at the last time step is connected to a fully
connected (FC) layer with softmax activation. The
size of this FC layer is equal to the character vo-
cabulary V of the language. We take a softmax
over the FC layer to predict cn. The normalized
outputs from the FC layer can be thought of as a
probability distribution over V , the ith normalized
output being equal to P (Vi|c1, c2, ..., cn−1), where
Vi is the ith character in the vocabulary. We re-
fer to the normalized outputs from the FC layer of
ELM and HLM as PELM and PHLM respectively,
and use them as features for our language detec-
tion classifier.

For training ELM, we use the News Crawl
dataset provided as a part of the WMT 2014 trans-

lation task.5 As a preprocessing step, we re-
move all non-alphabetic characters (such as num-
bers and punctuations), and convert all upper-
case alphabets to lowercase. After preprocess-
ing, we were left with a total of 98,565,179 to-
kens, 189,267 of which were unique. For HLM,
we use the IIT Bombay Hindi corpus (Kunchukut-
tan et al., 2017). We follow the same preprocess-
ing steps, except for converting to lowercase (since
there is no concept of case in Hindi). This yielded
59,494,325 tokens, of which 161,020 were unique.

The input sequence is encoded into a sequence
of one hot vectors before feeding it to the network.
We use categorical cross-entropy as the loss func-
tion, optimizing the model using gradient descent
(Adagrad). 20% of the unique tokens are held out
and used to validate the performance of our model.
Once again, we use the early stopping technique
and add a dropout of 0.5 after each layer to avoid
over-fitting.

Figure 2: Architecture for ELM and HLM. The
figure shows one cell in each LSTM layer unrolled
over time.

3.3 Predicting language tag using PELM and
PHLM

Given a word {c1, c2, ..., cn} we first translit-
erate it to Devanagari using T , generating
{c′1, c′2, ..., c′k}. Then by passing {c1, c2, ..., cn−1}
and {c′1, c′2, ..., c′k−1} through ELM and HLM re-
spectively, we obtain PELM and PHLM. Our hy-
pothesis is that we can differentiate PELM of a
Hindi word from the PELM of an English word,

5http://statmt.org/wmt14/translation-task.html
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since the character sequence structure of a Hindi
word is different from that of English words
(which are used to train ELM). Similarly, we can
differentiate PHLM of an English word from the
PHLM of a Hindi word.

We use a set of tweets curated by Sakshi Gupta
and Radhika (2016) which are annotated for lan-
guage at a token level (each token is either En-
glish, Hindi or Rest) to train a three class clas-
sifier using (i) PELM (ii) PHLM, (iii) ratio of non-
alphabetic characters in W , (iv) ratio of capital-
ization in W and (v) Binary feature indicating
whether W is title-case as features. The last three
features help identify the Rest tokens. Our 3-class
classifier is a fully connected neural network with
2 hidden layers using ReLU activation. On 5-
fold cross validation, our model achieves an av-
erage F1 score of 0.934 and an average accuracy
of 0.961 across the three classes. This is a slight
improvement over the model proposed by Sharma
et al. (2016), which had an accuracy of 0.938 on
the same dataset (as reported by reported by Sak-
shi Gupta and Radhika (2016)).

4 Named Entity Recognition

Named entity recognition typically comprises of
two components, (i) entity segmentation and (ii)
entity classification. Both these components can
either be modeled separately as done by Ritter
et al. (2011), or they can be combined and tackled
together like the model proposed by Finkel et al.
(2005). We adopt the latter approach, modeling
both components together as a sequence labeling
task. Our hypothesis is that named entities can
be identified using features extracted from words
surrounding it. We explore models using Con-
ditional Random Fields and LSTM RNNs using
handcrafted features described below.

4.1 Features

Our hand-crafted features are described below.

• Token based features : The current token
T , T after stripping all characters which are
not in the Roman alphabet (Tclean), and con-
verting all characters in Tclean to lowercase
(Tnorm) generates three different features.
We create Twordhsape by replacing all upper-
case letters in T with X , all lowercase let-
ters with x, all numerals with o and leave all
other characters as they are. For example,

Adam123 becomes Xxxxooo. We also use
token length TL as as feature.

• Affixes : Prefixes and suffixes of length 1 to
5 extracted from T , padded with whitespace
if needed. These help in identifying phrases
that are not entities. For example, an English
token ending in ing is highly unlikely to be a
named entity.

• Character based features : Binary fea-
tures indicating (i) whether T is title case,
(ii) whether T has an uppercase letter, (iii)
whether T has all uppercase characters, (iv)
whether T has a non-alphanumeric character
and (v) whether T is a hashtag. We also cal-
culate the fraction of characters in T which
are ASCII

• Language based features : The language
which T belongs to, as predicted by the
model proposed in section 3. For the LSTM
model, we also use PELM and PHLM generated
for T .

• Syntactic features : POS tag for T as pre-
dicted by the model trained by Owoputi et al.
(2013), POS tag and chunk tag for T and
as predicted by the shallow parser trained
by Sharma et al. (2016)

• Tweet capitalization features : From the
tweet that T belongs to, we extract (i) fraction
of characters that are uppercase, (ii) fraction
of characters that are lowercase, (iii) fraction
of tokens that are title case.6

4.2 Proposed Models

Our LSTM model (Figure 3) comprises of two
bidirectional RNN layers using LSTM cells and
ReLU activation. The input at the time step t is
Ft, i.e. the feature vector for the token at position t
in the tweet. Ft is generated by concatenating the
extracted features for the token at position t. T ,
Tclean, Tnorm, Twordhsape and affixes are passed
through embedding layers which are randomly ini-
tialized and learnt during the training phase. All
real-valued features are encoded into one-hot vec-
tors of length 10, using percentile binning.

The output (ht) of the second RNN layer at each
time step is passed to a separate fully connected

6Using the output of the T cap classifier trained by Ritter
et al reduces accuracy.
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Type Lample Ritter LSTM CRF N

PER 38.73 38.45 65.47 72.23 1644
LOC 38.35 46.84 67.53 72.50 744
ORG 16.99 13.54 50.94 70.35 375

All 33.77 36.88 64.64 72.06 2763

Table 2: Performance (F1 scores) of different mod-
els on segmentation and classification. N is the
total number of entities in the entire dataset. Re-
ported numbers are in percentages. Results of
CRF and LSTM are on 5-fold cross validation.

layer FCt. We take a softmax over the output of
FCt to predict the label (Lt) for the token at po-
sition t. While training, we use the Adagrad opti-
mizer and add a dropout of 0.5 after each layer.

Figure 3: LSTM NER architecture. The figure
shows one cell in each LSTM layer unrolled over
time

Our CRF model is the standard generalized
CRF proposed by Lafferty et al. (2001), which al-
lows a flow of information across the sequence in
both directions. We add L1 and L2 regularization
to prevent over-fitting, and do an extensive grid
search to come up with optimum values for these
constants.

5 Experiments and Results

5.1 Data collection and annotation
We randomly sampled 50,000 tweets from the
code mixed tweet dataset collected by (Patro et al.,
2017). On this set, we ran our language detection
algorithm and filtered tweets which had at least
five Hi tokens. The filtered data also had tweets
containing Roman tokens belonging to languages

other than English and Hindi (like transliterated
Telugu), such tweets were removed during the an-
notation process.

The final dataset comprised of 2079 tweets
(35,374 tokens). 13,860 (39.18 %) of the to-
kens were En, 11,391 (32.2 %) Hi and 10,123
(28.61 %) Rest. Each tweet was annotated at a
token level for three classical named entity types
Person, Location and Organisation, using the
IOB format. The annotation process was carried
out by three linguists proficient in both English
and Hindi. The final label was decided based
on majority vote and any instance (around 2%)
where all three annotators disagreed was resolved
through discussion. In all, the annotators identi-
fied 2763 entity phrases (3751 tokens) which in-
cluded 1,644 Person entities, 744 Location enti-
ties and 375 Organisation entities.

5.2 Baselines and Results

We compare our proposed models (LSTM and
CRF) with two baseline systems, (i) a state of the
art English NER model proposed by Lample et al.
(2016) and (ii) a state of the art NER model for
tweets proposed by Ritter et al. (2011). Named
Entities do not have belong to one particular lan-
guage though the same NE might have different
forms in different languages, such as Cologne in
English, is Kln in German. For the purpose of this
study, we do not assign NEs any language tags and
leave the detection and mapping of multiple NE
forms as future work.

The results are summarized in Table 2 (segmen-
tation) and Table 3 (segmentation and classifica-
tion). All metrics are calculated on a phrase level,
no partial credit is awarded. An incorrectly identi-
fied boundary is penalized as both, a false positive
and a false negative. For computing Table 2, we
generalize entity tags (B-PER, B-LOC, B-ORG
become B-ENT, I-PER, I-LOC, I-ORG become I-
ENT). As expected, both these systems fare poorly
on our data at both entity segmentation and entity
classification. We believe this is due to the high
number of out of vocabulary tokens (belonging to
Hindi) in the data.

6 Discussion

In this paper, we present a Named Entity Recog-
nition tool specifically targeting Hindi-English
code-mixed content. To build our NER model, we
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Model Precision Recall F1 score

Lample 36.55 46.59 40.97
Ritter 64.64 34.24 44.77
LSTM 74.45 64.87 69.33
CRF 84.95 69.91 76.70

Table 3: Performance of different models at entity
segmentation. All numbers are in percentages.

also present a unique semi-supervised language
identifier which exploits the character-level differ-
ences in languages. We validate the performance
of our NER against off-the-shelf NER for Twitter
and observe that our model outperforms them.

In future, we plan to explore building other
downstream NLP tools such as Semantic Role
Labeling or Entity-specific Sentiment Analyzers
which make use of NER for code-mixed data.
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Abstract

We present ongoing work on data-driven
parsing of German and French with Lexi-
calized Tree Adjoining Grammars. We use
a supertagging approach combined with
deep learning. We show the challenges
of extracting LTAG supertags from the
French Treebank, introduce the use of left-
and right-sister-adjunction, present a neu-
ral architecture for the supertagger, and
report experiments of n-best supertagging
for French and German.

1 Introduction

Lexicalized Tree Adjoining Grammar (LTAG;
Joshi and Schabes, 1997) is a linguistically mo-
tivated grammar formalism. Productions in an
LTAG support an extended domain of locality
(EDL). This allows them to express linguistic gen-
eralizations that are not captured by typical sta-
tistical parsers based on context-free grammars or
dependency parsing. Each derivation step is trig-
gered by a lexical element and a principled distinc-
tion is made between its arguments and modifiers,
which is reflected in richer derivations. This has
applications in the context of other tasks which can
make use of linguistically rich analyses, such as
frame semantic parsing or semantic role labeling
(Sarkar, 2007). On the other hand, the increased
expressiveness of LTAG makes efficient parsing
and statistical estimations more challenging.

Previous work (Bangalore and Joshi, 1999;
Sarkar, 2007) has shown that the task of parsing
with LTAGs can be facilitated through the inter-
mediate step of supertagging—a task of assign-
ing possible supertags (i.e. elementary trees) for
each word in a given sentence (Chen, 2010). Su-
pertagging has been referred to as “almost pars-

ing” (Bangalore and Joshi, 1999), since supertag-
ging performs a large part of the task of syntac-
tic disambiguation and increases the parsing effi-
ciency by lexicalizing syntactic decisions before
moving on to the more expensive polynomial pars-
ing algorithm (Sarkar, 2007).

Recently, several papers proposed neural ar-
chitectures for supertagging with Combinatory
Categorial Grammar (CCG; Lewis et al., 2016;
Vaswani et al., 2016) and LTAG (Kasai et al.,
2017). Supertagging with LTAG is more chal-
lenging than with CCG due to a higher num-
ber of supertags (counting on average 4000 dis-
tinct supertags for LTAGs). Also, almost half of
the LTAG supertags occur only once. Neverthe-
less, the reported neural supertagging approach for
LTAG (Kasai et al., 2017) reaches an accuracy of
88-90 % for English (compared to over 95 % for
CCG). In this paper we apply a similar recurrent
neural architecture to supertagging with LTAGs
based on Samih (2017) and Kasai et al. (2017) to
German and French data and compare against pre-
viously reported results. For the German data, we
compare our results to the LTAG supertaggers re-
ported in Bäcker and Harbusch (2002) and West-
burg (2016). To our knowledge, no results for
French supertagging based on LTAG or CCG have
been reported so far.

2 Neural Supertagging with LTAGs

2.1 Lexicalized Tree Adjoining Grammar

A Tree Adjoining Grammar (TAG; Joshi and Sch-
abes, 1997) is a linguistically and psychologically
motivated tree rewriting formalism (Sarkar, 2007).
A TAG consists of a finite set of elementary trees,
which can be combined to form larger trees via the
operations of substitution (replacing a leaf node
marked with ↓ with an initial tree) or adjunction
(replacing an internal node with an auxiliary tree).
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Figure 1: Supertagging with French LTAG for L’activité ne suffit pas (“The activity does not suffice”)

An auxiliary tree has a foot node (marked with ∗)
with the same label as the root node. When adjoin-
ing an auxiliary tree to some node n, the daughter
nodes of n become daughters of the foot node. A
sample TAG derivation is shown in Figure 2, in
which the elementary trees for Mary and pizza are
substituted to the subject and object slots of the
likes tree and the auxiliary tree for absolutely is
adjoined at the VP-node.

NP
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Figure 2: Elementary trees and a derived tree in
LTAG

In a lexicalized version of TAG (LTAG) every
tree is associated with a lexical item and repre-
sents the span over which this item can specify
its syntactic or semantic constraints (for exam-
ple, subject-verb number agreement or semantic
roles) capturing also long-distance dependencies
between the sentence tokens (Kipper et al., 2000).

2.2 RNN-based TAG supertagging

A supertagger is a partial parsing model which
is used to assign a sequence of LTAG elemen-
tary trees to the sequence of words in a sentence
(Sarkar, 2007). Supertagging can thus be seen as
preparation for further syntactic parsing which im-
proves the efficiency of the TAG parser through
reducing syntactic lexical ambiguity and sentence
complexity. Figure 1 provides an example of su-
pertagging with an LTAG for French.

Several techniques were proposed for supertag-
ging over the years, among which are HMM-
based (Bäcker and Harbusch, 2002), n-gram-based
(Chen et al., 2002), and Lightweight Dependency
Analysis models (Srinivas, 2000). Recent ad-

vances show the applicability of recurrent neural
networks (RNNs) for supertagging (Lewis et al.,
2016; Vaswani et al., 2016; Kasai et al., 2017).

RNN-based supertagging with LTAGs can be
seen as a standard sequence labeling task, albeit
with a large set of labels (i.e., several thousand
classes as supertags). Our deep learning pipeline
is shown in Figure 3. A similar architecture
showed good results for POS tagging across many
languages (Plank et al., 2016).

Figure 3: Supertagging architecture based on
Samih (2017); dimensions shown in parentheses.

We use two kinds of embeddings: pre-trained
word embeddings from the Sketch Engine collec-
tion of language models (Jakubíček et al., 2013;
Bojanowski et al., 2016), and character embed-
dings based on the training set data. The pre-
trained word embeddings encode distributional in-
formation from large corpora. The advantage of
the character embeddings is that they can addition-
ally encode subtoken information such as morpho-
logical features and help in dealing with unseen
words, without doing any feature engineering on
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Parameters French German, reduced set German, full set English
(this work) (Kaeshammer, 2012) (Kaeshammer, 2012) (Kasai et al., 2017)

Supertags 5145 2516 3426 4727
Supertags occur. once 2693 1123 1562 2165
POS tags 13 53 53 36
Sentences 21550 28879 50000 44168
Avg. sentence length 31.34 17.51 17.71 appr. 20
Accuracy 78.54 85.91 88.51 89.32

Table 1: Supertagging experiments

morphological features.
The embeddings go through a recurrent layer to

capture the influence of tokens in the preceding
and subsequent context for each token. For the
recurrent layer we use either bidirectional Long
Short Term Memory (LSTM) or Gated Recurrent
Units (GRU). We use a Convolutional Neural Net-
work (CNN) layer for character embeddings, since
it was proved to be one of the best options for ex-
tracting morphological information from word to-
kens (Ma and Hovy, 2016). The results for the
word and character models are concatenated and
fed through a softmax layer that gives a probability
distribution for possible supertags. Dropout lay-
ers are added to counter overfitting. We replaced
words without an entry in the word embeddings
with a randomly instantiated vector of the same
dimension (100). Table 2 provides an overview of
the hyper-parameters we used for the supertagger
architecture.

Layer Hyper-parameters Value

Characters CNN numb. of filters 40
state size 400

Bi-GRU state size 400
initial state 0.0

Words embedding vector dim. 100
window size 5

Char. embedding dimension 50

batch size 128

Dropout dropout rate 0.5

Table 2: Hyper-parameters of the supertagger.

3 LTAG induction from the French
Treebank

Inducing a grammar from a treebank entails iden-
tifying a set of productions that could have pro-
duced its parse trees. In the case of LTAG this
means decomposing the trees into a sequence of
elementary trees, one for each word in the sen-
tence.

In order to extract a TAG from the French Tree-
bank (FTB; Abeillé et al., 2003), we applied the
heuristic procedure described by Xia (1999). The
main idea of this approach is to consider the trees
in the treebank as derived trees from an LTAG. El-
ementary trees are extracted in top-down fashion
using percolation tables to identify grammatically
obligatory elements (i.e., complements), gram-
matically optional elements (i.e., modifiers), as
well as a head child for each constituent. All
sub-trees corresponding to modifiers and comple-
ments are extracted in a further step forming aux-
iliary trees and initial trees, respectively, while the
head child and its lexical anchor are kept in the
tree. When extracted in this way, elementary trees
contain the corresponding lexical anchor and the
branches represent a particular syntactic context of
a construction with slots for its complements.

3.1 LTAG induction: pre-processing steps
Before induction of different LTAGs for French,
we carried out pre-processing steps described in
Candito et al. (2010) and Crabbé and Candito
(2008) including extension of the original POS
tag set in FTB from 13 to 26 POS tags and un-
doing multi-word expressions (MWEs) with reg-
ular syntactic patterns (e.g. (MWN (A ancien) (N
élève))→ (NP (AP (A ancien)) (N élève))). About
14 % of the word tokens (79,466 out of the total
of 557,095 tokens) in FTB belong to flat MWEs.
After rewriting compounds with regular syntactic
patterns, the number of MWEs is reduced to ap-
proximately 5 %.

We also restructured some trees in order to bring
the complements on a higher level in the tree.
In particular, we shifted the initial prepositional
phrase of the VPinf constituents to a higher level
and raised the subordinating conjunction (C-S) of
the final clause constituents (Ssub) (see Figure 4).

After the preprocessing we extracted the fol-
lowing LTAGs from FTB for our supertagging ex-
periments: including 13 or 26 POS tags, with
and without compounds, including and excluding
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Gold supertag Predicted supertag Example

(PP (APPR < >)(NP↓ )) (PP* (APPR < >)(NP↓ )) zu einem Eigenheim zu verhelfen
(NP (DP↓ )(NN < >)) (NP (NN < >)) das heutige und künftige Kreditvolumen

(S (S* )($, < >)(S↓ )) ($,* < >)
S

S $, S

(S (NP↓ )(VVFIN < >)(NP↓ )(PTKVZ↓ )) (S (NP↓ )(VVFIN < >)(NP↓ )) der Umsatzminus geht auf 125 Millionen [...] zurück

Table 3: Most common error classes for German TAG supertagging with TiGer treebank
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activity

D

l’
the

VN

V

repartir
restart

V

faire
make

P

à
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Figure 4: FTB preprocessing: complement raising

punctuation marks. Table 1 provides some statis-
tics on the extracted LTAG which led to the most
accurate supertagging results (13 POS tags, with-
out compounds, including punctuation marks).

3.2 Left- and right-sister-adjunction
Extraction of an LTAG from FTB is challenging
due to the flat structure of the trees, which al-
lows any combination of arguments and modi-
fiers. In order to preserve the original flat struc-
tures in the FTB as far as possible and to facilitate
the extraction of the elementary trees we decided
against the traditional notion of adjunction in TAG
which relies on nested structures and apply sister-
adjunction; i.e., the root of a sister-adjoining tree
can be attached as a daughter of any node of an-
other tree with the same node label.
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Figure 5: Left-sister-adjunction

Since a modifier can appear on the right or on

the left side relative to the position of the con-
stituent head, we distinguish between right- and
left-sister-adjoining trees (marked with * on the
left or the right side of the root label as shown in
Figure 5).

A left-sister-adjoining tree γ can only be ad-
joined to a node η in the tree τ if the root label
of γ is the same as the label of η and the anchor of
the elementary tree τ comes in the sentence before
the anchor of γ. The children of γ are inserted on
the right side of the children in η and become the
children of η. A right-sister-adjunction is defined
in a similar way.

The resulting LTAGs with sister-adjunction are
basically LTIGs (Lexicalized Tree Insertion Gram-
mar; Schabes and Waters, 1995) in the way that
the auxiliary trees do not allow wrapping adjunc-
tion or adjunction on the root node but permit mul-
tiple simultaneous adjunction on a single node of
initial trees. However, since LTIG is a special vari-
ant of LTAG, we refer to the extracted grammar as
LTAG in the remainder of the paper.

4 Experiments and error analysis

4.1 Experimental setups for German and
French

In order to compare the performance of our su-
pertagger with previous work of Kasai et al.
(2017) and LTAG-based supertaggers for German
(Bäcker and Harbusch, 2002; Westburg, 2016), we
experimented with the supertags extracted by Kae-
shammer (2012) from the German TiGer treebank
(Brants et al., 2004). The set of supertags for Ger-
man has the following train, test, and dev. split:
39,925, 5035, and 5040 sentences. We ran a su-
pertagging experiment with this number of sen-
tences, since it is compatible with the experimen-
tal setup described in Kasai et al. (2017). Since
the number of sentences in FTB is smaller than in
TiGer, we created a sample of the train set of the
TiGer treebank with a comparable number of sen-
tences in the train set (18,809). For the supertag-
ging experiments with the French LTAG, we di-
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vided FTB in the standard train, development and
test sets (19,080, 1235, and 1235 sentences), mak-
ing our test and dev. sets comparable to the dev.
and test set reported in Candito et al. (2009).

Tables 3 and 5 show the most frequent erro-
neous supertags for German and French. The sym-
bol < > in the supertags signifies the spot for the
lexical anchor, while * marks the foot node of aux-
iliary trees and ↓ represents a substitution site.

4.2 German TAG supertagging with TiGer

Generally, results for supertagging with German
LTAGs appear to be slightly lower than for En-
glish. Westburg (2016) reports an accuracy of
82.92 % for German TAG with a supertagger
based on perceptron training algorithm, while
Bäcker and Harbusch (2002) reached 78.3 % with
a HMM-based TAG supertagger.

Supertagging for German is more challenging
than for English due to a higher number of word
order variations and the resulting sparseness of
the data (Bäcker and Harbusch, 2002). However,
our experiments show that the proposed neural
supertagging architecture reaches the best perfor-
mance among the previously described supertag-
gers for German (88.51 %) and gets comparable
results to the supertagging model for English de-
scribed in Kasai et al. (2017) (see Tables 1 and 4).

System Accuracy

Bäcker and Harbusch (2002) (HMM-based) 78.3
Westburg (2016) 82.92

This work, full training set (Bi-LSTM) 87.67
This work, full training set (GRU) 88.51
This work, reduced training set (Bi-LSTM) 85.26
This work, reduced training set (GRU) 85.91

Table 4: Supertagging experiments with German
TiGer treebank.

The biggest class of errors for German supertag-
ging contains wrong predictions concerning the
type of the elementary tree (e.g. the supertagger
predicts an auxiliary tree instead of an initial tree
or vice versa). The main reason for this kind of
error is the particularity of German which allows
dependent elements in a sentence being divided by
a big number of other tokens. For example, a de-
terminer and the determined word or the separa-
ble verb prefix and the verb stem can be separated
by a dozen other tokens, as in the sentence Der
Umsatzminus geht auf 125 Millionen [..] zurück
(Engl. “The sales drop goes down to 125 mil-
lions”), the verb geht and its prefix zurück are sep-

arated by 11 tokens (see Table 3).
Since the window size of tokens presented to

the supertagger is limited, the connection between
the tokens can be overlooked by the supertag-
ger. However, increasing the window size leads
to greater noise in the data. We experimented with
window sizes of 5, 9, and 13 for German and got
the best results with a window size of 5 (two words
before and after the token).

Another source of mistakes for German is the
intersentential punctuation in large complex sen-
tences containing several subordinated clauses.
This error can also be explained by the window
size of tokens presented to the supertagger—the
supertagger does not capture the complex struc-
ture of the sentence and classifies the punctuation
mark as a one-child auxiliary tree (see Table 3).

Another big class of errors comes from PPs
which can be either optional (modifiers) or oblig-
atory elements. For example, the supertagger did
not recognize that the verb verhelfen (Engl. “to
help”) requires a prepositional phrase as an argu-
ment (e.g. zu einem Eigenheim zu verhelfen; Engl.
“to help someone to buy a property”) and erro-
neously classified this complement as a modifier
PP.

4.3 French TAG supertagging with FTB

Supertagging with French LTAGs appears to be
more challenging compared to German or English.
There are several general reasons for the perfor-
mance drop of the supertagger, one of which is a
higher average sentence length in FTB (31.34 to-
kens per sentence, compared to 17.51 in TiGer).
Sentences in FTB more frequently have a complex
syntactic structure including explicative elements
separated with brackets or commas.

The large number of supertags lead to higher
data sparsity and make the sequence labeling prob-
lem more difficult for the supertagger. One ex-
planation for the larger number of supertags, be-
sides the longer and more complex sentence struc-
tures in FTB, is the large number of flat multi-
word expressions in FTB. Our experiments show
that rewriting MWEs with regular compounds im-
proves the supertagging performance.

A large number of supertagging errors for
French occur due to different sites of attachment of
the intersentential punctuation marks in FTB. The
punctuation marks in FTB are attached to the cor-
responding constituents and not consistently to the
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Gold supertag Predicted supertag Example

(NP* (PP (P <>) (NP↓ ))) (PP (P <>) (NP↓ )) 32 % par an
(NP* (PONCT < >)) (SENT* (PONCT <>)) -LRB- 66,7 % -RRB-

(NP* (N < >)) (N < >) Mme Dominique Alduy
(ROOT (SENT (NP↓ ) (VN (V < >)))) (VN (V < >)) le droit est officiellement transgressé

Table 5: Most common error classes for LTAG supertagging with French Treebank

System Accuracy

This work (GRU), 13 POS, undone comp. 78.54
This work (GRU), 13 POS, no punct. marks 74.44
This work (GRU), 13 POS, with compounds 76.78
This work (GRU), 26 POS, with compounds 74.84
This work (Bi-LSTM), 13 POS, undone comp. 77.67

Table 6: Supertagging experiments with French
Treebank (FTB).

root node of the whole sentence. However, since
punctuation marks also help to identify possible
constituents, omitting them does not improve su-
pertagging.

Similar to supertagging with German LTAGs,
PP attachments are also a major source of errors
with French LTAGs. In addition to difficulties
with classifying PPs as modifiers or complements
(as with German data), the supertagger for French
more frequently encounters problems with iden-
tifying the correct site for attaching the PPs to a
node in the syntactic tree. The reason for these er-
rors could be that FTB—in comparison to TiGer—
does not offer additional function marks to distin-
guish PPs as modifiers from prepositional comple-
ments of the support verbs.

4.4 N-best supertagging experiments
The softmax layer of the supertagging model we
described in section 2.2 provides a distribution
of probabilities of the supertags when classifying
words in a sentence, and we used this distribu-
tion to enable our supertagger to predict n-best su-
pertags.

n-best
Accuracy
German
(full set)

Accuracy
German
(red. set)

Accuracy
French

1-best 88.51 85.91 78.54
2-best 94.37 93.04 87.34
3-best 96.08 95.00 90.85
5-best 97.45 96.66 94.38
7-best 98.03 97.40 96.00
10-best 98.52 97.97 97.08

Table 7: N-best supertagging experiments.

We experimented with different numbers of n-
best supertags for every word, counting the num-
ber of accurately predicted supertags each time

when at least one of the n-best supertags was pre-
dicted correctly. The experiments show a quick
growth in accuracy prediction up to 5-best su-
pertags, while for ranks n > 5 the improvement
of accuracy is not as big (see Table 7).

5 Conclusion and Future Work

We proposed a neural architecture for supertag-
ging with TAG for German and French and carried
out experiments to measure the performance of the
supertagging model for these languages. We in-
duced several different LTAGs from FTB in order
to compare the supertagging performance. The re-
sults with German LTAG show that the neural su-
pertagging model achieves comparable results to
the state-of-the art TAG supertagging model de-
scribed in Kasai et al. (2017) for English, even
though German is more difficult for supertagging
due to the free word order and the data sparseness.
Supertagging for French appears to be more diffi-
cult due to the larger average length of sentences
and a big number of multiword expressions.

In future work we plan to increase performance
of the supertagger for French by dividing the su-
pertagging algorithm in two steps: factorization of
the extracted supertags in tree families and decid-
ing afterwards on the correct supertag within the
predicted tree family. We plan to use the improved
supertagger for graph-based parsing. In particu-
lar, we aim at adapting the A*-based PARTAGE

parser for LTAGs developed by Waszczuk (2017)
for parsing with extracted supertags. We also in-
tend to add deep syntactic features and informa-
tion on semantic roles to the supertags in order to
test whether the proposed supertagging architec-
ture can be used for semantic role labeling.
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Abstract

In this paper we incorporate semantic su-
persensetags and syntactic supertag fea-
tures into EN–FR and EN–DE factored
NMT systems. In experiments on vari-
ous test sets, we observe that such features
(and particularly when combined) help the
NMT model training to converge faster
and improve the model quality according
to the BLEU scores.

1 Introduction

Neural Machine Translation (NMT) models have
recently become the state-of-the art in the field of
Machine Translation (Bahdanau et al., 2014; Cho
et al., 2014; Kalchbrenner et al., 2014; Sutskever
et al., 2014). Compared to Statistical Machine
Translation (SMT), the previous state-of-the-art,
NMT performs particularly well when it comes to
word-reorderings and translations involving mor-
phologically rich languages (Bentivogli et al.,
2016). Although NMT seems to partially ‘learn’
or generalize some patterns related to syntax from
the raw, sentence-aligned parallel data, more com-
plex phenomena (e.g. prepositional-phrase at-
tachment) remain problematic (Bentivogli et al.,
2016). More recent work showed that explic-
itly (Sennrich and Haddow, 2016; Nadejde et al.,
2017; Bastings et al., 2017; Aharoni and Goldberg,
2017) or implicitly (Eriguchi et al., 2017) model-
ing extra syntactic information into an NMT sys-
tem on the source (and/or target) side could lead
to improvements in translation quality.

When integrating linguistic information into an
MT system, following the central role assigned
to syntax by many linguists, the focus has been
mainly on the integration of syntactic features. Al-
though there has been some work on semantic fea-
tures for SMT (Banchs and Costa-Jussà, 2011), so

far, no work has been done on enriching NMT sys-
tems with more general semantic features at the
word-level. This might be explained by the fact
that NMT models already have means of learning
semantic similarities through word-embeddings,
where words are represented in a common vector
space (Mikolov et al., 2013). However, making
some level of semantics more explicitly available
at the word level can provide the translation sys-
tem with a higher level of abstraction beneficial to
learn more complex constructions. Furthermore,
a combination of both syntactic and semantic fea-
tures would provide the NMT system with a way
of learning semantico-syntactic patterns.

To apply semantic abstractions at the word-level
that enable a characterisation beyond that what can
be superficially derived, coarse-grained semantic
classes can be used. Inspired by Named Entity
Recognition which provides such abstractions for
a limited set of words, supersense-tagging uses
an inventory of more general semantic classes
for domain-independent settings (Schneider and
Smith, 2015). We investigate the effect of inte-
grating supersense features (26 for nouns, 15 for
verbs) into an NMT system. To obtain these fea-
tures, we used the AMALGrAM 2.0 tool (Schnei-
der et al., 2014; Schneider and Smith, 2015) which
analyses the input sentence for Multi-Word Ex-
pressions as well as noun and verb supersenses.
The features are integrated using the framework
of Sennrich et al. (2016), replicating the tags for
every subword unit obtained by byte-pair encod-
ing (BPE). We further experiment with a combi-
nation of semantic supersenses and syntactic su-
pertag features (CCG syntactic categories (Steed-
man, 2000) using EasySRL (Lewis et al., 2015))
and less complex features such as POS-tags, as-
suming that supersense-tags have the potential to
be useful especially in combination with syntactic
information.
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The remainder of this paper is structured as fol-
lows: First, in Section 2, the related work is dis-
cussed. Next, Section 3 presents the semantic and
syntactic features used. The experimental set-up
is described in Section 4 followed by the results in
Section 5. Finally, We conclude and present some
of the ideas for future work in Section 6.

2 Related Work

In SMT, various linguistic features such as
stems (Toutanova et al., 2008) lemmas (Mareček
et al., 2011; Fraser et al., 2012), POS-
tags (Avramidis and Koehn, 2008), dependency
labels (Avramidis and Koehn, 2008) and su-
pertags (Hassan et al., 2007; Haque et al., 2009)
are integrated using pre- or post-processing
techniques often involving factored phrase-based
models (Koehn and Hoang, 2007). Compared to
factored NMT models, factored SMT models have
some disadvantages: (a) adding factors increases
the sparsity of the models, (b) the n-grams limit
the size of context that is taken into account, and
(c) features are assumed to be independent of each
other. However, adding syntactic features to SMT
systems led to improvements with respect to word
order and morphological agreement (Williams
and Koehn, 2012; Sennrich, 2015).

One of the main strengths of NMT is its strong
ability to generalize. The integration of linguis-
tic features can be handled in a flexible way with-
out creating sparsity issues or limiting context in-
formation (within the same sentence). Further-
more, the encoder and attention layers can be
shared between features. By representing the en-
coder input as a combination of features (Alexan-
drescu and Kirchhoff, 2006), Sennrich and Had-
dow (2016) generalized the embedding layer in
such a way that an arbitrary number of linguistic
features can be explicitly integrated. They then in-
vestigated whether features such as lemmas, sub-
word tags, morphological features, POS tags and
dependency labels could be useful for NMT sys-
tems or whether their inclusion is redundant.

Similarly, on the syntax level, Shi et al. (2016)
show that although NMT systems are able to par-
tially learn syntactic information, more complex
patterns remain problematic. Furthermore, some-
times information is present in the encoding vec-
tors but is lost during the decoding phase (Van-
massenhove et al., 2017). Sennrich and Haddow
(2016) show that the inclusion of linguistic fea-

tures leads to improvements over the NMT base-
line for EN–DE (0.6 BLEU), DE–EN (1.5 BLEU)
and EN–RO (1.0 BLEU). When evaluating the
gains from the features individually, it results that
the gain from different features is not fully cumu-
lative. Nadejde et al. (2017) extend their work by
including CCG supertags as explicit features in a
factored NMT systems. Moreover, they experi-
ment with serializing and multitasking and show
that tightly coupling the words with their syntac-
tic features leads to improvements in translation
quality (measured by BLEU) while a multitask ap-
proach (where the NMT predicts CCG supertags
and words independently) does not perform bet-
ter than the baseline system. A similar observa-
tion was made by Li et al (2017), who incorporate
the linearized parse trees of the source sentences
into ZH–EN NMT systems. They propose three
different sorts of encoders: (a) a parallel RNN,
(b) a hierarchical RNN, and (c) a mixed RNN.
Like Nadejde et al. (2017), Li et al (2017) observe
that the mixed RNN (the simplest RNN encoder),
where words and label annotation vectors are sim-
ply stitched together in the input sequences, yields
the best performance with a significant improve-
ment (1.4 BLEU). Similarly, Eriguchi et al. (2016)
integrated syntactic information in the form of lin-
earized parse trees by using an encoder that com-
putes vector representations for each phrase in
the source tree. They focus on source-side syn-
tactic information based on Head-Driven Phrase
Structure Grammar (Sag et al., 1999) where target
words are aligned not only with the correspond-
ing source words but with the entire source phrase.
Wu et al. (2017) focus on incorporating source-
side long distance dependencies by enriching each
source state with global dependency structure.

To the best of our knowledge, there has not
been any work on explicitly integrating semantic
information in NMT. Similarly to syntactic fea-
tures, we hypothesize that semantic features in the
form of semantic ‘classes’ can be beneficial for
NMT providing it with an extra ability to general-
ize and thus better learn more complex semantico-
syntactic patters.

3 Semantics and Syntax in NMT

3.1 Supersense Tags

The novelty of our work is the integration of ex-
plicit semantic features supersenses into an NMT
system. Supersenses are a term which refers to
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the top-level hypernyms in the WordNet (Miller,
1995) taxonomy, sometimes also referred to as se-
mantic fields (Schneider and Smith, 2015). The
supersenses cover all nouns and verbs with a total
of 41 supersense categories, 26 for nouns and 15
for verbs. To obtain the supersense tags we used
the AMALGrAM (A Machine Analyzer of Lexical
Groupings and Meanings) 2.0 tool 1 which in ad-
dition to the noun and verb supersenses analyzes
English input sentences for MWEs. An exam-
ple of a sentence annotated with the AMALGrAM
tool is given in (1):2

(1)
(a) “He seemed to have little faith in our democratic

structures, suggesting that various articles could be
misused by governments.”

(b) “He seemed|cognition to have|stative lit-
tle faith|COGNITION in our democratic
structures|ARTIFACT , suggesting|communication
that various articles|COMMUNICATION could
be|‘a misused|social by governments|GROUP .”

As can be noted in (1), some supersenses, such
as cognition exist for both nouns and verbs. How-
ever, the supersense tags for verbs are always low-
ercased while the ones for nouns are capitalized.
This way, the supersenses also provide syntactic
information useful for disambiguation as in (2),
where the word work is correctly tagged as a noun
(with its capitalized supersense tag ACT) in the
first part of the sentence and as a verb (with the
lowercased supersense tag social). Furthermore,
there is a separate tag to distinguish auxiliary verbs
from main verbs.

(2)
(a) “In the course of my work on the opinion, I in fact

became aware of quite a number of problems and
difficulties for EU citizens who live and work in
Switzerland”

(b) “In the course|EVENT of my work|ACT
on the opinion|COGNITION , I
in fact became|stative aware of quite
a number of problems|COGNITION and
difficulties|COGNITION for EU citizens|GROUP
who live|social and work|social in
Switzerland|LOCATION .”

Since MWEs and supersenses naturally comple-
ment each other, Schneider and Smith (2015) in-
tegrated the MWE identification task (Schneider
et al., 2014) with the supersense tagging task of
Ciaramita and Altun (2006). In Example (2), the

1https://github.com/nschneid/
pysupersensetagger

2All the examples are extracted from our data used later
on to train the NMT systems

MWEs in fact, a number of and EU citizens are
retrieved by the tagger.

We add this semantico-syntactic information in
the source as an extra feature in the embedding
layer following the approach of Sennrich and Had-
dow (2016), who extended the model of Bahdanau
et al. (2014). A separate embedding is learned
for every source-side feature provided (the word
itself, POS-tag, supersense tag etc.). These em-
bedding vectors are then concatenated into one
embedding vector and used in the model instead
of the simple word embedding one (Sennrich and
Haddow, 2016).

To reduce the number of out-of-vocabulary
(OOV) words, we follow the approach of Sennrich
et al. (2016) using a variant of BPE for word seg-
mentation capable of encoding open vocabularies
with a compact symbol vocabulary of variable-
length subword units. For each word that is split
into subword units, we copy the features of the
word in question to its subword units. In (3), we
give an example with the word ‘stormtroopers’
that is tagged with the supersense tag ‘GROUP’.
It is split into 5 subword units so the supersense
tag feature is copied to all its five subword units.
Furthermore, we add a none tag to all words that
did not receive a supersense tag.

(3)
Input: “the stormtroopers”
SST: “the stormtroopers|GROUP”
BPE: “the stor@@ m@@ tro@@ op@@ ers”
Output: “the|none stor@@|GROUP ...

op@@|GROUP ers|GROUP”

For the MWEs we decided to copy the super-
sense tag to all the words of the MWE (if provided
by the tagger), as in (4). If the MWE did not re-
ceive a particular tag, we added the tag mwe to all
its components, as in example (5)

(4)
Input: “EU citizens”
SST: “EU citizens|GROUP”

Output: “EU|GROUP citizens|GROUP”

(5)
Input: “a number of”
SST: “a number of”

Output: “a|mwe number|mwe of|mwe ”

3.2 Supertags and POS-tags

We hypothesize that more general semantic infor-
mation can be particularly useful for NMT in com-
bination with more detailed syntactic information.
To support our hypothesis we also experimented

69



with syntactic features (separately and in com-
bination with the semantic ones): POS tags and
CCG supertags.

The POS tags are generated by the Stanford
POS-tagger (Toutanova et al., 2003); for the su-
pertags we used the EasySRL tool (Lewis et al.,
2015) which annotates words with CCG tags.
CCG tags provide global syntactic information on
the lexical level. This kind of information can
help resolve ambiguity in terms of prepositional
attachment, among others. An example of a CCG-
tagged sentence is given in (6):

(6)
It|NP is|(S[dcl]\NP)/NP a|NP/N modern|N/N form|N/PP

of|PP/NP colonialism|N .|.

4 Experimental Set-Up

4.1 Data sets

Our NMT systems are trained on 1M parallel sen-
tences of the Europarl corpus for EN–FR and EN–
DE (Koehn, 2005). We test the systems on 5K sen-
tences (different from the training data) extracted
from Europarl and the newstest2013. Two differ-
ent test sets are used in order to show how ad-
ditional semantic and syntactic features can help
the NMT system translate different types of test
sets and thus evaluate the general effect of our im-
provement.

4.2 Description of the NMT system

We used the nematus toolkit (Sennrich et al.,
2017) to train encoder-decoder NMT models with
the following parameters: vocabulary size: 35000,
maximum sentence length: 60, vector dimension:
1024, word embedding layer: 700, learning op-
timizer: adadelta. We keep the embedding
layer fixed to 700 for all models in order to en-
sure that the improvements are not simply due to
an increase of the parameters in the embedding
layer. In order to by-pass the OOV problem and
reduce the number of dictionary entries we use
word-segmentation with BPE (Sennrich, 2015).
We ran the BPE algorithm with 89, 500 operations.
We trained all our BPE-ed NMT systems with
CCG tag features, supersensetags (SST), POS tags
and the combination of syntactic features (POS or
CCG) with the semantic ones (SST). All systems
are trained for 150,000 iterations and evaluated af-
ter every 10,000 iterations.

5 Results

5.1 English–French

For both test sets, the NMT system with super-
senses (SST) converges faster than the baseline
(BPE) NMT system. As we hypothesized, the ben-
efits of the features added, was more clear on the
newstest2013 than on the Europarl test set. Fig-
ure 1 compares the BPE-ed baseline system (BPE)
with the supertag-supersensetag system (CCG–
SST) automatically evaluated on the newstest2013
(in terms of BLEU (Papineni et al., 2002)) over all
150,000 iterations. From the graph, it can also be
observed that the system has a more robust, con-
sistent learning curve.
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Figure 1: Baseline (BPE) vs Combined (SST–CCG) NMT
Systems for EN–FR, evaluated on the newstest2013.

To see in more detail how our semantically en-
riched SST system compares to an NMT system
with syntactic CCG supertags and how a system
that integrates both semantic features and syntac-
tic features (SST–CCG) performs, a more detailed
graph is provided in Figure 2 where we zoom in
on later stages of the learning process. Although
Sennrich and Haddow (2016) observe that features
are not necessarily cumulative (possibly since the
information from the syntactic features partially
overlapped), the system enriched with both se-
mantic and syntactic features outperforms the two
separate systems as well as the baseline system.
The best CCG-SST model (23.21 BLEU) out-
performs the best BPE-ed baseline model (22.54
BLEU) with 0.67 BLEU (see Table 1). More-
over, the benefit of syntactic and semantic fea-
tures seems to be more than cumulative at some
points, confirming the idea that providing both in-
formation sources can help the NMT system learn
semantico-syntactic patterns. This supports our
hypothesis that semantic and syntactic features are
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particularly useful when combined.
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Figure 2: Baseline (BPE) vs Syntactic (CCG) vs Semantic
(SST) and Combined (SST–CCG) NMT Systems for EN–FR,
evaluated on the newstest2013.

BLEU BPE CCG SST SST–CCG
Best Model 22.54 23.03 22.86 23.21

Table 1: Best BLEU scores for Baseline (BPE), Syntac-
tic (CCG), Semantic (SST) and Combined (SST–CCG) NMT
systems for EN-FR evaluated on the newstest2013

5.2 English–German
The results for the EN–DE system are very similar
to the EN–FR system: the model converges faster
and we observe the same trends with respect to the
BLEU scores of the different systems. Figure 3
compares the BPE-ed baseline system (BPE) with
the NMT system enriched with SST and CCG tags
(SST–CCG). In the last iterations, see Figure 4,
we see how the two systems enriched with super-
sense tags and CCG tags lead to small improve-
ments over the baseline. However, their combi-
nation (SST–CCG) leads to a more robust NMT
system with a higher BLEU (see Table 2).
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Figure 3: Baseline (BPE) vs Combined (CCG–SST) NMT
Systems for English–German, evaluated on the Europarl test
set.
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Figure 4: Baseline (BPE) vs Syntactic (CCG) vs Seman-
tic (SST) and Combined (CCG–SST) NMT Systems for EN–
DE, evaluated on the Europarl test set.

BLEU BPE CCG SST SST–CCG
Best Model 22.32 22.47 22.51 22.85

Table 2: Best BLEU scores for Baseline (BPE), Syntac-
tic (CCG), Semantic (SST) and Combined (SST–CCG) NMT
systems for EN-DE evaluated on the Europarl test set.

6 Conclusions and Future Work

In this work we experimented with EN–FR and
EN–DE data augmented with semantic and syn-
tactic features. For both language pairs we observe
that adding extra semantic and/or syntactic fea-
tures leads to faster convergence. Furthermore, the
benefit of the additional features is more clear on a
dissimilar test set which is in accordance with our
original hypothesis stating that semantic and syn-
tactic features (and their combination) can be ben-
eficial for generalization. In the future, we would
like to perform manual evaluations on the outputs
of our systems to see whether they correlate with
the BLEU scores. In the next step, we will let the
models converge, create the ensemble models for
the different systems and compute whether the in-
crease in BLEU score is significant. Furthermore,
we would like to experiment with larger datasets to
verify whether the positive effect of the linguistic
features remains.
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Abstract

Automatic abstractive summary genera-
tion remains a significant open problem
for natural language processing. In this
work, we develop a novel pipeline for Se-
mantic Abstractive Summarization (SAS).
SAS, as introduced by Liu et al. (2015)
first generates an AMR graph of an input
story, through which it extracts a summary
graph and finally, creates summary sen-
tences from this summary graph. Com-
pared to earlier approaches, we develop
a more comprehensive method to gener-
ate the story AMR graph using state-of-
the-art co-reference resolution and Meta
Nodes. Which we then use in a novel
unsupervised algorithm based on how hu-
mans summarize a piece of text to ex-
tract the summary sub-graph. Our algo-
rithm outperforms the state of the art SAS
method by 1.7% F1 score in node predic-
tion.

1 Introduction

Summarization of large texts is still an open prob-
lem in natural language processing. Automatic
summarization is often used in summarizing large
texts like stories, journal papers, news articles and
even larger texts like books and court judgments.

Existing methods for summarization can be
broadly categorized into two categories Extrac-
tive and Abstractive. Most of the work done
on summarization in the past has been Extractive
Dang and Owczarzak (2008). Extractive meth-
ods directly pick up words and sentences from the
text to generate a summary. Vanderwende et al.
(2004) transformed the input to nodes, then used

’@cse.iitk.ac.in, ”@microsoft.com, Shibhansh is the
corresponding author

the Pagerank algorithm to score nodes, and finally
grow the nodes from high-value to low-value us-
ing some heuristics. Some of the approaches com-
bine this with sentence compression so that more
sentences can be packed in the summary. McDon-
ald (2007), Martins and Smith (2009), Almeida
and Martins (2013), and Gillick and Favre (2009)
among others used ILPs and approximations for
encoding compression and extraction. However,
human level summary generation require rephras-
ing sentences and combining information from
different parts of the text. Thus, these methods
are inherently limited in the sense that they can
never generate human level summaries for large
and complicated documents.

On the other hand, most Abstractive methods
take advantages of the recent developments in
deep learning. Specifically, the recent success of
the sequence to sequence Sutskever et al. (2014)
learning models, where recurrent networks read
the text; encodes it and then generate target text
produce promising results. Rush et al. (2015),
Chopra et al. (2016), Nallapati et al. (2016),
See et al. (2017) used standard encoder-decoder
models along with their variants to generate sum-
maries. Takase et al. (2016) incorporated the
AMR information in the standard encoder-decoder
models to improve results. These approaches have
produced promising results and have been recently
shown to be competitive with the extractive meth-
ods, but they are still far from reaching human
level quality in summary generation. One of the
significant problems with these methods is that
there is no guarantee that they can handle sub-
tleties of language like the presence of a word that
negates the meaning of the full text, hard to cap-
ture co-references, etc.

Banarescu et al. (2013) introduced AMR as a
base for work on statistical natural language un-
derstanding and generation. AMR tries to cap-
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ture “who is doing what to whom“ in a sentence.
An AMR represents the meaning of a sentence us-
ing rooted, acyclic, labeled, directed graphs. Fig-
ure 2 shows the AMR graph of the sentence “I
looked carefully all around me“ generated by the
JAMR parser Flanigan et al. (2014). The nodes
in the AMR are labeled with concepts, in Figure 2
‘around’ represents one such concept. Edges con-
tain the information regarding the semantic rela-
tion between the concepts. In Figure 2 direction
is the relation between the concepts look-01 and
around. AMR relies on Propbank for semantic re-
lations (edge labels). Concepts can also be of the
form run-01 where the index 01 represents the first
sense of the word run. Further details about the
AMR can be found in the AMR guidelines Ba-
narescu et al. (2015). Liu et al. (2015) started
the work on summarization using AMR, which we
call Semantic Abstractive Summarization (SAS).

Liu et al. (2015) introduced the fundamental
idea behind SAS. In SAS the final summary is pro-
duced by extracting a summary subgraph from the
story graph and generating the summary from this
extracted graph (See Figure 1). But the work was
limited to obtaining the summary graph due to the
absence of AMR to text generators at that time.
They used various graphical features like distance
from the root, the number of outgoing edges, etc.
and sentence number as features for nodes. The
procedure then learned weights over these features
with the constraint that the nodes must form a con-
nected graph.

In this work, we propose an alternative method
to use AMRs for abstractive summarization. Our
approach is inspired by the way humans summa-
rize any piece of text. User studies Chin et al.
(2009); Kang et al. (2011) have shown that hu-
mans summarize by first writing down the key
phrases and then try to figure out the relationships
among them and then organize the data accord-
ingly. Falke and Gurevych (2017) used similar
ideas to propose the task of concept map based
summarization. We design our algorithm along
the same lines. The first step is to find the most
important entities/events in the text. The second
step is to identify the key relations among the most
important entities/events, and finally, in the last
step, we capture information around the selected
relation. AMRs provide a natural way to achieve
this process, as all the events/entities can be rep-
resented by a node Rao et al. (2017) or a group

of nodes, while any relation can be captured by a
path in the AMR graph. We also develop a more
comprehensive method to generate the story AMR
from the sentence AMRs based on event/entity
co-reference resolution and Meta Nodes. Our al-
gorithm outperforms the previous state of the art
methods for SAS by 1.7% F1 score on Node pre-
diction.

Our major contributions in this work are :

• We propose a novel unsupervised algorithm
for the key step of summary graph extraction,
which provides a stronger baseline for future
work on SAS.

• We propose a novel method to generate the
story AMR based on a more comprehensive
co-reference resolution and Meta Nodes.

The rest of the paper is organized as follows.
Section 2 and 3 contain description of the datasets
and the algorithm used for summary generation re-
spectively. Section 4 contains the results of exper-
iments using our approach.

2 Datasets

We use the proxy report section of the AMR Bank
Knight et al. (2014), as it is the only section that
is relevant for the task because it contains the
gold-standard (human-generated) AMR graphs for
news articles and their summaries. In the training
set, the stories and summaries contain 17.5 sen-
tences and 1.5 sentences on average respectively.
The training and test sets include 298 and 33 sum-
mary document pairs respectively.

3 Pipeline for Summary Generation

The pipeline consists of three major steps. The
first step is to convert the document into an AMR
(step-1). The next step is to extract a summary
AMR from the document AMR constructed in the
previous step (step-2). The final step generates
text from the extracted sub-graph (step-3). In the
following subsections, we expand on each step.

3.1 Step 1: Story to AMR: Document graph
generation

Document AMR refers to the AMR representing
the meaning of the whole document. The AMR

Code for the complete pipeline for the end to end
summarization is available at https://github.com/
shibhansh/Unsupervised-SAS
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Figure 1: The pipeline proposed by (Liu et al., 2015) had the following step - AMR Parsing, Naive node
merging, Subgraph selection and Text generation

Figure 2: The graphical representation of the
AMR graph of the sentence : ”I looked care-
fully all around me” using AMRICA Saphra and
Lopez (2015)

formalism guarantees that no two nodes refer to
the same event/entity. Liu et al. (2015) extends this
principle to multiple sentences by merging nodes
referring to the same named entity (or date) across
sentences. However, they adopted a naive ap-
proach to for co-reference resolution using a sim-
ple name and date matching 3.1. The co-reference
resolution can be greatly improved if we take ad-
vantage of the huge literature on text co-reference
resolution. We solve node co-reference resolu-
tion using text co-reference resolution followed by
mapping the text to a node using Alignments.

Node Co-reference Resolution is a crucial step,
as a wrongly generated document AMR can pro-
duce a factually wrong summary. To mitigate
wrong mergers, we implement multiple sanity
checks to avoid wrong mergers. Text co-reference
resolution techniques can be broadly categorized
into three major categories - neural, statistical
and rule-based. We used the state-of-the-art end-
to-end neural co-reference resolution system Lee
et al. (2017). Future work can use an ensemble of
co-reference resolvers to improve robustness. A
list of major sanity checks that we employed

• Don’t merge nodes which have an outgo-
ing edge with label :name if the value of

:name argument is different, and neither of
the names is the initials of the other

• Don’t merge if, cycle emerges in the graph
after the merger

• Don’t merge if, the nodes to be merged have
common outgoing edge labels, and the nodes
that are connected with these edges are dif-
ferent

For mapping text to the node, we use align-
ments. Alignments provide a mapping from a word
in the text to the corresponding node in the AMR.
Most co-reference systems provide co-references
between noun phrases instead of individual words.
But for node co-reference resolution we are re-
quired to merge individual nodes rather than a
group of nodes. However, Lee et al. (2017) sys-
tem also outputs attention weight for every word
of a noun phrase which signifies the importance
of each word in the noun phrase. We merge the
nodes corresponding to the word that has the max-
imum attention weight among the words in the
noun phrase.

Merging nodes that refer to the same
event/entity suggests that the merged node is
more important in the graph than the original
nodes as there are more incoming and outgoing
edges in the graph now. Co-reference resolution
captures explicit reference of an event/entity,
which implies that the nodes should be merged
as they are same and thus it helps increase the
importance of the node. But, there are many
cases where words are not referring to the same
entity or event but they refer to the same abstract
concept, or there might be cases where the words
are talking about the same event without explicitly
referring to it. In such cases, these words should
reinforce the importance of each other, but simple
co-reference resolution does not capture this, and
hence co-reference resolution is not enough. We
need something new in the graph that captures
when two nodes are reinforcing the importance
of each other without actually merging the two
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nodes. In table 1 we present two examples where
words reinforce the importance of each other
without referring to the exact same thing.

These examples inspire us to introduce a new
set of nodes which we call Meta nodes. In this
work, we use Meta nodes to increase the impor-
tance of only common nouns. Common nouns
like drugs, opium, etc. can occur a lot of times in
the text which suggests that they are relevant for
the text, but they are not identified by co-reference
systems as their different occurrences do not refer
to exactly the same thing. To capture the impor-
tant common nouns which are otherwise not cap-
tured in the co-reference resolution, we add a new
Meta node in the graph for each such set of com-
mon nouns. In Example 2 of Fig. 1, we introduce a
Meta Node for the common noun Opium, which is
present twice in the story. Each Meta node is con-
nected to all the occurrences of the correspond-
ing common noun. The nodes connected with a
meta node signifies that the nodes at some level
might refer to the same thing. Meta nodes are used
as representative for the group during ranking but
they are not extracted in the final summary graph,
and hence they are not used during the final step
of summary generation.

The cases that we examined in Table 1 are cases
where the words don’t have a perfect identity but
rather a near identity. This points out that co-
reference resolution is not a simple yes/no ques-
tion but rather a complicated one. This problem of
the complexity of co-reference resolution has been
explored theoretically in the literature Recasens
et al. (2011); Versley (2008) and our work will
benefit directly from more work on the complex-
ity of co-reference resolution. In our current work,
we don’t implement any procedure to detect rein-
forcements of the sort given in Example 2 of Table
1. Future works may include event co-reference
resolution and word similarity using word embed-
dings to identify such reinforcements.

3.2 Step 2: Summary Graph Extraction

Summary graph extraction is a key step in SAS. In
this step, we extract the summary sentence AMR
graphs from the document AMR produced in Step-
1. We take our cue from the way humans summa-
rize a text by first identifying the most important
entities/events in the text then finding the most im-
portant relationships among these events/entities
and finally include information surrounding the

Figure 3: An example of node merging in a very
basic AMR, The mergers 1 and 2 were also present
in the methods proposed by Liu et al. (2015) but
not the merger 3. Here, dash line represent node
to be merged.

selected relationship(s).
Step-A: Finding Important Nodes - For

finding important events/entities, we use
term frequency-inverse document frequency
(Tf − IDF) to determine the importance of any
node. We first find the top n nodes in the graph
using term frequency. This n depends upon the
size of the summary required. Similar to earlier
approaches we use Alignments to find text corre-
sponding to the nodes. Finally, we use Tf-IDF
values of the text corresponding to the nodes
to rank the selected n nodes. The proxy report
section of the AMR Bank is quite small with only
298 training stories. We use the CNN-Dailymail
Hermann et al. (2015) corpus containing around
300,000 news articles to evaluate the Document
Frequencies (DF). We calculate Tf − Idf as -

Tf − Idf = Tf × log10(300, 000/(DF + 1))

As explained in section 3.1, Meta Nodes are
used as a representative for a set of nodes during
importance evaluation. Hence, during importance
evaluation we do not consider nodes that are con-
nected with any Meta Node. To evaluate the im-
portance of a Meta Node, we take the number of
nodes connected with a Meta Node as the term fre-
quency for the Meta Node.

Step-B: Finding Key Relation- The next step
is to find the important relationship between a pair
of selected nodes. We use a heuristic in this step.
The idea is that the key relationship between the
nodes will generally be present in the sentence
where they occur together for the first time. If
there is no such sentence, then there is probably
no important direct relationship between the two
nodes, and we ignore the pair. AMRs contain se-
mantic information at the top of the AMR graph.
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Table 1: In Example 1, the words illegal and ban reinforce each others importance but they are not
captured by co-reference resolution. We add a Meta Node connected to the nodes corresponding to the
words illegal and ban. During importance evaluation, the occurrences of this Meta Node will be these
occurrences of illegal and ban and term frequency for this Meta Node will be 2. Similarly, in the second
example both the occurrences of the word opium are connected to a new Meta Node

1. On 011006 The Citizen newspaper stated that it is illegal for South Africans to be involved in
mercenary activity or to render foreign military assistance inside or outside of South Africa. The
Citizen newspaper stated that the South African Foreign Ministry announced on 011005 that the
South African government imposed the mercenary activity ban following reports that 1000 Muslims
with military training have enlisted to leave South Africa for Afghanistan to fight for the Taliban
against the United States.
2. Head of the U.N. drug office Antonio Maria Costa said that Afghanistan has produced so much
opium in recent years that the Taliban are cutting back poppy cultivation and stockpiling raw opium
in an effort to support prices and preserve a major source of financing for the insurgency. Costa said
this to reporters last week as the U.N. Drug Office Office prepared to release its latest survey of
Afghanistan’s opium crop.

Table 2: Results on the Proxy report section of the AMR bank. First-half contains the Recall, Precision,
and F-1 for the nodes in the generated summary AMR. The second half contains the scores for the final
summary generated using state-of-the-art text generator evaluated using the ROUGE metric

Subgraph extraction Full pipeline
Method Recall Precision F1 R-1 R-2 R-L

Liu et al. (2015) 63.5 54.7 58.7 - - -
Unsupervised SAS (Naive co-reference) 67.9 57.2 60.3 - - -

Unsupervised SAS (Lee et al. (2017) co-reference) 67.0 58.0 60.4 39.5 16.5 29.0
Unsupervised SAS (Human co-reference) 67.7 60.4 62.4 40.9 16.7 29.5

Thus, in the selected sentence we find a path be-
tween the two nodes closest to the root. If one
of the selected nodes happens to be a Meta Node,
the occurrences of the Meta Node include all the
occurrences of all the nodes that the Meta Node
represents (Fig. 1).

Step-C: Capture Surrounding Information -
The final step in subgraph extraction is to expand
around the selected path to capture the surround-
ing information. We use OpenIE Banko (2009) at
this step. The output of the OpenIE system are
tuples of the form (arg; relation; arg). The rele-
vant tuples for us are the set of tuples that contain
the selected path. As, these tuples contain all the
auxiliary information about the relationship that
they are describing, selecting a tuple will solve the
problem of graph expansion. To capture the max-
imum amount of auxiliary information we choose
the largest tuple among the set of relevant tuples.
This ends the process of summary graph extrac-
tion. Algorithm 1 provides an overview of the en-
tire algorithm.

3.3 Step 3: Summary Generation

To generate sentences from the extracted AMR
graphs we use state of the art AMR to text gen-
erator Konstas et al. (2017).

4 Experiments

In table 2 we report results on the test set of the
proxy report section of the AMR bank. The table
contains results using the human annotated AMRs.
We outperform the state-of-the-art in SAS by 1.7%
F1 scores in node prediction. Similar to previous
methods we use the target summary size to control
the length of the output summary.

To evaluate the effectiveness of the method
till the summary graph extraction step, we com-
pare the generated summary graph with the gold-
standard target summary graph. We report Recall,
Precision, and F1 for graph nodes. Finally, to eval-
uate the effectiveness of the pipeline, we evaluate
the performance using ROUGE Lin (2004), and
we report ROUGE-1, ROUGE-2, and ROUGE-L.
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Figure 4: The updated pipeline proposed by us has the following step - AMR Parsing, Co-reference
resolution, Open Information Extraction,TF-IDF calculation, Subgraph selection and Text generation

Algorithm 1 Overview of Algorithm
Input. Input original text data
Node co-reference resolution and Meta node
formation
Node ranking using Tf-idf
Rank nodes
Rank node pairs, using node weights
for Sorted node pairs do

Select the first co-occurrence sentence
if no such sentence then

Continue
end if
Find the path closest to root in the sentence
Find relevant tuples using OpenIE
Choose the largest tuple containing the path
if no such tuple then

Output the selected sentence AMR
end if
if summary size > required size then

Break
end if

end for
AMR to text conversion

As clear from table 2 there is not much dif-
ference between the scores when we use naive
node resolution and date merging and when we
use state-of-art co-reference resolution. To check
the impact of co-reference resolution, we also
did manual co-reference resolution on the test set
which resulted in a further 2% increase in the
scores to 62.4%. We suspect that a significant rea-
son for lower performance with state of the art
co-reference resolution might be the inability of
the system to handle cataphoric references. These
references are particularly crucial in news articles
where the first occurrence of an entity/event is
generally essential.

5 Conclusion and Future Work

In this work, we present a new method to do Se-
mantic Abstractive Summarization (Figure 4). We
outperform the previous state-of-the-art methods
for SAS by 1.7% and by 3.7% using human co-
reference resolution. In the process, we complete
the SAS pipeline for the first time showing that
SAS can be used to construct high-quality sum-
maries. We also extend the method to construct a
document AMR graph from the sentence AMRs
using Meta nodes which can further be used in
some future formalism for Document Meaning
Representation.

The work will benefit directly from improve-
ments in each step of the pipeline. Specifically,
the advances in co-reference resolution for the
near-identity cases might significantly improve the
summary quality. We are currently experiment-
ing with bigger text summarization datasets like
DUC 2004 and DUC 2006. The hypothesis we
used to find the key relations is the main hurdle
in extending the work to multi-document summa-
rization as all other steps can be directly applied
in multi-document summarization. Using differ-
ent methods that might be based on supervision to
find the key relation is an interest direction for fu-
ture work.
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A Example to generate document AMR
from sentence AMR

In this appendix, we give an example showing how
to generate Document AMR from the sentence
AMRs. Consider a short multi-sentence story -

A Kathmandu police officer reports –. 1 soldier
of the Royal Nepal Army was seriously injured on
29 August 2002 when a bomb disposal team at-
tempted to defuse the bomb left at an electricity
pole in okubahal near Sundhara in Lalitpur dis-
trict in Kathmandu. Anti-government insurgents
are believed to have planted the bomb. The injured

soldier has been admitted to the army hospital in
Kathmandu.

Figure 5 shows the sentence AMRs of the four
sentences of the short story. The nodes that re-
fer to the similar entity have to be merged; the
dashed lines connect the nodes to be merged. Fig-
ure 6 shows, the generated document AMR from
the merger. Fig 6 also shows how large the AMRs
of even short stories can become after merging.

If the summarization process were to follow,
we would’ve started by finding the key nodes in
the document graph based on TF− IDF. The
Term frequency is the number of incoming edges
in the AMR. It is clear from the document AMR
that the important nodes based on Term frequency
are Soldier, Bomb, and Kathmandu. Then we use
TF− IDF to rank among these key nodes, it turns
out that the key nodes that the final ranking in de-
creasing order of importance is Kathmandu, Sol-
dier and Bomb. The next step is to find the key
relation, which according to our hypothesis lies
in the sentence where they first co-occur, i.e., the
second sentence. The exact relation is the highest
path. As clear from Figure 5 the path will include
the nodes corresponding to the words Kathmandu,
Soldier, Injured. And finally in the last step we use
the OpenIE system to capture important informa-
tion surrounding this path.
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Figure 5: The AMRs of the 4 sentence of the short story. Dashed lines represent the nodes to be merged.
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Figure 6: The document AMR generated by merging the four sentence AMRs of the story.83
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Abstract

The availability of huge amount of
biomedical literature have opened up new
possibilities to apply Information Re-
trieval and NLP for mining documents
from them. In this work, we are focus-
ing on biomedical document retrieval from
literature for clinical decision support sys-
tems. We compare statistical and NLP
based approaches of query reformulation
for biomedical document retrieval. Also,
we have modeled the biomedical docu-
ment retrieval as a learning to rank prob-
lem. We report initial results for statis-
tical and NLP based query reformulation
approaches and learning to rank approach
with future direction of research.

1 Introduction and Motivation

Medical and Healthcare related searches are hav-
ing major focus of internet search now a days.
The recent statistics shows that 61% of adults
look online for health information (Jones, 2009).
This demands proper search and retrieval systems
for health related biomedical queries. Biomedical
Information Retrieval (BIR) seeks special atten-
tion due to the characteristics of biomedical termi-
nologies. Major challenges in biomedical domain
are in handling complex, ambiguous, inconsis-
tent medical terms and their ad-hoc abbreviations.
Many medical terms are very complex. The aver-
age length of biomedical entities is much higher
than general entities which makes entity identifi-
cation task difficult for biomedical domain. En-
tity identification and normalization helps to bet-
ter solve the problems of retrieval and ranking of
documents for medical search systems, biomedi-
cal text summarization, biomedical text data visu-
alization, etc.

As we are focusing here on biomedical docu-
ment retrieval and ranking system, biomedical lit-
erature should be in consideration. Biomedical lit-
erature is an important source of study in medi-
cal science. Thousands of articles are being added
into biomedical literature each year. This large
set of biomedical text articles can be used as a
collection for Clinical Decision Support System
where the related biomedical articles are extracted
and suggested to medical practitioners to best care
their patients. For this purpose, dataset from Clin-
ical Decision Support (CDS) track is used which
contains millions of full text biomedical articles
from PMC (PubMed Central)1. The statistics of
CDS 2014, 2015 and 2016 datasets are given in
the table 1. CDS2 track focuses on retrieval of
biomedical articles which are related to patient’s
medical case reports. These medical case reports
which are being used as queries are case narra-
tives of patients medical condition. They describes
patients’ medical condition i.e. medical history,
symptoms, tests performed, treatments etc. For
a given query/case report, the main problem is to
find relevant documents from the available collec-
tion and rank them.

2 Background

’Information Retrieval: A Health and Biomedical
Perspective’ (Hersh, 2008) provides basic theory,
implementation and evaluation of IR systems in
health and biomedicine. The tasks of named en-
tity recognition and relation and event extraction,
summarization, question answering, and literature
based discovery are outlined in Biomedical text
mining: a survey of recent progress (Simpson and
Demner-Fushman, 2012).

Automatic processing of biomedical text also

1 http://www.ncbi.nlm.nih.gov/pmc/
2 http://www.trec-cds.org/
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Dataset CDS 2014 CDS 2015 CDS 2016
#Documents 733,138 733,138 1,255,259
Collection size 47.2 GB 47.2 GB 87.8 GB
#Total terms 1,600,536,286 1,600,536,286 2,954,366,841
#Uniq. terms 3,689,317 3,689,317 4,564,612
#Topics 30 30 30
#Rel. docs/Topic 112 150 182

Query forms
Description,

Summary
Description,

Summary
Note, Description,

Summary
Avg. length of Description (in words) 75.8 80.4 119.9
Avg. length of Summary (in words) 24.6 20.4 33.3
Avg. length of Note (in words) - - 239.4
Avg. Doc length (in words) 2183 2183 2353

Table 1: CDS DATA statistics

suffers from lexical ambiguity (homonymy and
polysemy) and synonymy. Automatic query
expansion (AQE) (Maron and Kuhns, 1960;
Carpineto and Romano, 2012) which has a long
history in information retrieval can be useful to
deal with such problems. For instance, medical
queries were expanded with other related terms
from RxNorm, a drug dictionary, to improve the
representation of a query for relevance estimation
(Demner-Fushman et al., 2011). The emergence
of medical domain specific knowledge like UMLS
can contribute to the retrieval system to gain more
understanding of the biomedical documents and
queries. The Unified Medical Language System
(UMLS) (Bodenreider, 2004) is a metathesaurus
for medical domain. It is maintained by National
Library of Medicine (NLM) and it is the most
comprehensive resource, unifying over 100 dictio-
naries, terminologies, and ontologies. Various ap-
proaches of information retrieval with the UMLS
Metathesaurus have been reported: some with de-
cline in results (Hersh et al., 2000) and some with
gain in results (Aronson and Rindflesch, 1997).
The next section of this paper includes statistical
approaches as well as NLP based approaches.

3 Query Reformulation for Biomedical
Document Retrieval

Here, we present statistical and NLP based query
reformulation approaches for biomedical docu-
ment retrieval. Statistical approaches include
feedback based query expansion and feedback
document discovery based query expansion. An
NLP based approach that is UMLS concept based
query reformulation is also discussed here.

3.1 Automatic Query Expansion With
Pseudo Relevance Feedback & Relevance
Feedback

Query Expansion (QE) is the process of reformu-
lating a query to improve retrieval performance
and efficiency of IR systems. QE is proved to be
efficient in case of document retrieval (Carpineto
and Romano, 2012). It helps to overcome vocabu-
lary mismatch issues by expanding the user query
with additional relevant terms and by re-weighting
all terms. Query Expansion which uses the top re-
trieved relevant documents is known as Relevance
Feedback. It requires human judgment to iden-
tify relevant documents from top retrieved docu-
ments. While pseudo Relevance Feedback tech-
nique assumes the top retrieved documents to be
relevant and uses as feedback documents. It does
not require human input at all. The Query ex-
pansion based approaches for biomedical domain
gives better results as compared to retrieval with-
out query expansion (Sankhavara et al., 2014).

Table 2 and table 3 shows the results of standard
retrieval (without expansion), Pseudo-Relevance
Feedback (PRF) based Query Expansion and Rel-
evance Feedback (RF) based Query Expansion
with BM25 and In expC2 retrieval models (Am-
ati et al., 2003) on CDS 2014, 2015 and 2016
datasets. The retrieval model BM25 is a rank-
ing function based on probabilistic retrieval frame-
work while In expC2 is also a probabilistic but
based on Divergence From Randomness (DFR).
These models are available in Terrier IR Plate-
form3 (Ounis et al., 2005) which is developed at
School of Computing Science, University of Glas-

3http://terrier.org

85



MAP CDS 2014 CDS 2015 CDS 2016
BM25 0.1071 0.1147 0.062
BM25+PRF10 0.1542 (+44%) 0.1805 (+57.4%) 0.0769 (+24%)
BM25+RF10 0.205 (+91.4%) 0.1941 (+69.2%) 0.0984 (+58.7%)
BM25+RF50 0.2768 (+158.5%) 0.2283 (+99%) 0.1456 (+134.8%)
In expC2 0.1096 0.1201 0.0632
In expC2+PRF10 0.1623 (+48.1%) 0.1725 (+43.6%) 0.0754 (+19.3%)
In expC2+RF10 0.2117 (+93.2%) 0.1895 (+57.8%) 0.0992 (+57%)
In expC2+RF50 0.2587 (+136%) 0.2191 (+82.4%) 0.1275 (+101.7%)

Table 2: Results (MAP) of Query Expansion with PRF and RF

infNDCG CDS 2014 CDS 2015 CDS 2016
BM25 0.1836 0.2115 0.171
BM25+PRF10 0.2522 (+37.4%) 0.283 (+33.8%) 0.2047 (+19.7%)
BM25+RF10 0.3355 (+82.7%) 0.3028 (+43.2%) 0.2428 (+42%)
BM25+RF50 0.4186 (+128%) 0.3478 (+64.4%) 0.3094 (+80.9%)
In expC2 0.2002 0.2132 0.1785
In expC2+PRF10 0.2724 (+36.1%) 0.2734 (+28.2%) 0.2018 (+13.1%)
In expC2+RF10 0.3426 (+71.1%) 0.3015 (+41.4%) 0.245 (+37.3%)
In expC2+RF50 0.4019 (+100.7%) 0.339 (+59%) 0.3219 (+80.3%)

Table 3: Results (infNDCG) of Query Expansion with PRF and RF

gow. Here, we have used terrier plateform for the
experiments. Summary part of the query is used
for retrieval with top 10 and 50 top documents for
feedback in expansion. MAP and infNDCG are
used as evaluation metrics (Manning et al., 2008).
Higher the value of evaluation measure, better the
retrieval result of system. The result improves
with PRF and RF based query expansion giving
statistically significant results (p < 0.05) as com-
pared to no expansion. Here RF is giving 50-60%
more improvement than PRF over no expansion.
We argue that biomedical retrieval should be done
keeping human in the loop. A small human inter-
vention can increase the retrieval accuracy to 60%
more.

3.2 Feedback Document Discovery for Query
Reformulation

Feedback Document Discovery based query ex-
pansion as described in (Sankhavara and Ma-
jumder, 2017) learns to identify relevant docu-
ments for query expansion from top retrieved doc-
uments. The main aim is to use small amount of
human judgement and learn pseudo judgement for
other documents to reformulate the queries. One
approach is based on classification. If we have hu-
man judgements available for some of the feed-
back documents, then it will serve as a training
data for classification. The documents were repre-

sented as a collection of bag-of-words, the TF-IDF
scores of the words represent features and human
relevance scores provides the classes. Then the
relevance is predicted for other top retrieved feed-
back documents. The second approach is based
on and classification+clustering. It first applies
classification in similar way as in first approach
and then applies clustering on relevance predicted
class by the classification method, thus filtering
out more non-relevant documents from relevant
ones. Since, the convergence of K-means cluster-
ing depends on the initial choice of cluster cen-
troids, the initial cluster centroids are chosen as
the average of relevant documents vectors and the
average of non-relevant documents vectors from
training data.

Here we have used that approach with differ-
ent features. The TF-IDF features are weighted
based on type of words. CliNER tool (Boag et al.,
2015) has been used to identify medical entities
of type ’problem’, ’test’ and ’treatment’ from doc-
uments, which was trained on i2b2 2010 dataset
(Uzuner et al., 2011). The i2b2 2010 dataset in-
cludes discharge summaries from Partners Health-
Care, from Beth Israel Deaconess Medical Cen-
ter and from University of Pittsburgh Medical
Center. These discharge summaries are fully de-
identified and manually annotated for concept, as-
sertion, and relation information. Here, we have
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CDS 2014
MAP infNDCG

No feature
weighting

Feature
weighting

using CliNER

No feature
weighting

Feature
weighting

using CliNER
Original Queries 0.1071 0.1836
Queries+RF50 0.2768 0.4186
{Nearest neighbors}50 200 0.2761 0.2747 0.4177 0.4140
{Nearest neighbors + k-means}50 200 0.2794 0.2777 0.4220 0.4195
{Neural net}50 200 0.2790 0.2787 0.4235 0.4240
{Neural net + k-means}50 200 0.2790 0.2807 0.4218 0.4269

Table 4: Results of Feedback Document Discovery

Figure 1: Query wise difference graph of
infNDCG for feedback document discovery and
relevance feedback

used these discharge summaries along with their
concept annotations to train CliNER. This trained
model is applied on CDS documents to identify
’problem’, ’test’ and ’treatment’ concept entities.
The features related to these entities in CDS docu-
ments are weighted thrice, thus giving importance
to these entities while learning to identify feed-
back document. For feedback document discovery
with weighted entities, we have used top 50 docu-
ments and their corresponding relevance for train-
ing, then the relevance was predicted for next top
200 documents and used for expansion of queries.
For classification two methods, nearest neighbour
classifier and neural net classifier, have been used
and k-means is used for clustering with k=2 for
relevant and non-relevant documents. In all cases,
only relevant identified documents are used for
expanding queries. The comparison of results
of original queries without expansion, expansion
with relevance feedback and expansion with two
approaches of feedback document discovery (clas-
sification and classification+clustering) for CDS
2014 dataset is given in table 4.

The results clearly indicates improvement over
original queries and relevance feedback. Fig 1
shows query wise difference in infNDCG between
{Neural net + k-means}50 200 and Queries+RF50.
Out of 30 queries of CDS 2014, 2 queries degrade
performance but 7 queries improve.

3.3 UMLS Concepts Based Query
Reformulation

Medical domain-specific knowledge can be in-
corporated to the process of query reformulation
in Biomedical IR system. There are knowledge
based approaches proposed in the literature (Aron-
son and Rindflesch, 1997; Demner-Fushman et al.,
2011; Hersh, 2008). In the biomedical text re-
trieval, medical concepts and entities are more in-
formative than other common terms. Moreover,
medical ontologies, thesaurus and biomedical en-
tity identifiers are available to identify medical re-
lated concepts.

Here we have used the resource UMLS. The
following three query reformulation experiments
are done using it. First: The UMLS concepts
are identified from the query text and used with
queries. Second: Along with the UMLS concepts,
MeSH (Medical Subject Heading) terms are also
identified and used in queries. MeSH is a hier-
archically organized vocabulary of UMLS. Third:
Medical entities are identified manually and used
with queries. One example query with all these
reformulations is presented in Appendix A.

Table 5 shows the results of these reformulated
queries of CDS 2014. PRF and RF based query
expansion is also carried out on each form of the
queries. The results shows clear improvement
when using UMLS concepts in queries as com-
pared to original queries. One more important ob-
servation here to make is that, for no-expansion
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infNDCG CDS 2014
BM25 In expC2

MAP infNDCF MAP infNDCF
Original Queries 0.1071 0.1836 0.1096 0.2002
Original Queries + PRF10 0.1542 0.2522 0.1623 0.2724
Original Queries + RF10 0.2050 0.3355 0.2117 0.3426
Original Queries + RF50 0.2768 0.4186 0.2587 0.4019
Queries + UMLS concepts 0.1660 0.1830 0.1597 0.1781
Queries + UMLS concepts + PRF10 0.1607 0.2607 0.1486 0.2431
Queries + UMLS concepts + RF10 0.2164 0.3423 0.2138 0.3459
Queries + UMLS concepts + RF50 0.2776 0.4232 0.2569 0.4021
Queries + UMLS concepts + Mesh terms 0.1039 0.1749 0.1086 0.1792
Queries + UMLS concepts + Mesh terms + PRF10 0.1460 0.2409 0.1411 0.2376
Queries + UMLS concepts + Mesh terms + RF10 0.2052 0.1992 0.3321 0.3291
Queries + Manual Entities 0.1112 0.1860 0.1140 0.2114
Queries + Manual Entities + PRF10 0.1601 0.2634 0.1584 0.2650
Queries + Manual Entities + RF10 0.2112 0.3394 0.2120 0.3414

Table 5: Results of UMLS based query processing

and PRF, the manual entities fail to improve MAP
when compared to UMLS entities but certainly
give better results in terms of infNDCG.

4 Learning To Rank

Learning to rank (LTR) (Liu et al., 2009) is an ap-
plication of machine learning in the construction
of ranking models for information retrieval sys-
tems where retrieval problem is modeled as a rank-
ing problem. LTR framework requires training
data of queries and documents matching them to-
gether with relevance degree of each match. Train-
ing data is used by a learning algorithm to produce
a ranking model which computes relevance of doc-
uments for actual queries.

The LTR framework is applied on CDS 2014
dataset where the features for query document
pairs are computed similarly as the features used
for OHSUMED LETOR dataset (Qin et al., 2010).
These features are mainly based on TF, IDF and
their normalized versions. Since the whole docu-
ment pool is too large, document pooling has been
done and top K documents (by BM25) for each
query are used for feature extraction. SVMRank
has been used as a machine learning framework.

Table 6 shows the results of LTR when the fea-
tures are computed on Title+Abstract part of the
documents, on Title+Abstract+Content of the doc-
uments (i.e. full documents). With these varia-
tions of features, the experiments are carried out
on original queries, queries with UMLS concepts
and queries with manually identified medical con-

infNDCG
OHSUMED
features on

T, A and
T+A

OHSUMED
features on
T, A and C

Original Queries 0.097 0.1769
Queries + UMLS 0.0833 0.1556
Queries + Manual 0.1049 0.1785

Table 6: Results of Learning to Rank with differ-
ent features

infNDCG
Retrieval (BM25) 0.1836
LTR using human judgements 0.1769
Pseudo LTR K=1000 0.1849
Pseudo LTR K=1500 0.1872
Pseudo LTR K=2000 0.1859
Pseudo LTR K=2500 0.1865
Pseudo LTR K=3000 0.1865

Table 7: Results Learning To Rank with pseudo
judgements

cepts.

All these LTR experiments require human
judgement for training. To overcome the need of
manual judgement, pseudo judgements were con-
sidered where out of k training documents, Top k/2
documents are considered to be relevant and other
k/2 documents to be non-relevant.

As shown in table 7, the results of LTR trained
using pseudo qrels are better than one with actual
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human judged qrels but the difference is not statis-
tically significant. The results of LTR are compa-
rable to retrieval using BM25.

5 Future Research Directions

Biomedical text processing and information re-
trieval being a new field of research opens up
many research directions. In this article, we have
presented a preliminary study of statistical and
NLP based biomedical document retrieval tech-
niques for clinical decision support systems. It
included query reformulation based information
retrieval framework with pseudo relevance feed-
back, relevance feedback, feedback document dis-
covery and UMLS concept based reformulation
for Biomedical domain. Standard IR frameworks
PRF and RF works good enough for Clinical De-
cision Support System. Feedback document dis-
covery based query reformulation which is a sta-
tistical approaches can be improvised in future
for significant improvement. Another statistical
model Learning to Rank is also having future
scope for more improvement. The initial frame-
work for NLP based approach UMLS concept
based retrieval also shows improvement in the re-
sults. Therefore, we plan to combine statistical
and NLP based approaches and come up with new
better model for biomedical document retrieval for
Decision Support Systems. Also, we are planning
to do feature weighting using NLP at entity level
in feedback document discovery approach.
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A Example Query

<topic number="1" type="diagnosis">
<summary>
58-year-old woman with hypertension and obesity presents with

exercise-related episodic chest pain radiating to the back.
</summary>
<UMLS entities>
hypertension obesity exercise related chest pain radiating back nos

</UMLS entities>
<MeSH entities>
Vascular Diseases Overnutrition Overweight Motor Activity Human

Activities Torso Bone and Bones Neurologic Manifestations Sensation
</MeSH entities>
<manual entities>
woman hypertension obesity exercise-related episodic chest pain

radiating back </manual entities>
</topic>

B Example Document

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 3990010/pdf/1745-6215-15-124.pdf

C OHSUMED features
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Abstract

Technological advancements in the World
Wide Web and social networks in particu-
lar coupled with an increase in social me-
dia usage has led to a positive correlation
between the exhibition of Suicidal ideation
on websites such as Twitter and cases of
suicide. This paper proposes a novel su-
pervised approach for detecting suicidal
ideation in content on Twitter. A set of
features is proposed for training both lin-
ear and ensemble classifiers over a dataset
of manually annotated tweets. The per-
formance of the proposed methodology is
compared against four baselines that uti-
lize varying approaches to validate its util-
ity. The results are finally summarized by
reflecting on the effect of the inclusion of
the proposed features one by one for suici-
dal ideation detection.

1 Introduction

According to World Health Organization, suicide
is the second leading cause of death among 15-
29-year-olds across the world. In fact, close to
800,000 people die due of suicide each year. The
number of people who attempt suicide is much
higher. While an individual suicide is often a soli-
tary act, it can often have a devastating impact
on families (Cerel et al., 2008). Many suicide
deaths are preventable and it is important to under-
stand the ways in which individuals communicate
their depression and thoughts for preventing such
deaths. (Sher, 2004) Suicide prevention is mainly
hinged on surveillance and monitoring of suicide
attempts and self-harm tendencies.

The younger generation has started to turn to
the Internet (Chan and Fang, 2007) for seeking
help, discussing depression and suicide-related in-
formation and offering support. The availability

of suicide-related material on the Internet plays an
important role in the process of suicide ideation.
Due to this increasing availability of content on
social media websites (such as Twitter, Facebook
and Reddit etc.), and blogs (Yates et al., 2017)
there is an urgent need to identify affected indi-
viduals and offer help. Suicidal ideation refers
to thoughts of killing oneself or planning suicide,
while suicidal behavior is often defined to include
all possible acts of self-harm with the intention of
causing death (Costello et al., 2002). Although
Twitter provides a unique opportunity to identify
at-risk of individuals (Jashinsky et al., 2014) and
a possible avenue for intervention at both the indi-
vidual and social level, there exist no best practices
for suicide prevention using social media.

While there is a developing body of literature
on the topic of identifying patterns in the lan-
guage used on social media that expresses suici-
dal ideation (De Choudhury et al., 2016), very few
attempts have been made to employ feature ex-
traction methods for binary classifiers that sepa-
rate text related to suicide from text that clearly
indicates the author exhibiting suicidal intent. A
number of successful models (Yates et al., 2017)
have been used for sentence level classification,
however, ones that are successful for being able
to learn to separate suicidal ideation from depres-
sion as well as less worrying content such as re-
porting of a suicide, memorial, campaigning, and
support. etc, require a greater analysis to select
more specific features and methods to build an
accurate and robust model. The drastic impact
that suicide has on surrounding community cou-
pled with the lack of specific feature extraction and
classification models for the identification of sui-
cidal ideation on social media, so that action can
be taken is the driving motivation for the work pre-
sented in this paper.

Suicide prevention by suicide detection (Zung,
1979) is one of the most effective ways to drasti-
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cally reduce suicidal rates. The major practical ap-
plication of this work lies in it’s easy adaptability
to any social media forum (Robinson et al., 2016),
wherein it can be used directly for analyzing text-
based content posted by its users and flag it if the
content is concerning.

The main contributions of this paper can be
summarized as follows:

1. The creation of a labeled dataset for learn-
ing the patterns in tweets exhibiting suicidal
ideation by manual annotation.

2. Proposed a set of features to be fed into clas-
sifiers to improve the performance.

3. Employed four binary classifiers with the
proposed set of features and compared them
against baselines utilizing varied approaches
to validate the proposed methodology.

2 Related Work

Media communication can have both positive and
negative influence on suicidal ideation. A sys-
tematic review of all articles in PsycINFO, MED-
LINE, EMBASE, Scopus, and CINAH from 1991
to 2011 for language constructs relating to self-
harm or suicide by Daine et al. (2013) concluded
that internet may be used as an intervention tool
for vulnerable individuals under the age of 25.
However, not all language constructs containing
the word suicide indicate suicidal intent, specific
semantic constructs may be used for predicting
whether a sentence implies self-harm tendencies
or not.

A suicide note analysis method for automat-
ing the identification of suicidal ideation was built
using binary support vector machine classifiers
by Desmet and Hoste (2013) using fine-grained
emotion detection for classifier optimization with
lexico-semantic features for optimization. In
2014, Huang et al. (2014) used rule-based meth-
ods with hand-crafted unsupervised classification
for developing a real-time suicidal ideation detec-
tion system deployed over Weibo1, a microblog-
ging platform. This approach differs from the pro-
posed approach in terms of both features and the
reach of the social media platforms. Topic mod-
eling in Chinese microblogs (Huang et al., 2015)
for suicide ideation detection has also proven to be

1http://www.scmp.com/topics/weibo

efficient, however for a limited subset with a fairly
different set of features.

Studies corresponding to rise in suicidal
ideation associated with specific temporal events
(Kumar et al., 2015) have also been performed,
but do not specifically focus on building a robust
system that simply analyzes content coupled with
no other factors. Related literature also focuses
on building systems that analyze tweets of users
who have committed suicide (Coppersmith et al.,
2016), that may not specifically hint at suicidal
ideation, as opposed to the proposed problem.

3 Data

3.1 Data Collection

Traditionally, it has been difficult extracting data
related to suicidal ideation or mental illnesses due
to social stigma but now, an increasing number of
people are turning to the Internet to vent their frus-
tration, seek help and discuss mental health issues
(Milne et al., 2016), (Sueki et al., 2014). To main-
tain the privacy of the individuals in the dataset,
we do not present direct quotes from any data, nor
any identifying information.

Anonymised data was collected from mi-
croblogging website Twitter - specifically, content
containing self-classified suicidal ideation (i.e.
text posts tagged with the word ’suicide) over the
period of December 3, 2017 to January 31, 2018.
The Twitter REST API2 was used for collection
of tweets containing any of the following English
words or phrases that are consistent with the ver-
nacular of suicidal ideation (O’Dea et al., 2015):

suicidal; suicide; kill myself; my suicide note;
my suicide letter; end my life; never wake up;
can’t go on; not worth living; ready to jump; sleep
forever; want to die; be dead; better off without
me; better off dead; suicide plan; suicide pact;
tired of living; don’t want to be here; die alone; go
to sleep forever; wanna die; wanna suicide; com-
mit suicide; die now; slit my wrist; cut my wrist;
slash my wrist; do not want to be here; want it
to be over; want to be dead; nothing to live for;
ready to die; not worth living; why should I con-
tinue living; take my own life; thoughts of suicide;
to take my own life; suicide ideation; depressed; I
wish I were dead; kill me now

The texts were collected without knowing the
sentiment. For example, when collecting tweets

2https://dev.twitter.com/rest/public/search

92



on hashtag #suicide, it is not known initially
whether:

• the tweet is posted for suicide awareness and
prevention;

• the person is talking about suicidal ideation
and/or ways to kill himself;

• the tweet reports a third persons suicide eg:
news report;

• the tweet uses suicide as a figure of speech
eg: career suicide

3.2 Data Annotation
Then, text posts equaling 5213 in all were col-
lected which were subsequently human annotated.
The Human annotators consisted of both univer-
sity students fairly active on social media, and
aware of aspects of cognitive psychology as well
as university faculty in the domain of Psychol-
ogy and Machine Learning. Human annotators
were asked to indicate if the text implied suici-
dal ideation using binary criteria by answering the
question Does this text imply self-harm tendencies
or suicidal intent?. Each post was scrutinized and
analyzed by three independent annotators (H1, H2

and H3), due to the subjectivity of text annotation,
wherein ambiguous posts were set to the default
level, Suicidal intent absent. Posts were exam-
ined individually and annotated according to the
following classification system:

1. Suicidal intent present:

• Text conveys a serious display of suici-
dal ideation; e.g., I want to die or I want
to kill myself or I wish my last suicide
attempt was successful;
• Care was taken to classify only those

posts as suicidal where suicide risk is
not conditional unless some event is a
clear risk factor eg: depression, bully-
ing, substance use;
• Posts where suicide plan and/or previ-

ous attempts are discussed; e.g., ”The
fact that I tried to kill myself and it
didn’t work makes me more depressed.”
• Tone of text is sombre and not flippant,

eg: This makes me want to kill myself,
lol, ”This day is horrible, I want to kill
myself hahaha” are not included in this
category.

H1 H2 H3

H1 − 0.61 0.48
H2 0.61 − 0.51
H3 0.48 0.51 −

Table 1: Cohen’s Kappa for three annotators
H1, H2 and H3

2. Suicidal intent absent:

• The default category for all posts.
• Posts emphasizing on suicide related

news or information; e.g., Two female
suicide bombers hit crowded market in
Maiduguri.
• Posts such as Suicide squad sounds like

a good option; no reasonable evidence
to suggest that the risk of suicide is
present; includes posts containing song
lyrics, etc, were marked within this cat-
egory.
• Posts pertaining to condolence and sui-

cide awareness; e.g., ”5 suicide preven-
tion helplines in India you need to know
about”, Politician accused of driving his
wife to suicide.

Annotators were instructed to select only one of
the above categories and to select the default level
in case of ambiguity. In all, 15.76% (822) of all
tweets were annotated to be suicidal, which were
then used to train and validate the classifiers pre-
sented in the following sections. A satisfactory
agreement between the annotators (e.g., 0.61 for
H1 and H2) can be inferred from Table 1.

4 Proposed Methodology

The overall methodology is divided into three
phases. The initial phase consists of preprocessing
the text within a tweet, the second phase involves
feature extraction from preprocessed tweets for the
training and testing of binary classifiers for the sui-
cidal ideation identification, and the final phase
actually classifies and identifies tweets exhibiting
suicidal ideation. The details of these individual
phases are presented below.

4.1 Preprocessing

Preprocessing is achieved by applying a series of
filters, based on Xiang et al. (2012), in the order
given below to process the raw tweets.
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1. Removal of non-English tweets using Ling-
Pipe (Baldwin and Carpenter, 2003) with
Hadoop.

2. Identification and elimination of user men-
tions in tweet bodies having the format of
@username, URLs as well as retweets in the
format of RT.

3. Removal of all hashtags with length > 10 due
to a great volume of hashtags being concate-
nated words, which tends to amplify the vo-
cabulary size inadvertently.

4. Stopword removal.

4.2 Feature Extraction
Tweets exhibiting suicidal ideation lack a semi-
rigid pre-defined lexico-syntactic pattern. Hence,
they warrant the use of hand engineering and ana-
lyzing a set of features (Wang et al., 2016) in con-
trast to sentence and word embeddings in a super-
vised setting using Deep Learning Models such
as Convolutional Neural Networks (Kim, 2014)
(CNN). The proposed methodology utilizes the
following set of features for classification.

• Statistical Features. These encompass the
number of tokens, and their length.

• LIWC Features. Features extracted using the
Linguistic Inquiry and Word Count program
(LIWC) (Pennebaker et al., 2001) capture
people’s social and psychological states by
analyzing the text to generate labels. Owing
to the immense similarity in the nature of the
problem of Suicidal Ideation detection in text
and the background of LIWC in social, clin-
ical, and cognitive psychology, LIWC fea-
tures are an ideal candidate for inclusion as
a subset of features for our overall classifica-
tion problem.

As an example, the accompanying tweet is
associated with negative emotions and cog-
nitive processes with a high authenticity and
emotional tone. I’m holding a gun and de-
ciding if I want to go through with suicide or
not. I want to commit suicide really badly...
Help?

• Part of Speech counts. POS counts for
each label assigned by the Stanford Part-Of-
Speech Tagger (Manning et al., 2014) are

used as a feature. POS Tags include nouns,
adjectives, adverbs, verbs, etc.

• TF-IDF. The Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) is used as a feature
to reflect the importance of a particular word
within the corpus and is given by:

tfidf(t) = freq(t)× ln
N

|{d ∈ D : t ∈ d}|

where, t is the word feature, N is the number
of tweets, and d is a document in the docu-
ment set D.

• Topics Probability. The probability distribu-
tion of each topic over its terms are used as
a feature, which is based on the approach
that the tweets are represented as random
mixtures over latent topics. Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) is
a generative probabilistic model that is used
to describe each such topic as a generative
model which generates words of the vocabu-
lary with certain probabilities, and forms the
basis of evaluating Topics Probability.

4.3 Classification

Suicidal Ideation detection is formulated as a su-
pervised binary classification problem. For ev-
ery tweet ti ∈ D, the document set, a binary
valued variable yi ∈ {0, 1} is introduced, where
yi = 1 denotes that the tweet ti exhibits Suici-
dal Ideation. To learn this, the classifiers must
determine whether any sentence in ti possesses a
certain structure or keywords that mark the exis-
tence of any possible Suicidal thoughts. The fea-
tures presented above are the used to train classi-
fication models to identify tweets exhibiting Sui-
cidal Ideation. Linear classifiers such as Logis-
tic Regression as well as Ensemble Classifiers in-
cluding Random Forest (Liaw et al., 2002), Gradi-
ent Boosting Decision Tree (Friedman, 2002) and
XGBoost (Chen and Guestrin, 2016) are employed
for classification.

Both XGBoost and Gradient Boosting Decision
Trees aim to boost the performance of a classi-
fier in a stage-wise fashion by iteratively adding
a new classifier to the ensemble to allow the op-
timization of a differentiable loss function. The
Random Forest classifier is one of the most pop-
ular ensemble machine learning algorithm based
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on Bootstrap Aggregation (Quinlan et al., 1996)
or bagging. It modifies the bagging procedure so
that the learning algorithm is limited to a random
sample of features of which to search, which has
shown promise in text classification problems.

5 Baselines

Validation of the proposed methodology is done
by comparison against Baseline models that act
as a useful point for comparison. Comparison in
terms of the evaluation metrics presented below
are also done with other recent models for Suicidal
Ideation classification as follows:

Long Short Term Memory (LSTM) models are
more robust to noise in comparison to Recurrent
Neural Networks (RNN) (Liu et al., 2016), and
better able to capture long-term dependencies in
a sequence, due to their ability to learn how to
forget past observations. The LSTM model uses
h = 128 memory units, with a dropout probabil-
ity of 0.2, and ReLU (Nair and Hinton, 2010) was
used for activation. For training, the Adam Op-
timizer was used to minimize log loss. A batch
size of 64 was chosen and trained for a total of
100 epochs. Pre-Trained word2vec word embed-
dings that were trained on 100 billion words from
Google News are employed as features for classi-
fication. Support Vector Machines (Desmet and
Hoste, 2013) (SVM) have been shown to work
well with short informal text (Pak and Paroubek,
2010) and other promising results in the cognitive
behavior domain (De Choudhury et al., 2013). The
features described in Desmet and Hoste (2013) are
used by the SVM for classification. Rule-based
approaches focusing on maximizing the informa-
tion gain aim to reduce the uncertainty of the class
a particular tweet belongs to. A J48 decision tree
(C4.5) (Quinlan et al., 1996) was used with the
features above for classification.
Lastly, a Negation Resolution (Gkotsis et al.,
2016) based approach that is relatively recent, that
employs parse trees to build a set of basic rules
that rely on minimum domain knowledge is used.

6 Results and Analysis

6.1 Analysis: Comparison with Baselines

Table 2 presents the results for both baselines as
well as the classifiers with the proposed method-
ology in terms of four evaluation metrics: Accu-
racy, Precision, Recall and F1 Score. The first

four rows represent the results of the proposed fea-
tures with both Linear and Ensemble classifiers as
described in the Classification section above. The
final four rows represent the baseline results.

The proposed features used in conjunction with
the first four models described in the Classification
section supersede the baseline models in terms
of performance along most metrics. The LSTM
model has the highest recall, owing to its abil-
ity to capture long term dependencies, however
its overall performance in terms of accuracy and
F1 score is relatively less. Both SVM and Rule-
based classification don’t perform as well as the
proposed methodology, owing to the lack of fea-
tures used in these models that are not suitable
for learning how to classify tweets with Suicidal
Ideation. Both of these methods are more suit-
able in a general domain, however, the features
in the proposed methodology are more specific to
the particular problem domain of Suicidal Ideation
detection, particularly the LIWC features and Top-
ics probability. Lastly, the Negation Resolution
method performs poorly on the dataset, due to
its inability to adapt to a vast and highly diverse
form of suicidal ideation communication and its
implicit rigidity. This in comparison to the pro-
posed methodology, is unable to effectively learn
and extract the essential features from input text,
and thus does not perform as well.
In conclusion, the proposed methodology consist-
ing of feature extraction coupled with ensemble
and linear classifiers supersedes the baselines pre-
sented from various domains in terms of perfor-
mance.

6.2 Classifiers with proposed features

The first four rows of Table 2 represent the results
in terms of the evaluation metrics for different
classifiers, both Linear and Ensemble, using the
proposed set of features. While the performance of
the four classifiers is comparable, Random Forest
classifiers perform the best. This is attributed to
the ability of Random Forest classifiers that tackle
error reduction by reducing variance rather than
reducing bias. As has been seen with various text
classification problems, Logistic Regression per-
forms fairly well despite its simplicity, and has a
greater accuracy and F1 score in comparison with
both Boosting Algorithms.

Table 3 shows the variation in performance of
the Random Forest classifier with the inclusion of
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Table 2: Classification Results in terms of Evaluation metrics.
Model Accuracy Precision Recall F1 score
Logistic Regression 0.830 0.819 0.850 0.832
Random Forest 0.858 0.842 0.846 0.844
Gradient Boosting Decision Tree 0.805 0.802 0.820 0.807
XGBoost 0.817 0.831 0.800 0.812
LSTM 0.789 0.745 0.874 0.796
Support Vector Machine 0.792 0.821 0.692 0.754
Rule-based Classification 0.801 0.824 0.743 0.781
Negation Resolution 0.527 0.542 0.752 0.635

Table 3: Variation in performance with the inclusion of features
Features used Accuracy Precision Recall F1 score
Statistical Features(SF) only 0.596 0.547 0.600 0.569
SF + TF-IDF 0.669 0.663 0.753 0.702
SF + TF-IDF + POS counts 0.789 0.821 0.705 0.721
SF + TF-IDF + POS + Topics Probability 0.807 0.814 0.820 0.817
All Features 0.858 0.842 0.846 0.844

the various features. The precision reduces by a
small amount with the inclusion of Topics prob-
ability feature implying that a greater subset of
tweets is classified as suicidal due to the LDA uni-
grams included via Topics probability features, but
is finally boosted by the inclusion of the LIWC
features. The POS counts also lead to a reduction
in the recall, which is compensated with the sub-
sequent inclusion of Topics Probability and LIWC
features. The drastic improvements are attributed
to the TF-IDF, POS counts and LIWC features in
terms of most evaluation metrics. It is observed
that the proposed set of features perform the best
in conjunction with Random Forest classifiers, and
the improvement in performance with the inclu-
sion of each feature validates the need for the ex-
traction of that feature.

6.3 Error Analysis

Some categories of errors that occur are:

1. Seemingly Suicidal tweets: Human annota-
tors as well as our classifier could not iden-
tify whether ”I want to kill myself, lol. :(”
was representative of suicidal ideation or a
frivolous reference to suicide.

2. Pragmatic difficulty: The tweet ”I lost my
baby. Signing off..” was correctly identified
by our human annotators as a tweet with sui-
cidal intent present. This tweet contains an
element of topic change with no explicit men-

tion of suicidal ideation, but our classifier
could not capture it.

3. Ambiguity: The tweet ”Is it odd to know I’ll
commit suicide?” is a tweet that both human
annotators as well as the proposed methodol-
ogy couldn’t classify due to it’s ambiguity.

7 Conclusion and Future Work

This paper proposes a model to analyze tweets, by
developing a set of features to be fed into clas-
sifiers for identification of Suicidal Ideation us-
ing Machine Learning. When annotated by hu-
mans, 15.76% of the total dataset of 5213 tweets
was found to be suicidal. Both linear and ensem-
ble classifiers were employed to validate the se-
lection of features proposed for Suicidal Ideation
detection. Comparisons with baseline models em-
ploying various strategies such as Negation Res-
olution, LSTMs, Rule-based methods were also
performed. The major contribution of this work
is the improved performance of the Random for-
est classifier as compared to other classifiers as
well as the baselines. This indicates the promise of
the proposed set of features with a bagging based
approach with minimal correlation show as com-
pared to other classifiers. In the future, there is
scope for larger amounts of data to be scraped
from more social media websites as well as inves-
tigate the performance withdeep learning models
such as CNNs, LSTM-CNNs, etc.
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Abstract

The presented work aims at generating
a systematically annotated corpus that
can support the enhancement of senti-
ment analysis tasks in Telugu using word-
level sentiment annotations. From On-
toSenseNet, we extracted 11,000 adjec-
tives, 253 adverbs, 8483 verbs and sen-
timent annotation is being done by lan-
guage experts. We discuss the methodol-
ogy followed for the polarity annotations
and validate the developed resource. This
work aims at developing a benchmark cor-
pus, as an extension to SentiWordNet, and
baseline accuracy for a model where lex-
eme annotations are applied for sentiment
predictions. The fundamental aim of this
paper is to validate and study the possi-
bility of utilizing machine learning algo-
rithms, word-level sentiment annotations
in the task of automated sentiment identifi-
cation. Furthermore, accuracy is improved
by annotating the bi-grams extracted from
the target corpus.

1 Introduction

Sentiment analysis deals with the task of determin-
ing the polarity of text. To distinguish positive
and negative opinions in simple texts such as re-
views, blogs, and news articles, sentiment analysis
(or opinion mining) is used. Over time, it evolved
from focusing on explicit opinion expressions to
addressing a type of opinion inference which is a
result of opinions expressed towards events having
positive or negative effects on entities.

There are three ways in which one can perform
sentiment analysis : document-level, sentence-
level, entity or word-level. These determine the

polarity value considering the whole document,
sentence-wise polarity, word-wise in some given
text respectively (Naidu et al., 2017). Despite ex-
tensive research, the existing solutions and sys-
tems have a lot of scope for improvement, to meet
the standards of the end users. The main prob-
lem arises while cataloging the possibly infinite
set of conceptual rules that operate behind the an-
alyzing the hidden polarity of the text (Das and
Bandyopadhyay, 2011). In this paper, we perform
a word-level sentiment annotation to validate the
usage of such techniques for improving sentiment
analysis task. Furthermore, we use word embed-
dings of the word-level sentiment annotated lexi-
con to predict the sentiment label of a document.
We experiment with various machine learning al-
gorithms to analyze the affect of word-level sen-
timent annotations on (document-level) sentiment
analysis.

The paper is organized as follows. In section 2
we discuss the previous works in the field of sen-
timent analysis, existing resources for Telugu and
specific advances that are made in Telugu. Section
3 describes our corpus and annotation scheme. 4
section describes several experiments that are car-
ried out and the accuracies obtained. We also ex-
plain the results in detail in 4.3. Section 5 show-
cases our conclusions and section 6 shows the
scope for future work.

2 Related Work

• Sentiment Analysis: Several ap-
proaches have been proposed to capture the
sentiment in the text where each approach ad-
dresses the issue at different levels of granu-
larity. Some researchers have proposed meth-
ods for document-level sentiment classifica-
tion (Pang et al., 2002; Turney and Littman,
2003). At the top level of granularity, it is
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often impossible to infer the sentiment ex-
pressed about any particular entity, because
a document may convey different opinions
for different entities. Hence, when we con-
sider the tasks of opinion mining where the
sole aim is to capture the sentiment polari-
ties about entities, such as products in prod-
uct reviews, it has been shown that sentence-
level and phrase-level analysis lead to a per-
formance gain (Wilson et al., 2005; Choi and
Wiebe, 2014). In the context of Indian lan-
guages, (Das et al., 2012) proposes an alter-
nate way to build the resources for multilin-
gual affect analysis where translations into
Telugu are done using WordNet.

• SentiWordNet : (Das and Bandyopad-
hyay, 2010) proposes multiple computational
techniques like, WordNet based, dictionary
based, corpus based and generative ap-
proaches to generate Telugu SentiWordNet.
(Das and Bandyopadhyay, 2011) proposes a
tool Dr Sentiment where it automatically cre-
ates the PsychoSentiWordNet which is an ex-
tension of SentiWordNet that presently holds
human psychological knowledge on a few as-
pects along with sentiment knowledge.

• Advances in Telugu: (Naidu et al.,
2017) utilizes Telugu SentiWordNet on the
news corpus to perform the task of Senti-
ment Analysis. (Mukku and Mamidi, 2017)
developed a polarity annotated corpus where
positive, negative, neutral polarities are as-
signed to 5410 sentences in the corpus col-
lected from several sources. They developed
a gold standard annotated corpus of Telugu
sentences aimed at improving sentiment anal-
ysis in Telugu. To minimize the dependence
of machine learning(ML) approaches for sen-
timent analysis on abundance of corpus, this
paper proposes a novel method to learn rep-
resentations of resource-poor languages by
training them jointly with resource-rich lan-
guages using a siamese network (Choudhary
et al., 2018a). A novel approach to clas-
sify sentences into their corresponding sen-
timent using contrastive learning is proposed
by (Choudhary et al., 2018b) which utilizes
the shared parameters of siamese networks.

(Gangula and Mamidi, 2018) and (Mukku
and Mamidi, 2017) are the only reported

works for Telugu sentiment analysis using
sentence-level annotations who developed
annotated corpora. Ours is the first of it’s
kind NLP research which uses sentiment an-
notation of bi-grams for sentiment analysis
(opinion mining).

3 Building the Benchmark Corpus

Lexicons play an important role in sentiment anal-
ysis. Having annotated lexicon is key to carry out
sentiment analysis efficiently. The primary task in
sentiment analysis is to identify the polarity of text
in any given document. The polarity may be either
positive, negative or neutral (Naidu et al., 2017).
Sentiment is a property of human intelligence and
is not entirely based on the features of a language.
Thus, peoples involvement is required to capture
the sentiment (Das and Bandyopadhyay, 2011).
Having said this, we establish that annotated lex-
icons are of immense importance in any language
for sentiment analysis (a.k.a opinion mining).

For our experiments, we utilize the reviews
dataset from Sentiraama 1 corpus. It contains
668 reviews in total for 267 movies, 201 prod-
ucts and 200 books. Product reviews has 101 pos-
itive and 100 negative entries; movie reviews has
136 positive and 132 negative reviews; book re-
views data has 100 positive and 100 negative en-
tries. Since the obtained corpus is only annotated
with document-level sentiment labels, we perform
the word-level sentiment annotation manually.

3.1 Annotation Procedure

In this paper, sentiment polarities are classified
into 4 labels : positive, negative, neutral and am-
biguous. Positive and negative labels are given
in case of positive and negative sentiments in the
word respectively. Ambiguous label is given to
words which acquire sentiment based on the words
it is used along with or it’s position in a sentence.
Neutral label is given when the word has no senti-
ment in it. However, neutral and ambiguous sen-
timent labels are of no significant use for the task
of sentiment analysis. Henceforth, those labels are
ignored in our experiments.

Sentiment annotations are performed on two
different kinds of data. Table 1 showcases the dis-
tribution of sentiment labels at the word-level.

1https://ltrc.iiit.ac.in/showfile.php?
filename=downloads/sentiraama/
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• Unigrams: We obtain 7,663 words from
Telugu SentiWordNet 2 resource to calculate
the base-line accuracy of any word-level sen-
timent annotated model. These words are al-
ready annotated for sentiment/polarity. How-
ever, it doesn’t provide extensive coverage of
Telugu. Later on, we discover a newly de-
veloped large resource of Telugu words by
(Parupalli and Singh, 2018), OntoSenseNet,
which has a collection of 21,000 words (ad-
jectives+verbs+adverbs). We perform the
task of word-level sentiment annotation on
the words obtained from this resource and we
refer to these annotated words as unigrams
throughout this paper. Language experts who
performed the annotations are given some
guidelines to follow. Experts are implored
to look at the word, it’s gloss and then de-
cide which one of the four sentiment labels is
more apt for a given word. Aforementioned
word-level sentiment annotation is an attempt
to improve the coverage of SentiWordNet.

• Bigrams: Furthermore, sentiment cannot
always be captured in a single word.This pa-
per aims to check if bigram annotation is
a suitable approach for improving the effi-
ciency of sentiment analysis. To validate the
hypothesis, we extract bigrams, which oc-
curred at least more than once, only from
the target corpus - Sentiraama dataset de-
veloped by (Gangula and Mamidi, 2018).
For example, consider the bigram (’DhokA’,
’ledu’). The words individually mean ‘hur-
dle (DhokA)’, ‘no (ledu)’. Thus, in word-
level annotation task they would be given a
negative label. However, the bigram means
there is ‘nothing that can stop’ which invokes
a positive sentiment. Such occurrences are
quite common in the text, especially reviews,
which lead us to believe that bigram polar-
ity has potential to enhance sentiment anal-
ysis, opinion mining. The usage of this de-
veloped resource in experiments performed is
explained in section 4.

3.2 Validation

Annotations are done by 2 native speakers of Tel-
ugu. If the annotators aren’t able to decide which

2http://amitavadas.com/sentiwordnet.
php

label to assign, they are advised to tag it as uncer-
tain. In case of a disagreement, the label given by
the annotator with more experience is given pri-
ority. Validation of the developed resource is done
using Cohen’s Kappa (Cohen, 1968). By consider-
ing the uncertain cases as borderline cases (where
at least one annotator tagged the word as uncer-
tain), Kappa value is seen as 0.91. This shows
almost perfect agreement and this proves the con-
sistency in annotation task. This is especially high
because when both the annotators are uncertain,
we did a re-iteration to finalize the tag. Such re-
iterative task is done for about 2,400 words during
the development of our resource.

4 Experiments and Results

In this section we will analyze and observe how
word-level polarity affects overall sentiment of the
text through majority polling approach and ma-
chine learning based classification approaches.

4.1 Majority Polling Approach

A simple intuitive approach to identify the senti-
ment label of the text is to calculate the sum of
positive(+1) and negative(-1) polarity values in it.
If the sum is positive, it shows that number of pos-
itive words have outnumbered the number of neg-
ative words thus resulting in a positive sentiment
on the whole. Otherwise, the polarity of the text is
negative. Cases where the sum equals to 0 are ig-
nored. Following are the word-level polarities we
consider for positive and negative labels:

• Unigram: We use the annotated unigram
data that is discussed in 3. For each review,
we consider the unigram labels to carry the
majority polling approach.

• Bigram: The extracted bigrams are anno-
tated for positive and negative polarity. Ini-
tially, we divide our data into training and
testing sets in 7:3 ratio. We only consider the
annotated bigrams from the training corpus
to predict the sentiment polarity of reviews in
the test data.

• Unigram+Bigram: In this trial, we com-
bine the unigram and bigram data to perform
majority polling. We consider the whole un-
igram data whereas bigrams extracted from
the training set are only considered for pre-
dictions.
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Resource Positive Negative Neutral Ambiguous Total
SentiWordNet 3 2135 4076 359 1093 7663

Dictionary (Parupalli and Singh, 2018) 3080 4232 3391 10199 20896
Bigrams 1978 1762 8990 1996 14826

Table 1: Distribution of Sentiment Labels in Several Resources

Furthermore, as Telugu is agglutinative in na-
ture (Pingali and Varma, 2006), we experiment
with the above mentioned approaches after per-
forming morphological segmentation provided by
Indic NLP library 4. Morphological segmentation
is performed on the original reviews data and n-
grams (positive and negative labels) to see if we
could get more accurate sentiment prediction of
the reviews due to increment in the coverage.

4.2 Machine Learning Based Classification
Approach

In this section, we perform document-level senti-
ment analysis task with word embedding models,
specifically Word2Vec. We utilize a Word2Vec
model that is trained on corpus consisting of
scrapped data from Telugu websites, with 270 mil-
lion non-unique tokens on the whole. Further-
more, to obtain vectors for each review, we take
word vector of every word in the review and calcu-
late their average to get a single document vector.

Figure 1: Comparative analysis of percentage ac-
curacies produced by various classifiers

Though traditional vector-based word represen-
tations help us accomplish various natural lan-
guage processing tasks, they often lack informa-
tion related to sentiment analysis. Thus, we aim to
enrich the Word2Vec vectors obtained from cor-
pus by incorporating word-level polarity features.
We do this by adding the features we propose
in 4.1 to the original averaged Word2Vec vector,

4http://anoopkunchukuttan.github.io/
indic_nlp_library/

which is expected to increase the accuracy of po-
larity prediction. The additional features we added
are: positive unigrams (number of positive po-
larity unigrams in the review), negative unigrams
(number of negative polarity unigrams in the re-
view), positive bigrams (number of positive polar-
ity bigrams in the review), negative bigrams (num-
ber of negative polarity bigrams in the review).
We partition these document vectors into training
and testing sets to develop various classifier mod-
els. In this paper, we have implemented 5 classi-
fiers, namely, Linear SVM, Gaussian SVM, Ran-
dom Forest, Neural Network, K Nearest Neigh-
bor (KNN). Percentage accuracies are illustrated
along with the improvement in accuracies after ad-
dition of our proposed features in Figure 1 and re-
sults are discussed in 4.3.

4.3 Results

In this section, we showcase and analyze the re-
sults of the two experiments we have done in sec-
tion 4.

4.3.1 Majority Polling Approach :

Results illustrated in Table 2 show that certain
word-level features do capture information rele-
vant to document-level sentiment analysis. Our
hypothesis in Section 3.1 shows that bigram po-
larity annotations have potential to enhance senti-
ment analysis. High accuracy obtained by using
only bigrams for majority polling proves our hy-
pothesis. However, there is a trade-off between
coverage and accuracy. This can be depicted from
the huge increase in the count of unclassified re-
views in case of bigram majority poling. We also
observe that effect of morphological segmentation
on accuracy is hardly positive. This indicates that
in case of Telugu, morphological data has rele-
vance to sentiment expressed and morphological
segmentation would result in loss of such valuable
information for sentiment analysis tasks.
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SentiWordNet Our resource Bigram Uni+Bigrams
Before Segmentation 61.86 62.84 78.97 55.44
Unclassified reviews 23/201 14/201 108/201 10/201
After Segmentation 60.23 58.29 49.46 57.89
Unclassified reviews 20/201 18/201 36/201 8/201

Table 2: Comparison of accuracies obtained through majority polling on different resources.

4.3.2 Machine Learning Based Classification
Approach:

This approach shows that across all the classifiers,
addition of word-level polarity features improves
the process of classification. Therefore, classi-
fiers can predict document-level sentiment polar-
ity with better accuracies. Hence, our hypothe-
sis is validated once again. Accuracies doesn’t
improve significantly over the baseline value but
show a small increment always. KNN classifier
shows a huge drop in accuracy after inclusion of
the new features proposed. This is observed be-
cause KNN assumes all features to hold equal
importance for classification. Hence, KNN fails
to ignore the noisy features which explains the
drop. Random forest and neural network classi-
fiers don’t show significant learning from the pro-
posed features. Finally, we observe that linear
SVM classifier works best to identify the polar-
ity of a text for our features indicating linear sep-
arability of the data. This also explains the bad
performance of Gaussian SVM. Linear SVM pro-
duces an accuracy of 84.08% when SentiWord-
Net words alone are used as a feature, which can
be considered as the baseline accuracy. It gives
an accuracy of 83.44% ,84.34% and 86.57% for
unigrams, bigrams and unigrams+bigrams respec-
tively as features of Linear SVM classifier.

5 Conclusions

In this paper, efforts are made to develop an an-
notated corpus of 21,000 words to enrich Telugu
SentiWordNet. This is a work in progress. We
perform annotations of 14,000 bigrams that are
extracted from target corpus to validate their im-
portance. This is a first-of-it’s-kind approach in
Telugu to enhance sentiment analysis. Manual an-
notations done show perfect agreement which val-
idates the developed resource. Furthermore, we
provide a justification to why word-level senti-
ment annotation of bigrams enhances sentiment
analysis though an intuitive majority polling ap-

proach, by using several ML classifiers. The re-
sults are analyzed for further insights.

6 Future Work

We extract bigrams only from the target corpus
because we wanted to mainly validate the impor-
tance of bigrams in sentiment analysis. However,
attempts should be made to enhance the Senti-
WordNet with, at least, some most occurring bi-
grams in Telugu. We hope this corpus can serve
as a basis for more work to be done in the area
of sentiment analysis for Telugu. A continuation
to this paper could be handling the enrichment of
adjectives and adverbs available in OntoSenseNet
for Telugu.

6.1 Crowd sourcing

We can develop a crowd sourcing platform where
the annotations can be done by several language
experts instead of a few. This helps in the annota-
tion of large corpora. We aim to develop a crowd
sourcing model for the same in near future. This
would be of immense help in annotation of 21,000
unigrams extracted from the dictionary developed
by (Parupalli and Singh, 2018).
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Abstract

We investigate a new training paradigm for
extractive summarization. Traditionally,
human abstracts are used to derive gold-
standard labels for extraction units. How-
ever, the labels are often inaccurate, be-
cause human abstracts and source docu-
ments cannot be easily aligned at the word
level. In this paper we convert human ab-
stracts to a set of Cloze-style comprehen-
sion questions. System summaries are en-
couraged to preserve salient source con-
tent useful for answering questions and
share common words with the abstracts.
We use reinforcement learning to explore
the space of possible extractive summaries
and introduce a question-focused reward
function to promote concise, fluent, and
informative summaries. Our experiments
show that the proposed method is effec-
tive. It surpasses state-of-the-art systems
on the standard summarization dataset.

1 Introduction

We study extractive summarization in this work
where salient word sequences are extracted from
the source document and concatenated to form a
summary (Nenkova and McKeown, 2011). Exist-
ing supervised approaches to extractive summa-
rization frequently use human abstracts to create
annotations for extraction units (Gillick and Favre,
2009; Li et al., 2013; Cheng and Lapata, 2016).
E.g., a source word is labelled 1 if it appears in
the abstract, 0 otherwise. Despite the usefulness,
there are two issues with this scheme. First, a vast
majority of the source words are tagged 0s, only
a small portion are 1s. This is due to the fact that
human abstracts are short and concise; they often
contain words not present in the source. Second,

Source Document
The first doses of the Ebola vaccine were on a commercial flight to
West Africa and were expected to arrive on Friday, according to a
spokesperson from GlaxoSmithKline (GSK) one of the companies
that has created the vaccine with the National Institutes of Health.

Another vaccine from Merck and NewLink will also be tested.

“Shipping the vaccine today is a major achievement and shows
that we remain on track with the accelerated development of our
candidate Ebola vaccine,” Dr. Moncef Slaoui, chairman of global
vaccines at GSK said in a company release. (Rest omitted.)

Abstract
The first vials of an Ebola vaccine should land in Liberia Friday

Questions
Q: The first vials of an vaccine should land in Liberia Friday
Q: The first vials of an Ebola vaccine should in Liberia Friday
Q: The first vials of an Ebola vaccine should land in Friday

Table 1: Example source document, the top sentence of the
abstract, and system-generated Cloze-style questions. Source
content related to the abstract is italicized.

not all labels are accurate. Source words that are
labelled 0 may be paraphrases, generalizations, or
otherwise related to words in the abstracts. These
source words are often mislabelled. Consequently,
leveraging human abstracts to provide supervision
for extractive summarization remains a challenge.

Neural abstractive summarization can alleviate
this issue by allowing the system to either copy
words from the source texts or generate new words
from a vocabulary (Rush et al., 2015; Nallapati
et al., 2016; See et al., 2017). While the techniques
are promising, they face other challenges, such as
ensuring the summaries remain faithful to the orig-
inal. Failing to reproduce factual details has been
revealed as one of the main obstacles for neural
abstractive summarization (Cao et al., 2018; Song
and Liu, 2018). This study thus chooses to focus
on neural extractive summarization.

We explore a new training paradigm for extrac-
tive summarization. We convert human abstracts
to a set of Cloze-style comprehension questions,
where the question body is a sentence of the ab-
stract with a blank, and the answer is an entity or a
keyword. Table 1 shows an example. Because the
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questions cannot be answered by applying general
world knowledge, system summaries are encour-
aged to preserve salient source content that is rele-
vant to the questions (≈ human abstract) such that
the summaries can work as a document surrogate
to predict correct answers. We use an attention
mechanism to locate segments of a summary that
are relevant to a given question so that the sum-
mary can be used to answer multiple questions.

This study extends the work of (Lei et al., 2016)
to use reinforcement learning to explore the space
of extractive summaries. While the original work
focuses on generating rationales to support super-
vised classification, the goal of our study is to pro-
duce fluent, generic document summaries. The
question-answering (QA) task is designed to ful-
fill this goal and the QA performance is only sec-
ondary. Our research contributions can be summa-
rized as follows:

• we investigate an alternative training scheme for
extractive summarization where the summaries
are encouraged to be semantically close to hu-
man abstracts in addition to sharing common
words;

• we compare two methods to convert human ab-
stracts to Cloze-style questions and investigate
its impact on QA and summarization perfor-
mance. Our results surpass those of previous
systems on a standard summarization dataset.

2 Related Work

This study focuses on generic summarization.
It is different from the query-based summariza-
tion (Daumé III and Marcu, 2006; Dang and
Owczarzak, 2008), where systems are trained to
select text pieces related to predefined queries. In
this work we have no predefined queries but the
system carefully generates questions from human
abstracts and learns to produce generic summaries
that are capable of answering all questions.

Cloze questions have been used in reading com-
prehension (Richardson et al., 2013; Weston et al.,
2016; Mostafazadeh et al., 2016; Rajpurkar et al.,
2016) to test the system’s ability to perform rea-
soning and language understanding. Hermann et
al. (2015) describe an approach to extract (context,
question, answer) triples from news articles. Our
work draws on this approach to automatically cre-
ate questions from human abstracts.

Reinforcement learning (RL) has been recently
applied to a number of NLP applications, includ-

ing dialog generation (Li et al., 2017), machine
translation (MT) (Ranzato et al., 2016; Gu et al.,
2018), question answering (Choi et al., 2017), and
summarization and sentence simplification (Zhang
and Lapata, 2017; Paulus et al., 2017; Chen and
Bansal, 2018; Narayan et al., 2018). This study
leverages RL to explore the space of possible ex-
tractive summaries. The summaries are encour-
aged to preserve salient source content useful for
answering questions as well as sharing common
words with the abstracts.

3 Our Approach

Given a source documentX , our system generates
a summary Y = (y1, y2, · · · , y|Y |) by identifying
consecutive sequences of words: yt is 1 if the t-th
source word is included in the summary, 0 oth-
erwise. In this section we investigate a question-
oriented rewardR(Y ) that encourages summaries
to contain sufficient content useful for answering
key questions about the document (§3.1); we then
use reinforcement learning to explore the space of
possible extractive summaries (§3.2).

3.1 Question-Focused Reward

We reward a summary if it can be used as a docu-
ment surrogate to answer important questions. Let
{(Qk, e∗k)}Kk=1 be a set of question-answer pairs
for a source document, where e∗k is the ground-
truth answer corresponding to an entity or a key-
word. We encode the question Qk into a vector:
qk = Bi-LSTM(Qk) ∈ Rd using a bidirectional
LSTM, where the last outputs of the forward and
backward passes are concatenated to form a ques-
tion vector. We use the same Bi-LSTM to en-
code the summary Y to a sequence of vectors:
(hS1 ,h

S
2 , · · · ,hS|S|) = Bi-LSTM(Y ), where |S| is

the number of words in the summary; hSt ∈ Rd is
the concatenation of forward and backward hidden
states at time step t. Figure 1 provides an illustra-
tion of the system framework.

An attention mechanism is used to locate parts
of the summary that are relevant to Qk. We de-
fine αk,i ∝ exp(qkW

ahSi ) to represent the impor-
tance of the i-th summary word (hSi ) to answering
the k-th question (qk), characterized by a bilin-
ear term (Chen et al., 2016a). A context vector ck
is constructed as a weighted sum of all summary
words relevant to the k-th question, and it is used
to predict the answer. We define the QA reward
Ra(Y ) as the log-likelihood of correctly predict-
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Figure 1: System framework. The model uses an extractive summary as a document surrogate to answer important questions
about the document. The questions are automatically derived from the human abstract.

ing all answers. {Wa,Wc} are learnable model
parameters.

αk,i =
exp(qkW

ahSi )∑|S|
i=1 exp(qkW

ahSi )
(1)

ck =

|S|∑

i=1

αk,ih
S
i (2)

P (ek|Y,Qk) = softmax(Wcck) (3)

Ra(Y ) =
1

K

K∑

k=1

logP (e∗k|Y,Qk) (4)

In the following we describe approaches to ob-
tain a set of question-answer pairs {(Qk, e∗k)}Kk=1

from a human abstract. In fact, this formula-
tion has the potential to make use of multiple hu-
man abstracts (subject to availability) in a unified
framework; in that case, the QA pairs will be ex-
tracted from all abstracts. According to Eq. (4),
the system is optimized to generate summaries that
preserve salient source content sufficient to answer
all questions (≈ human abstract).

We expect to harvest one question-answer pair
from each sentence of the abstract. More are pos-
sible, but the QA pairs will contain duplicate con-
tent. There are a few other noteworthy issues. If
we do not collect any QA pairs from a sentence of
the abstract, its content will be left out of the sys-
tem summary. It is thus crucial for the system to
extract at least one QA pair from any sentence in
an automatic manner. Further, the questions must
not be answered by simply applying general world
knowledge. We expect the adequacy of the sum-
mary to have a direct influence on whether or not
the questions will be correctly answered. Moti-
vated by these considerations, we perform the fol-
lowing steps. We split a human abstract to a set
of sentences, identify an answer token from each

sentence, then convert the sentence to a question
by replacing the token with a placeholder, yield-
ing a Cloze question. We explore two approaches
to extract answer tokens:

• Entities. We extract four types of named enti-
ties {PER, LOC, ORG, MISC} from sentences
and treat them as possible answer tokens.

• Keywords. This approach identifies the ROOT

word of a sentence dependency parse tree and
treats it as a keyword-based answer token.
Not all sentences contain entities, but every
sentence has a root word; it is often the main
verb of the sentence.

We obtain K question-answer pairs from each hu-
man abstract, one pair per sentence. If there are
less than K sentences in the abstract, the QA pairs
of the top sentences will be duplicated, with the
assumption that the top sentences are more impor-
tant than others. If multiple entities reside in a sen-
tence, we randomly pick one as the answer token;
otherwise if there are no entities, we use the root
word instead.

To ensure that the extractive summaries are con-
cise, fluent, and close to the original wording, we
add additional components to the reward function:
(i) we define Rs(Y ) = | 1

|Y |
∑|Y |

t=1 yt − δ| to re-
strict the summary size. We require the percentage
of selected source words to be close to a prede-
fined threshold δ. This constraint works well at re-
stricting length, with the average summary size ad-
hering to this percentage; (ii) we further introduce
Rf (Y ) =

∑|Y |
t=2 |yt−yt−1| to encourage the sum-

maries to be fluent. This component is adopted
from (Lei et al., 2016), where few 0/1 switches
between yt−1 and yt indicates the system is se-
lecting consecutive word sequences; (iii) we en-
courage system and reference summaries to share
common bigrams. This practice has shown suc-
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cess in earlier studies (Gillick and Favre, 2009).
Rb(Y ) is defined as the percentage of reference
bigrams successfully covered by the system sum-
mary. These three components together ensure the
well-formedness of extractive summaries. The fi-
nal reward function R(Y ) is a linear interpolation
of all the components; γ, α, β are coefficients and
we describe their parameter tuning in §4.

R(Y )=Ra(Y )+γRb(Y )−αRf(Y )−βRs(Y )
(5)

3.2 Reinforcement Learning
In the following we seek to optimize a policy
P (Y |X) for generating extractive summaries so
that the expected reward EP (Y |X)[R(Y )] is max-
imized. Taking derivatives of this objective with
respect to model parameters θ involves repeat-
edly sampling summaries Ŷ = (ŷ1, ŷ2, · · · , ŷ|Y |)
(illustrated in Eq. (6)). In this way reinforce-
ment learning exploits the space of extractive sum-
maries of a source document.

∇θEP (Y |X)[R(Y )]

= EP (Y |X)[R(Y )∇θ logP (Y |X)]

≈ 1
N

∑N
n=1R(Ŷ (n))∇θ logP (Ŷ (n)|X) (6)

To calculate P (Y |X) and then sample Ŷ
from it, we use a bidirectional LSTM to en-
code a source document to a sequence of vectors:
(hD1 ,h

D
2 , · · · ,hD|X|) = Bi-LSTM(X). Whether

to include the t-th source word in the summary
(ŷt) thus can be decided based on hDt . However,
we also want to accommodate the previous t-1
sampling decisions (ŷ1:t−1) to improve the fluency
of the extractive summary. Following (Lei et al.,
2016), we introduce a single-direction LSTM en-
coder whose hidden state st tracks the sampling
decisions up to time step t (Eq. 8). It represents
the semantic meaning encoded in the current sum-
mary. To sample the t-th word, we concatenate the
two vectors [hDt ||st−1] and use it as input to a feed-
forward layer with sigmoid activation to estimate
ŷt ∼ P (yt|ŷ1:t−1, X) (Eq. 7).

P (yt|ŷ1:t−1, X) = σ(Wh[hDt ||st−1] + bh) (7)

st = LSTM([hDt ||ŷt], st−1) (8)

P (Ŷ |X) =
∏|Y |
t=1 P (ŷt|ŷ1:t−1, X) (9)

Note that Eq. (7) can be pretrained using goldstan-
dard summary sequence Y ∗ = (y∗1, y

∗
2, · · · , y∗|Y |)

to minimize the word-level cross-entropy loss,

System R-1 R-2 R-L
LSA (Steinberger and Jezek, 2004) 21.2 6.2 14.0
LexRank (Erkan and Radev, 2004) 26.1 9.6 17.7
TextRank (Mihalcea and Tarau, 2004) 23.3 7.7 15.8
SumBasic (Vanderwende et al., 2007) 22.9 5.5 14.8
KL-Sum (Haghighi and Vanderwende, 2009) 20.7 5.9 13.7
Distraction-M3 (Chen et al., 2016b) 27.1 8.2 18.7
Seq2Seq w/ Attn (See et al., 2017) 25.0 7.7 18.8
Pointer-Gen w/ Cov (See et al., 2017) 29.9 10.9 21.1
Graph-based Attn (Tan et al., 2017) 30.3 9.8 20.0

Extr+EntityQ (this paper) 31.4 11.5 21.7
Extr+KeywordQ (this paper) 31.7 11.6 21.5

Table 2: Results on the CNN test set (full-length F1 scores).

where we set y∗t as 1 if (xt, xt+1) is a bigram in
the human abstract. For reinforcement learning,
our goal is to optimize the policy P (Y |X) using
the reward function R(Y ) (§3.1) during the train-
ing process. Once the policy P (Y |X) is learned,
we do not need the reward function (or any QA
pairs) at test time to generate generic summaries.
Instead we choose ŷt that yields the highest prob-
ability ŷt = argmax P (yt|ŷ1:t−1, X).

4 Experiments

All training, validation, and testing was performed
using the CNN dataset (Hermann et al., 2015; Nal-
lapati et al., 2016) containing news articles paired
with human-written highlights (i.e., abstracts). We
observe that a source article contains 29.8 sen-
tences and an abstract contains 3.54 sentences on
average. The train/valid/test splits contain 90,266,
1,220, 1,093 articles respectively.

4.1 Hyperparameters
The hyperparameters, tuned on the validation set,
include the following: the hidden state size of
the Bi-LSTM is 256; the hidden state size of the
single-direction LSTM encoder is 30. Dropout
rate (Srivastava, 2013), used twice in the sampling
component, is set to 0.2. The minibatch size is
set to 256. We apply early stopping on the vali-
dation set, where the maximum number of epochs
is set to 50. Our source vocabulary contains 150K
words; words not in the vocabulary are replaced
by the 〈unk〉 token. We use 100-dimensional
word embeddings, initialized by GloVe (Penning-
ton et al., 2014) and remain trainable. We set β
= 2α and select the best α ∈ {10, 20, 50} and
γ ∈ {5, 6, 7, 8} using the valid set (best value un-
derlined). The maximum length of input is set to
100 words; δ is set to be 0.4 (≈40 words). We use
the Adam optimizer (Kingma and Ba, 2015) with
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an initial learning rate of 1e-4 and halve the learn-
ing rate if the objective worsens beyond a thresh-
old (> 10%). As mentioned we utilized a bigram
based pretraining method. We found that this sta-
bilized the training of the full model.

4.2 Results

We compare our methods with state-of-the-art
published systems, including both extractive and
abstractive approaches (their details are summa-
rized below). We experiment with two variants of
our approach. “EntityQ” uses QA pairs whose an-
swers are named entities. “KeywordQ” uses pairs
whose answers are sentence root words. Accord-
ing to the R-1, R-2, and R-L scores (Lin, 2004)
presented in Table 2, both methods are superior
to the baseline systems on the benchmark dataset,
yielding 11.5 and 11.6 R-2 F-scores, respectively.

• LSA (Steinberger and Jezek, 2004) uses the la-
tent semantic analysis technique to identify se-
mantically important sentences.

• LexRank (Erkan and Radev, 2004) is a graph-
based approach that computes sentence impor-
tance based on the concept of eigenvector cen-
trality in a graph representation of source sen-
tences.

• TextRank (Mihalcea and Tarau, 2004) is an un-
supervised graph-based ranking algorithm in-
spired by algorithms PageRank and HITS.

• SumBasic (Vanderwende et al., 2007) is an ex-
tractive approach that assumes words occurring
frequently in a document cluster have a higher
chance of being included in the summary.

• KL-Sum (Haghighi and Vanderwende, 2009)
describes a method that greedily adds sentences
to the summary so long as it decreases the KL
divergence.

• Distraction-M3 (Chen et al., 2016b) trains the
summarization model to not only attend to to
specific regions of input documents, but also
distract the attention to traverse different con-
tent of the source document.

• Pointer-Generator (See et al., 2017) allows the
system to not only copy words from the source
text via pointing but also generate novel words
through the generator.

• Graph-based Attention (Tan et al., 2017) in-
troduces a graph-based attention mechanism to
enhance the encoder-decoder framework.

K1 K2 K3 K4 K5
# Uniq Entities 23.7K 37.0K 46.1K 50.3K 50.3K
Train Acc (%) 46.1 37.2 34.2 33.6 34.8
Valid Acc (%) 12.8 14.0 14.7 15.7 15.4
Valid R-2 F (%) 11.2 11.1 11.2 11.1 10.8

# Uniq Keywds 7.3K 10.4K 12.5K 13.7K 13.7K
Train Acc (%) 30.5 28.2 27.6 27.5 27.5
Valid Acc (%) 19.3 22.5 22.2 23.0 21.9
Valid R-2 F (%) 11.2 11.1 10.8 11.0 10.8

Table 3: Train/valid accuracy and R-2 F-scores when using
varying numbers of QA pairs (K=1 to 5) in the reward func.

In Table 3, we vary the number of QA pairs
used per article in the reward function (K=1 to 5).
The summaries are encouraged to contain compre-
hensive content useful for answering all questions.
When more QA pairs are used (K1→K5), we ob-
serve that the number of answer tokens has in-
creased and almost doubled: 23.7K (K1)→50.3K
(K5) for entities as answers, and 7.3K→13.7K for
keywords. The enlarged answer space has an im-
pact on QA accuracies. When using entities as
answers, the training accuracy is 34.8% (Q5) and
validation is 15.4% (Q5), and there appears to be
a considerable gap between the two. In contrast,
the gap is quite small when using keywords as an-
swers (27.5% and 21.9% for Q5), suggesting that
using sentence root words as answers is a more vi-
able strategy to create QA pairs.

Comparing to QA studies (Chen et al., 2016a),
we remove the constraint that requires answer en-
tities (or keywords) to reside in the source docu-
ments. Adding this constraint improves the QA
accuracy for a standard QA system. However, be-
cause our system does not perform QA during test-
ing (the question-answer pairs are not available for
the test set) but only generate generic summaries,
we do not enforce this requirement and report no
testing accuracies. We observe that the R-2 scores
only present minor changes from K1 to K5. We
conjecture that more question-answer pairs do not
make the summaries contain more comprehensive
content because the input and the summary are rel-
atively short; K=1 yields the best results.

In Table 4, we present example system and ref-
erence summaries. Our extractive summaries can
be overlaid with the source documents to assist
people with browsing through the documents. In
this way the summaries stay true to the original
and do not contain information that was not in the
source documents.

Future work. We are interested in investigating
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Source Document
It was all set for a fairytale ending for record breaking jockey AP Mc-
Coy. In the end it was a different but familiar name who won the
Grand National on Saturday.

25-1 outsider Many Clouds, who had shown little form going into the
race, won by a length and a half, ridden by jockey Leighton Aspell.
Aspell won last year’s Grand National too, making him the first
jockey since the 1950s to ride back-to-back winners on different
horses.

“It feels wonderful, I asked big questions,” Aspell said...

Abstract
25-1 shot Many Clouds wins Grand National
Second win a row for jockey Leighton Aspell
First jockey to win two in a row on different horses since 1950s

Table 4: Example system summary and human abstract. The
summary words are shown in bold in the source document.

approaches that automatically group selected sum-
mary segments into clusters. Each cluster can cap-
ture a unique aspect of the document, and clus-
ters of text segments can be color-highlighted. In-
spired by the recent work of Narayan et al. (2018),
we are also interested in conducting the usability
study to test how well the summary highlights can
help users quickly answer key questions about the
documents. This will provide an alternative strat-
egy for evaluating our proposed method against
both extractive and abstractive baselines.

5 Conclusion

In this paper we explore a new training paradigm
for extractive summarization. Our system converts
human abstracts to a set of question-answer pairs.
We use reinforcement learning to exploit the space
of extractive summaries and promote summaries
that are concise, fluent, and adequate for answer-
ing questions. Results show that our approach is
effective, surpassing state-of-the-art systems.
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Abstract

Encoder-decoder models typically only
employ words that are frequently used in
the training corpus to reduce the compu-
tational costs and exclude noise. How-
ever, this vocabulary set may still in-
clude words that interfere with learning in
encoder-decoder models. This paper pro-
poses a method for selecting more suit-
able words for learning encoders by uti-
lizing not only frequency but also co-
occurrence information, which we capture
using the HITS algorithm. We apply our
proposed method to two tasks: machine
translation and grammatical error correc-
tion. For Japanese-to-English translation,
this method achieves a BLEU score that is
0.56 points more than that of a baseline.
Furthermore, it outperforms the baseline
method for English grammatical error cor-
rection, with an F0.5-measure that is 1.48
points higher.

1 Introduction

Encoder-decoder models (Sutskever et al., 2014)
are effective in tasks such as machine translation
(Cho et al., 2014; Bahdanau et al., 2015) and
grammatical error correction (Yuan and Briscoe,
2016). Vocabulary in encoder-decoder models is
generally selected from the training corpus in de-
scending order of frequency, and low-frequency
words are replaced with an unknown word token
<unk>. The so-called out-of-vocabulary (OOV)
words are replaced with <unk> to not increase
the decoder’s complexity and to reduce noise.
However, naive frequency-based OOV replace-
ment may lead to loss of information that is nec-
essary for modeling context in the encoder.

∗Both authors equally contributed to the paper.

This study hypothesizes that vocabulary con-
structed using unigram frequency includes words
that interfere with learning in encoder-decoder
models. That is, we presume that vocabulary
selection that considers co-occurrence informa-
tion selects fewer noisy words for learning robust
encoders in encoder-decoder models. We apply
the hyperlink-induced topic search (HITS) algo-
rithm to extract the co-occurrence relations be-
tween words. Intuitively, the removal of words
that rarely co-occur with others yields better en-
coder models than ones that include noisy low-
frequency words.

This study examines two tasks, machine transla-
tion (MT) and grammatical error correction (GEC)
to confirm the effect of decreasing noisy words,
with a focus on the vocabulary of the encoder side,
because the vocabulary on the decoder side is rela-
tively limited. In a Japanese-to-English MT exper-
iment, our method achieves a BLEU score that is
0.56 points more than that of the frequency-based
method. Further, it outperforms the frequency-
based method for English GEC, with an F0.5-
measure that is 1.48 points higher.

The main contributions of this study are as fol-
lows:

1. The simple but effective preprocessing
method we propose for vocabulary selec-
tion improves encoder-decoder model perfor-
mance.

2. This study is the first to address noise re-
duction in the source text of encoder-decoder
models.

2 Related Work

There is currently a growing interest in apply-
ing neural models to MT (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2015; Wu

112



et al., 2016) and GEC (Yuan and Briscoe, 2016;
Xie et al., 2016; Ji et al., 2017); hence, this
study focuses on improving the simple attentional
encoder-decoder models that are applied to these
tasks.

In the investigation of vocabulary restriction in
neural models, Sennrich et al. (2016) applied byte
pair encoding to words and created a partial char-
acter string set that could express all the words
in the training data. They increased the number
of words included in the vocabulary to enable the
encoder-decoder model to robustly learn contex-
tual information. In contrast, we aim to improve
neural models by using vocabulary that is appro-
priate for a training corpus—not to improve neural
models by increasing their vocabulary.

Jean et al. (2015) proposed a method of re-
placing and copying an unknown word token with
a bilingual dictionary in neural MT. They auto-
matically constructed a translation dictionary from
a training corpus using a word-alignment model
(GIZA++), which finds a corresponding source
word for each unknown target word token. They
replaced the unknown word token with the corre-
sponding word into which the source word was
translated by the bilingual dictionary. Yuan and
Briscoe (2016) used a similar method for neural
GEC. Because our proposed method is performed
as preprocessing, it can be used simultaneously
with this replace-and-copy method.

Algorithms that rank words using co-
occurrence are employed in many natural
language processing tasks. For example,
TextRank (Mihalcea and Tarau, 2004) uses
PageRank (Brin and Page, 1998) for keyword
extraction. TextRank constructs a word graph in
which nodes represent words, and edges represent
co-occurrences between words within a fixed
window; TextRank then executes the PageRank
algorithm to extract keywords. Although this is
an unsupervised method, it achieves nearly the
same precision as one state-of-the-art supervised
method (Hulth, 2003). Kiso et al. (2011) used
HITS (Kleinberg, 1999) to select seeds and
create a stop list for bootstrapping in natural
language processing. They reported significant
improvements over a baseline method using
unigram frequency. Their graph-based algorithm
was effective at extracting the relevance between
words, which cannot be grasped with a simple
unigram frequency. In this study, we use HITS

Algorithm 1 HITS
Require: hubness vector i0
Require: adjacency matrix A
Require: iteration number τ
Ensure: hubness vector i
Ensure: authority vector p
1: function HITS(i0, A, τ )
2: i← i0
3: for t = 1, 2, ..., τ do
4: p← ATi
5: i← Ap
6: normalize i and p

7: return i and p
8: end function

to retrieve co-occurring words from a training
corpus to reduce noise in the source text.

3 Graph-based Filtering of OOV Words

3.1 Hubness and authority scores from HITS

HITS, which is a web page ranking algorithm pro-
posed by Kleinberg (1999), computes hubness and
authority scores for a web page (node) using the
adjacency matrix that represents the web page’s
link (edge) transitions. A web page with high au-
thority is linked from a page with high hubness
scores, and a web page with a high hubness score
links to a page with a high authority score. Algo-
rithm 1 shows pseudocode for the HITS algorithm.
Hubness and authority scores converge by setting
the iteration number τ to a sufficiently large value.

3.2 Vocabulary selection using HITS

In this study, we create an adjacency matrix from
a training corpus by considering a word as a
node and the co-occurrence between words as an
edge. Unlike in web pages, co-occurrence be-
tween words is nonbinary; therefore, several co-
occurrence measures can be used as edge weights.
Section 3.3 describes the co-occurrence measures
and the context in which co-occurrence is defined.

The HITS algorithm is executed using the adja-
cency matrix created in the way described above.
As a result, it is possible to obtain a score indi-
cating importance of each word while considering
contextual information in the training corpus.

Figure 1 shows a word graph example. A
word that obtains a high score in the HITS al-
gorithm is considered to co-occur with a variety
of words. Figure 1 demonstrates that second or-
der co-occurrence scores (the scores of words co-
occurring with words that co-occur with various
words (Schütze, 1998)) are also high.
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Figure 1: An example word graph created for ten
sentences in the training corpus used for GEC1.

In this study, words with high hubness scores
are considered to co-occur with an important
word, and low-scoring words are excluded from
the vocabulary. Using this method appears to gen-
erate a vocabulary that includes words that are
more suitable for representing a context vector for
encoder models.

3.3 Word graph construction

To acquire co-occurrence relations, we use a com-
bination of each word and its peripheral words.
Specifically, we combine the target word with sur-
rounding words within window width N and count
the occurrences. When defining the context in this
way, because the adjacency matrix becomes sym-
metric, the same hubness and authority scores can
be obtained. Figure 2 shows an example of co-
occurrence in which N is set to two.

We use raw co-occurrence frequency (Freq) and
positive pointwise mutual information (PPMI) be-
tween words as the (x, y) element Axy of the adja-
cency matrix. However, naive PPMI reacts sensi-
tively to low-frequency words in a training corpus.
To account for high-frequency, we weight the PMI
by the logarithm of the number of co-occurrences
and use PPMI based on this weighted PMI (Equa-

1In this study, singleton words and their co-occurrences
are excluded from the graph.

Figure 2: An example of co-occurrence context.

tion 2).

Afreq
xy = |x, y| (1)

Appmi
xy = max(0, pmi(x, y) + log2 |x, y|) (2)

Equation 3 is the PMI of target word x and co-
occurrence word y. M is the number of tokens of
the combination, |x, ∗| and |∗, y| are the number
of token combinations when fixing target word x
and co-occurrence word y, respectively.

pmi(x, y) = log2

M · |x, y|
|x, ∗||∗, y| (3)

4 Machine Translation

4.1 Experimental setting
In the first experiment, we conduct a Japanese-
to-English translation using the Asian Scientific
Paper Excerpt Corpus (ASPEC; Nakazawa et al.,
2016). We follow the official split of the train, de-
velopment, and test sets. As training data, we use
only the first 1.5 million sentences sorted by sen-
tence alignment confidence to obtain a Japanese–
English parallel corpus (sentences of more than
60 words are excluded). Our training set consists
of 1,456,278 sentences, development set consists
of 1,790 sentences, and test set consists of 1,812
sentences. The training set has 247,281 Japanese
word types and 476,608 English word types.

The co-occurrence window width N is set to
two. For combinations that co-occurred only once
within the training corpus, we set the value of el-
ement Axy of the adjacency matrix to zero. The
iteration number τ of the HITS algorithm is set to
300. As mentioned in Section 1, we only use the
proposed method on the encoder side.

For this study’s neural MT model2, we imple-
ment global dot attention (Luong et al., 2015). We
train a baseline model that uses vocabulary that is
determined by its frequency in the training corpus.
Vocabulary size is set to 100K on the encoder side
and 50K on the decoder side. Additionally, we

2https://github.com/yukio326/nmt-chainer
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baseline HITS (Freq) HITS (PPMI)
BLEU (50K) 22.24 - 22.40
BLEU (100K) 22.21 22.25 22.77
p-value - 0.35 0.01

Table 1: BLEU scores for Japanese-to-English
translation3. The parentheses indicate vocabulary
size of the encoder.

COMMON outputs DIFF outputs
baseline PPMI baseline PPMI

BLEU 22.33 22.98 21.44 21.98

Table 2: BLEU scores of the COMMON and DIFF
outputs.

conduct an experiment of varying vocabulary size
of the encoder to 50K in the baseline and PPMI
to investigate the effect of vocabulary size. Un-
less otherwise noted, we conduct an analysis of
the model using the vocabulary size of 100K. The
number of dimensions for each of the hidden and
embedding layers is 512. The mini-batch size is
150. AdaGrad is used as an optimization method
with an initial learning rate of 0.01. Dropout is
applied with a probability of 0.2.

For this experiment, a bilingual dictionary is
prepared for postprocessing unknown words (Jean
et al., 2015). When the model outputs an unknown
word token, the word with the highest attention
score is used as a query to replace the unknown
token with the corresponding word from the dic-
tionary. If not in the dictionary, we replace the un-
known word token with the source word (unk rep).
This dictionary is created based on word align-
ment obtained using fast align (Dyer et al., 2013)
on the training corpus.

We evaluate translation results using BLEU
scores (Papineni et al., 2002).

4.2 Results

Table 1 shows the translation accuracy (BLEU
scores) and p-value of a significance test (p <
0.05) by bootstrap resampling (Koehn, 2004).
The PPMI model improves translation accuracy
by 0.56 points in Japanese-to-English translation,
which is a significant improvement.

Next, we examine differences in vocabulary by
comparing each model with the baseline. Com-
pared to the vocabulary of the baseline in 100K
setting, Freq and PPMI replace 16,107 and 17,166

3BLEU score for postprocessing (unk rep) improves by
0.46, 0.44, and 0.46 points in the baseline, Freq, and PPMI,
respectively.

types, respectively; compared to the vocabulary of
the baseline in 50K setting, PPMI replaces 4,791
types.

4.3 Analysis

According to Table 1, the performance of Freq is
almost the same as that of the baseline. When
examining the differences in selected words in
vocabulary between PPMI and Freq, we find
that PPMI selects more low-frequency words in
the training corpus compared to Freq, because
PPMI deals with not only frequency but also co-
occurrence.

The effect of unk rep is almost the same in the
baseline as in the proposed method, which indi-
cates that the proposed method can be combined
with other schemes as a preprocessing step.

As a comparison of the vocabulary size 50K
and 100K, the BLEU score of 100K is higher than
that of 50K in PPMI. Moreover, the BLEU scores
are almost the same in the baseline. We suppose
that the larger the vocabulary size of encoder, the
more noisy words the baseline includes, while the
PPMI filters these words. That is why the pro-
posed method works well in the case where the
vocabulary size is large.

To examine the effect of changing the vocab-
ulary on the source side, the test set is divided
into two subsets: COMMON and DIFF. The for-
mer (1,484 sentences) consists of only the com-
mon vocabulary between the baseline and PPMI,
whereas the latter (328 sentences) includes at least
one word excluded from the common vocabulary.

Table 2 shows the translation accuracy of the
COMMON and DIFF outputs. Translation perfor-
mance of both corpora is improved.

In order to observe how PPMI improves COM-
MON outputs, we measure the similarity of the
baseline and PPMI output sentences by count-
ing the exact same sentences. In the COMMON
outputs, 72 sentence pairs (4.85%) are the same,
whereas 9 sentence pairs are the same in the DIFF
outputs (2.74%). Surprisingly, even though it uses
the same vocabulary, PPMI often outputs different
but fluent sentences.

Table 3 shows an example of Japanese-to-
English translation. The outputs of the proposed
method (especially PPMI) are improved, despite
the source sentence being expressed with common
vocabulary; this is because the proposed method
yielded a better encoder model than the baseline.
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src 有用物質の分離・抽出 ,反応性向上 ,新材料創製 ,廃棄物処理 ,分析等の分野がある。
baseline there are fields such as separation , extraction , extraction , improvement of new material creation , waste treatment ,

analysis , etc .
Freq there are separation and extraction of useful substances , the improvement of reactivity , new material creation , waste

treatment and analysis .
PPMI there are the fields such as separation and extraction of useful materials , the reaction improvement , new material

creation , waste treatment , analysis , etc ...
ref the application fields are separation and extraction of useful substances , reactivity improvement , creation of new

products , waste treatment , and chemical analysis .

Table 3: An example of Japanese-to-English translation on a source sentence from COMMON.

baseline PPMI
50K 150K 50K 150K

Precision 48.09 46.53 49.45 49.23
Recall 8.30 8.50 8.61 9.02
F0.5 24.55 24.55 25.37 26.03

Table 4: F0.5 results on the CoNLL-14 test set4.

COMMON outputs DIFF outputs
baseline PPMI baseline PPMI

P 48.26 60.07 9.40 17.32
R 0.01 0.01 0.01 0.02
F0.5 0.04 0.04 0.04 0.08

Table 5: F0.5 of COMMON and DIFF outputs.

5 Grammatical Error Correction

5.1 Experimental setting

The second experiment addresses GEC. We com-
bine the FCE public dataset (Yannakoudakis et al.,
2011), NUCLE corpus (Dahlmeier et al., 2013),
and English learner corpus from the Lang-8
learner corpus (Mizumoto et al., 2011) and re-
move sentences longer than 100 words to create
a training corpus. From the Lang-8 learner cor-
pus, we use only the pairs of erroneous and cor-
rected sentences. We use 1,452,584 sentences as
a training set (502,908 types on the encoder side
and 639,574 types on the decoder side). We evalu-
ate the models’ performances on the standard sets
from the CoNLL-14 shared task (Ng et al., 2014)
using CoNLL-13 data as a development set (1,381
sentences) and CoNLL-14 data as a test set (1,312
sentences)4. We employ F0.5 as an evaluation
measure for the CoNLL-14 shared task.

We use the same model as in Section 4.1 as a
neural model for GEC. The models’ parameter set-
tings are similar to the MT experiment, except for
the vocabulary and batch sizes. In this experiment,
we set the vocabulary size on the encoder and de-
coder sides to 150K and 50K, respectively. Ad-

4We do not consider alternative answers suggested by the
participating teams.

src Genetic refers the chance of inheriting a dis-
order or disease .

baseline Genetic refers the chance of inheriting a dis-
order or disease .

PPMI Genetic refers to the chance of inheriting a
disorder or disease .

gold Genetic risk refers to the chance of inherit-
ing a disorder or disease .

Table 6: An example of GEC using a source sen-
tence from COMMON.

ditionally, we conduct the experiment of changing
vocabulary size of the encoder to 50K to investi-
gate the effect of the vocabulary size. Unless oth-
erwise noted, we conduct an analysis of the model
using the vocabulary size of 150K. The mini-batch
size is 100.

5.2 Result
Table 4 shows the performance of the baseline and
proposed method. The PPMI model improves pre-
cision and recall; it achieves a F0.5-measure 1.48
points higher than the baseline method.

In setting the vocabulary size of encoder to
150K, PPMI replaces 37,185 types from the base-
line; in the 50K setting, PPMI replaces 10,203
types.

5.3 Analysis
The F0.5 of the baseline is almost the same while
the PPMI model improves the score in the case
where the vocabulary size increases. Similar to
MT, we suppose that the PPMI filters noisy words.

As in Section 4.3, we perform a follow-up ex-
periment using two data subsets: COMMON and
DIFF, which contain 1,072 and 240 sentences, re-
spectively.

Table 5 shows the accuracy of the error correc-
tion of the COMMON and DIFF outputs. Preci-
sion increases by 11.81 points, whereas recall re-
mains the same for the COMMON outputs.

In GEC, approximately 20% of COMMON’s
output pairs differ, which is caused by the dif-
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MT GEC
baseline PPMI baseline PPMI

tokens 52,700 27,364 126,884 70,003
Ave. tokens 3.07 1.59 3.36 1.85

Table 7: Number of words included only in either
the baseline or PPMI vocabulary.

ferences in the training environment. Unlike MT,
we can copy OOV in the target sentence from the
source sentence without loss of fluency; therefore,
our model has little effect on recall, whereas its
precision improves because of noise reduction.

Table 6 shows an example of GEC. The pro-
posed method’s output improves when the source
sentence is expressed using common vocabulary.

6 Discussion

We described that the proposed method has a pos-
itive effect on learning the encoder. However, we
have a question; what affects the performance?
We conduct an analysis of this question in this sec-
tion.

First, we count the occurrence of the words in-
cluded only in the baseline or PPMI in the training
corpus. We also show the number of the tokens
per types (“Ave. tokens”) included only in either
the baseline or PPMI vocabulary.

The result is shown in Table 7. We find that the
proposed method uses low-frequency words in-
stead of high-frequency words in the training cor-
pus. This result suggests that the proposed method
works well despite the fact that the encoder of the
proposed method encounters more <unk> than
the baseline. This is because the proposed method
excludes words that may interfere with the learn-
ing of encoder-decoder models.

Second, we conduct an analysis of the POS of
the words in GEC to find why increasing OOV
improves the learning of encoder-decoder models.
Specifically, we apply POS tagging to the training
corpus and calculate the occurrence of the POS of
the words only included in the baseline or PPMI.
We use NLTK as a POS tagger.

Table 8 shows the result. It is observed that
NOUN is the most affected POS by the proposed
method and becomes often represented by <unk>.
NOUN words in the vocabulary of the baseline
contain some non-English words, such as Japanese
or Korean. These words should be treated as OOV
but the baseline fails to exclude them using only
the frequency. According to Table 8, NUM is also

POS baseline PPMI ALL
NOUN 92,693 44,472 4,644,478
VERB 11,066 10,099 3,597,895
PRON 127 107 1,869,422
ADP 626 685 1,836,193
DET 128 202 1,473,391
ADJ 13,855 12,270 1,429,056
ADV 2,032 1,688 931,763
PRT 319 75 615,817
CONJ 62 28 537,346
PUNCT 110 11 223,573
NUM 5,585 299 207,487
OTHER 281 67 5,209
Total 126,884 70,003 17,371,630

Table 8: Number of the POS of words only in-
cluded in the baseline or PPMI.

affected by the proposed method. NUM words
of the baseline include a simple numeral such as
“119”, in addition to incorrectly segmented nu-
merals such as “514&objID”. This word appears
25 times in the training corpus owing to the noisy
nature of Lang-8. We suppose that the proposed
method excludes these noisy words and has a pos-
itive effect on training.

7 Conclusion

In this paper, we proposed an OOV filtering
method, which considers word co-occurrence in-
formation for encoder-decoder models. Unlike
conventional OOV handling, this graph-based
method selects the words that are more suitable
for learning encoder models by considering con-
textual information. This method is effective for
not only machine translation but also grammatical
error correction.

This study employed a symmetric matrix (sim-
ilar to skip-gram with negative sampling) to ex-
press relationships between words. In future re-
search, we will develop this method by using
vocabulary obtained by designing an asymmetric
matrix to incorporate syntactic relations.
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Abstract

Natural Language Generation (NLG) is a
research task which addresses the auto-
matic generation of natural language text
representative of an input non-linguistic
collection of knowledge. In this paper,
we address the task of the generation of
grammatical sentences in an isolated con-
text given a partial bag-of-words which the
generated sentence must contain. We view
the task as a search problem (a problem of
choice) involving combinations of smaller
chunk based templates extracted from a
training corpus to construct a complete
sentence. To achieve that, we propose a
fitness function which we use in conjunc-
tion with an evolutionary algorithm as the
search procedure to arrive at a potentially
grammatical sentence (modeled by the fit-
ness score) which satisfies the input con-
straints.

1 Introduction

One of the reasons why NLG is a challenging
problem is because there are many ways in which
a given content can be represented. These are rep-
resented by the stylistic constraints which address
syntactic and pragmatic choices (largely) indepen-
dent of the information conveyed.

Classically, there are two major subtasks recog-
nized in NLG: Strategic Generation and Tactical
Generation (Sentence Planning and Surface Real-
ization)1(Reiter and Dale, 2000). Strategic Gen-
eration - “what to say” deals with identifying the
relevant information to present to the audience and
Tactical Generation - “how to say” addresses the

1Because we follow a template based approach, there is
some overlap between the Content Determination and Ag-
gregation steps.

problems of linguistic representation of the input
concepts. In this work, we address the problem of
tactical generation, with a focus on the grammat-
icality of the generated sentences. We formulate
our task as follows: to generate syntactically cor-
rect sentences given a set of constraints such as a
bag-of-words, partial ordering, etc.

So, for example, given a bag of words such as
“man”, “plays”, “football” and length constraints,
a sentence like “The man plays football in Octo-
ber.” would be acceptable.

Our approach involves a corpus derived formu-
lation of template based generation. Templates are
instances of canned text with a slot-filler structure
(“gaps”) which can be filled with the appropriate
information thus realizing the sentence. Since they
are a manual resource, it is rather expensive and
hard to generalize over different types or domains
of text.

Thus, it is desirable to be able to automatically
extract templates from a corpus. Also, to increase
the syntactic coverage, we use sub-sentence level
(smaller) templates to generate a sentence.

2 Background and Related Work

Traditionally, template based systems are used in
scenarios where the output text is structurally very
well defined and/or requires very high quality text
as output with little variance. This work is in-
spired from (Van Deemter et al., 2005) who point
out that template based systems and “real” NLG
systems are “Turing equivalent” meaning that at
least in terms of expressiveness, there is no theo-
retical disparity between the two. (Rudnicky and
Oh, 2002) use language models to generate text. In
recent years, (Kondadadi et al., 2013) present a hy-
brid NLG system which generates text by ranking
tagged clusters of templates. NaturalOWL (Gala-
nis and Androutsopoulos, 2007) use templates for
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Figure 1: System architecture

their sentence plans and rules to manipulate them.

3 Core Assumptions and Motivation

As an extension of our previous work (Bhatnagar
and Mamidi, 2016), in this work, we adopt a sim-
plistic model of language - a sequence of linguistic
units. Given a set of such units, each possible sen-
tence is contained in the search space of all pos-
sible permutations. Thus, given a grammaticality
fitness function, pruning and vocabulary reduction
is essential to be able to tractably search this space.

Since templates are based on canned text, tem-
plates are locally grammatical. The core idea is
to effectively use the local grammaticality guar-
antee of a corpus extracted template to combine,
rather than construct the component templates to
generate a sentence. These templates themselves
contain individual tokens, effectively considering
templates as a unit of sentence construction in-
stead of tokens. The obvious trade-off is that since
there are a lot more templates than tokens, which
results in a much larger search space. However, if
appropriate abstractions are used, perhaps the vo-
cabulary problem can be mitigated somewhat.

The task is then twofold: how to determine
which templates to combine (pruning) and con-
straining that with a measure of grammaticality of
the generated sentence (fitness).

4 Templates and Sentence
Representation

We use chunks as a basis for the linear templates
because chunks are linguistically sound and hence
the vocabulary increase is lesser compared to un-
constrained spans of text. In general, an extended
feature has syntactic identifiers added to the fea-
ture space. This is to better inform syntactic be-
havior of the template even though it increases
the feature space a little. Abstracted features have
multiple features clustered together which reduces
the feature space. We describe the extension pro-
cess below.

4.1 Abstraction

The chunks should be abstracted in such a way
so as to have a minimal impact on their syntactic
combination behavior.

All punctuation and stopwords are not ab-
stracted because they are highly relevant, syntac-
tically. Following are the mappings applied to the
chunks:

1. Named Entity Abstraction (NE): Each NE is
mapped to a unique symbol corresponding to
its category.

2. POS Abstraction (POS): POS categories such
as “CD”, “FW” and “SYM” and continuous
“NNP” and “NNPS” sequences are mapped
to their corresponding POS tags.

3. Cluster Abstraction (WC): Each token (ex-
cept punctuation and stopwords), is mapped
to the cluster ID of its syntatico-semantic
cluster. Since a token can have multiple POS
categories which in turn effect its syntactic
behavior, we consider a token with different
POS categories as distinct while clustering.
The clusters are obtained by computing the
KMeans cluster for token-POS pairs with eu-
clidean distance of L2-normed vector embed-
dings.

4.2 Extended Categories

We extend the POS and chunk tag categories to
better inform template combinations:

1. Extended POS (EPOS): Each punctuation,
stopword and NE is assigned its own unique
POS category.

2. Extended Chunk Tags (ECTag): Since the
“O” (outside) chunk tag is a “default” cate-
gory, it contributes a lot of syntactic confu-
sion, we assign a separate chunk tag for all
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Table 1: Template Example
Chunk Feature Chunk Template Template Feature
Chunk Tag “NP” “NP” Extended Chunk Tag (ECTag)
Tokens “a”, “popular”, “wrestler” “a”, “JJ213”, “NN5266” Tok-POS cluster (WC)
POS “DT”, “JJ”, “NN” “DT”, “JJ” ,“NN” Extended POS (EPOS)
Head token “wrestler” “NN5266” Head Tok-POS cluster (HWC)
Head POS “NN” “NN” Head Extended POS (HEPOS)

“a” and “NN5266” Junction Tok-POS clusters (WCJ)
“DT”, “NN” Junction Extended POS (EPOSJ)
“a BLANK BLANK” “Blank” Construction Feature (BlankCo)
“a JJ NN” Extended POS Construction Feature (EPOSCo)

chunks tagged “O” which contain sentence
endings (“.”, “,”, or “!”) or brackets (“(” or
“)”). In addition, chunk tags for chunks con-
taining wh-words (POS tags “WDT”, “WP”,
“WP$” or “WRB”) are marked (eg. “NP” be-
comes “WNP”).

4.3 Template features

A template is created after applying abstractions
to a chunk and extending its syntactic categories.
The template, however has two more feature
types:

1. Junction Features (WCJ, EPOSJ): Junction
features are comprised of the leftmost and
rightmost features of the template. These
features are used to predict if two templates
“glue” together well at the point of contact
(the junction). Both factors (tok-pos clusters
and extended POS category) are applicable.

2. Head Features (HWC, HEPOS): Head fea-
tures represent the “external” features for a
chunk used to compute a global grammatical-
ity component. Both factors - extended POS
and tok-pos clusters are applicable.

3. Construction features (BlankCo, EPOSCo):
Construction features represent the chunk as
a syntactic construction or a layout, encod-
ing the positional combination of the com-
ponents comprising it. It is constructed by
creating a feature for the ordered tuple of to-
kens comprising the chunk where all tokens
are mapped to a single “blank” symbol or its
extended POS except punctuations and stop-
words. Two factors (single “blank” and ex-
tended POS) are applicable.

Table 1 shows an example chunk and its corre-
sponding derived template. A sentence is repre-
sented as a sequence of templates described above.

5 Scoring the template combinations

It should be noted that this score is not equivalent
to a syntactic correctness score, but rather a sub-
set of it. This is because here we are dealing with
configurations of untampered templates whose lo-
cal syntactic correctness still holds and the syntac-
tic incorrectness is a matter of their combinatorial
configuration while a grammaticality score needs
to deal with “broken” chunks as well.

The fitness score F is a linear combination
of length-normalized total log-probabilities TP
of different sequences derived from the sentence
computed using an NGram language model. The
total probability of an NGram model is defined as:

TP (s) = P (w1|bos)P (w2|w1bos)...

..P (eos|wkwk−1...wk−n+1)
(1)

where n is the order of the language model, s is
a sequence and wi is the ith element in s. F is
a weighted sum of length-normalized total log-
probabilities of five different sequences:

nTP (s) = log10(TP (s))/(ls + 1) (2)

F (s) = αcnTP (ec) + αconTP (co)/2

+ αjnTP (j)/2 + αhnTP (h)/2

+ αlnTP (l)/2

(3)

where nTP (s) is the length normalized total log-
probability for the sequence s where ls is the num-
ber of elements in that sequence. ec, co, j, h and l
represent the sequences in chunk score, construc-
tion score, junction score, head score and lexical
score. αi are the weight for each component score
which are discussed:

1. Extended Chunk Score nTP (ec) - This score
is calculated using the extended chunk tags
(ECTags) for the sentence. It is useful in de-
termining the global syntactic structure.
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Table 2: A sentence and sequences used to compute the fitness
Template Feature Sequence Sentence

NP[Sand] VP[blows] PP[in] NP[the strong wind] .[.]
NP[NN969/NN] VP[VBZ29/VBZ] PP[in/in] NP[the/the JJ347/JJ NN628/NN] .[./.]

Extended Chunk Tags (ECTags) NP VP PP NP .
Blank Construction (BlankCo) BLANK BLANK in the BLANK BLANK .
Extended POS Construction (EPOSCo) NN VBZ in the JJ NN .
Tok-POS Junction (WCJ) (bos, NN969), (NN969, VBZ29), (VBZ29, in), (in, the), (NN628, .), (., eos)
Extended POS Junction (EPJ) (bos, NN), (NN, VBZ), (VBZ, in), (in, the), (NN, .), (., eos)
Head Tok-POS (HWC) NN969 VBZ29 in NN628 .
Head Extended POS (HEPOS) NN VBZ in NN .
Tok-POS Sequence (WCs) NN969 VBZ29 in the JJ347 NN628 .
Extended POS Sequence (EPOSs) NN VBZ in the JJ NN .

2. Construction Score nTP (co) - This score
is calculated using blank construction layout
(BlackCo) and extended POS construction
layout (EPOSCo). It is useful in augmenting
the overall grammaticality of the sentence as
it encodes the syntactic layout of the chunk
as a whole.

3. Junction Score JP (j) - This score is calcu-
lated as the sum of the bigram probability of
the left junction of the right template condi-
tioned on the right junction of the left tem-
plate for both tok-pos clusters (WC) and ex-
tended POS (EPOS) for all junctions in the
sentence. This score represents a local view
of inter-template cohesiveness. It represents
how a sentence “glues” together.

4. Head Score nTP (h) - This score is calcu-
lated using head tok-pos clusters (HWC) and
head extended POS (HEPOS). Counter to the
junction score, it represents a more semantic
view of the chunk interactions. This is be-
cause generally a chunk head is often the pri-
mary content word in that chunk.

5. Lexical Score nTP (l) - This score is com-
puted using the tok-pos clusters (WC) and
extended POS (EPOS). This score represents
a baseline grammaticality score on a lexical
level.

A sentence with all the sequences are fed to the
fitness function are shown in table 2.

6 Parameters for pruning the search
space

The search space is the space of all permutations
of the templates to form the sentence. Such a
search space is huge. We observe that depend-
ing on the particular constraints described in sec-
tion 7, we can prune the permutation search space.
This is done by finding a subset of the template

bank that can occur at each position in the tem-
plate sequence. The subsets are represented by a
set of constraints which we call a search config-
uration. Thus, say, if a sentence is determined to
have 5 templates, there will be a search configu-
ration computed for each template slot, in accor-
dance with the global constraints for the sentence.
Described below is the specification of a search
configuration:

1. Length The templates must contain exactly
the specified number of tokens (tok-pos clus-
ters) in it.

2. Extended chunk tag (ECtag) The templates
must have the specified extended chunk tag.

3. Tok-POS clusters and extended POS tags
(WC-EPOS) All the specified tok-pos clus-
ters and their corresponding extended POS
tags must be present in the templates.

Note that neither of the above constraints needs
to be specified for a search configuration, in which
case all templates can be considered to fill that po-
sition. We use memoization to make the pruning
computationally feasible.

Eg. if a search configuration has a length of
5, no preference specified for the extended search
tag and (cluster(“run”/NN), “NN”) in the tok-pos
(WC-EPOS) list, all templates containing 5 tokens
which also contain the cluster for run used as an
“NN” are valid for that configuration.

7 Search

To search the very large permutation space, we use
a population based searching method which uses
only mutation as the genetic operator for generat-
ing new solutions. Following are the components
of the evolutionary search:
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7.1 Population Selection

The search can be parametrized by specifying a
collection of sentence level constraints which have
their own individual sub-constraints. These con-
straints are different from search configurations as
defined in section 6 as these constraints operate
on a sentence level, while search configurations,
which are derived from these constraints operate
on a template level. The sentence level constraints
are listed below:

1. Number of tokens: The number of tokens in
the generated sentence must be in a specified
range. A maximum value is required.

2. Number of templates: The number of tem-
plates in the generated sentence must be in
the specified range.

3. Chunk specifications (inclusion): For each
chunk specification, at least one template
must be present in the sentence which follows
it and it must satisfy all the sub-constraints
such as extended chunk tag and constituent
tok-pos clusters.

4. Position Chunk specifications: This is a
chunk constraint like the one described
above, with the additional constraint of a
fixed position.

5. Ordered Chunk specifications: These are list
of chunk constraints with the additional con-
straint that they be in order in the generated
sentence.

6. Tok-pos specifications (inclusion): The sen-
tence must contain the specified tok-pos clus-
ters.

7. Ordered Tok-pos specifications: The speci-
fied tok-pos clusters must occur in the same
order in the sentence.

Note that every constraint and sub-constraint can
be left empty which means that there could be
no specification for the extended chunk tag for a
chunk constraint. Based on these sentence level
constraints, search configurations for each tem-
plate position are derived.

7.1.1 Sentence level constraints to template
level SearchConfigs

Based on the number of templates selected be-
tween the range given, it distributes the total
length specified between all the templates ran-
domly. Then, it arranges the Chunks, Ordered-
Chunks and PositionFixedChunks and distributes
the token level constraints (OrderedTokPOSs and

TokPOSConstraints) to the templates. Now, all
three parameters of the SearchConfigs have been
minimally inferred and the search space can now
be pruned.

7.1.2 Sampling from the pruned space

Since we are dealing with naturally occurring text,
the distribution of the templates grouped by ex-
tended chunk tags follows a Zipf curve meaning
that almost 40% of the time, an ”NP” is selected
and a “.” almost never gets a chance even though
both templates are prominent in the set of tem-
plates having the same chunk tag as them. This
drastically hampers the chances of getting struc-
tural variance in the templates constructed. To
remedy this, we assign weights to the set of tem-
plates with a dampening exponent of 0.4 which
makes the distribution more uniform, yet pre-
serves the selectional biases.

1. Dampen the Zipf for selection of extended
chunk tag

2. Dampen the Zipf for selection of templates
given an extended chunk tag

3. Obtain the distribution for selection of tem-
plates by multiplying probabilities taken
from the above two distribution.

This results in a damped Zipf curve for the se-
lection of templates which allows for much more
variance in the extended chunk tags of the gener-
ated sentences.

7.2 Mutation

To perform mutation, we randomly select a tem-
plate to mutate and using the dampened distribu-
tion obtained, we sample a template from the sub-
space corresponding to the search configuration of
that template position.

7.3 Selection and Evolution Strategy

We use elitist selection (pick the top k organisms)
with enforced variability. We enforce that at least
8% and 15% of the population have unique blank
construction layout and extended POS construc-
tion layout respectively. Following are the steps
for evolving the population.

1. Initialize population given a set of Con-
straints and sample a population of size 1000

2. Mutate the first half of the population and as-
sign it to the second half.

3. compute fitnesses for all organisms and sort
population based on fitness score

124



4. Retain organisms such that the variability
constraints are met.

5. Re-initialize 25% of the population so that
different search configurations are searched.

6. Repeat 1 to 5 until 100 generations.
This evolution run gives a population consisting
of grammatical configurations which adhere to the
constraints given as input. There are still possibly
word clusters remaining which need to be filled
since sentences which are generated are comprised
of templates which contain clusters, not word
forms. We fill these cluster slots with the tokens
we gave in the initial bag-of-words constraints. To
do that, we run a random search on the best gener-
ated sentence and fill the cluster slots which max-
imizes the token and head token perplexity.

8 Experiment Setup

Following are the steps we took to conduct our ex-
periments:

1. We tokenized, POS tagged, NER tagged,
and chunked and abstracted the English
Wikipedia corpus using Stanford CoreNLP
(Manning et al., 2014), spaCy (Honnibal and
Montani, 2017) and LM-LSTM-CRF (Liu
et al., 2018) to extract the templates.

2. The number of clusters, k was chosen to be
7500.

3. We used lexvec(Salle et al., 2016) pretrained
vectors for clustering.

4. The weights for the fitness function were em-
pirically chosen to be 75, 10, 10, 5 and 2.

9 Results

Following are the top sentences generated with the
following constraints:

1. “cat” should be present:
the heated water plant is likewise formed en-
tirely of cat .

2. “what” as the first token and sentence con-
tains a “?”:
what does the right thing do ?

3. “the” in position=0 and “.” in sentence:
the mid product can readily be used in poly-
nomial practices .

4. “and”, “ate” and “ran” in sentence:
the division ate a plant of cape , ran a princi-
pal prying need and stockpiled superconduc-
tivity .

5. “on” and “in” in sentence:
PERSON bumped ORG in DATE on spirits

Figure 2: Evolution

of error .
6. “influential”, “large” and “red” in sentence:

large influential player vocals defined red to
the convenience of the detector .

We show the generation improvements for the first
sentence. As we can see, the algorithm is able
to generate a question with minimal supervision.
Also, in sentence 5, multiple PPs can be seen.

Some level of supervision is necessary to drive
the required syntax and content words to gener-
ate predictable outputs. We observe that there is
a bias in the model e.g. usage of “the” in the
starting noun phrase, and chaining verb phrases
and prepositional phrases. Hence, to generate a
question, one has to specify the position of the wh
word, otherwise the sentences often start with a
noun phrase.

Computationally, the search time increases with
increasing sentence lengths. On a reasonably
modern machine, our implementation generated
the above sentences in about 150 seconds while
using 2.2 GB of memory.2

10 Future Work

As a future work, detailed qualitative analysis and
minimum constraints needed to generate specific
linguistic structures can be done. Also, automatic
extraction of content words and other relevant con-
straints can be explored for generation.
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Abstract

Modern question answering systems have
been touted as approaching human perfor-
mance. However, existing question an-
swering datasets are imperfect tests. Ques-
tions are written with humans in mind, not
computers, and often do not properly ex-
pose model limitations. To address this,
we develop an adversarial writing setting,
where humans interact with trained mod-
els and try to break them. This annota-
tion process yields a challenge set, which
despite being easy for trivia players to
answer, systematically stumps automated
question answering systems. Diagnosing
model errors on the evaluation data pro-
vides actionable insights to explore in de-
veloping robust and generalizable question
answering systems.

1 Introduction

Proponents of modern machine learning systems
have claimed human parity on difficult tasks such
as question answering.1 Datasets such as SQuAD
and TriviaQA (Rajpurkar et al., 2016; Joshi et al.,
2017) have certainly advanced the state of the art,
but are they providing the right examples to mea-
sure how well machines can answer questions?

Many of the existing question answering
datasets are written and evaluated with humans
in mind, not computers. Though the way com-
puters solve NLP tasks is fundamentally different
than humans. They train on hundreds of thousands
of questions, rather than looking at small groups
of them in isolation. This allows models to pick
up on superficial patterns that may occur in data
crawled from the internet (Chen et al., 2016) or

1https://rajpurkar.github.io/
SQuAD-explorer/

from biases in the crowd-sourced annotation pro-
cess (Gururangan et al., 2018). Additionally, be-
cause existing test sets do not provide specific di-
agnostic information for improving models, it can
be difficult to get proper insight into a system’s ca-
pabilities or its limitations. Unfortunately, when
rigorous evaluations are not performed, strikingly
simple model limitations can be overlooked (Be-
linkov and Bisk, 2018; Ettinger et al., 2017; Jia
and Liang, 2017).

To address this lacuna, we ask trivia
enthusiasts—who write new questions for
scholastic and open circuit tournaments—to cre-
ate examples that specifically challenge Question
Answering (QA) systems. We develop a user in-
terface (Section 2) that allows question writers to
adversarially craft these questions. This interface
provides a model’s predictions and its evidence
from the training data to facilitate a model-driven
annotation process.

Humans find the resulting challenge questions
easier than regular questions (Section 3), but
strong QA models struggle (Section 4). Unlike
many existing QA test sets, our questions highlight
specific phenomena that humans can capture but
machines cannot (Section 5). We release our QA

challenge set to better evaluate models and sys-
tematically improve them.2

2 A Model-Driven Annotation Process

This section introduces our framework for tai-
loring questions to challenge computers, the sur-
rounding community of trivia enthusiasts that cre-
ate thousands of questions annually, and how we
expose QA algorithms to this community to help
them craft questions that challenge computers.

2www.qanta.org
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The protagonist of this opera describes the fu-
ture day when her lover will arrive on a boat
in the aria “Un Bel Di” or “One Beautiful
Day.” The only baritone role in this opera is
the consul Sharpless who reads letters for the
protagonist, who has a maid named Suzuki.
That protagonist blindfolds her child Sorrow
before stabbing herself when her lover B.F.
Pinkerton returns with a wife. For 10 points,
name this Giacomo Puccini opera about an
American lieutenants affair with the Japanese
woman Cio-Cio San.
ANSWER: Madama Butterfly

Figure 1: An example Quiz Bowl question. The
question becomes progressively easier to answer
later on; thus, more knowledgeable players can an-
swer after hearing fewer clues.

2.1 The Quiz Bowl Community: Writers of
Questions

The “gold standard” of academic competitions be-
tween universities and high schools is Quiz Bowl.
Unlike other question answering formats such as
Jeopardy! or TriviaQA (Joshi et al., 2017), Quiz
Bowl questions are designed to be interrupted.
This allows more knowledgeable players to “buzz
in” before their opponent knows the answer. This
style of play requires questions to be structured
“pyramidally”: questions start with difficult clues
and get progressively easier (Figure 1).

However, like most existing QA datasets, Quiz
Bowl questions are written with humans in mind.
Unfortunately, the heuristics that question writers
use to select clues do not always apply to comput-
ers. For example, humans are unlikely to mem-
orize every song in every opera by a particular
composer. This, however, is trivial for a com-
puter. In particular, a simple baseline QA system
easily solves the example in Figure 1 from see-
ing the reference to “Un Bel Di”. Other questions
contain uniquely identifying “trigger words”. For
example, “Martensite” only appears in questions
on Steel. For these types of examples, a QA sys-
tem needs to understand no additional information
other than an if–then rule. Surprisingly, this is true
for many different answers: in these cases, QA de-
volves into trivial pattern matching. Consequently,
information retrieval systems are strong baselines
for this task, even capable of defeating top high

school and collegiate players. Well-tuned neural
based QA systems (Yamada et al., 2018) can give
small improvements over the baselines and have
even defeated teams of expert humans in live Quiz
Bowl events.

Although, other types of Quiz Bowl questions
are fiendishly difficult for computers. Many ques-
tions have complicated coreference patterns (Guha
et al., 2015), require reasoning across multiple
types of knowledge, or involve wordplay. Given
that these difficult types of question truly chal-
lenge models, how can we generate and analyze
more of them?

2.2 Adversarial Question Writing
One approach to evaluate models beyond a typical
test set is through adversarial examples (Szegedy
et al., 2013) and other types of intentionally dif-
ficult inputs. However, language data is hard
to modify (e.g., replacing word tokens) without
changing the meaning of the input. Past work
side-steps this difficulty by modifying examples
in a simple enough manner to preserve meaning
(Jia and Liang, 2017; Belinkov and Bisk, 2018).
Though it is hard to generate complex examples
that expose richer phenomena through automatic
means. Instead, we propose to use human adver-
saries in a process we call adversarial writing.

In this setting, question writers are tasked with
generating challenge questions that break exist-
ing QA systems but are still answerable by hu-
mans. To facilitate this breaking process, we ex-
pose model predictions and interpretation methods
to question writers through a user interface. This
allows writers to see what changes should be made
to confuse the system and visualize the resulting
effects. For example, our system highlights the re-
vealing “Un Bel Di” clue in bright red.

This results in a small, model-driven challenge
set that is explicitly designed to expose a model’s
limitations. While the regular held-out test set for
Quiz Bowl provides questions that are likely to
be asked in an actual tournament, these challenge
questions highlight rare and difficult QA phenom-
ena that models can’t handle.

2.3 User Interface
The interface (Figure 2) provides the top five
predictions (Guesses) from a simple non-neural
model, the baseline system from a NIPS 2017
competition that used Quiz Bowl as a shared
task (Boyd-Graber et al., 2018). This model uses
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Figure 2: The writer inputs a question (top right), the system provides guesses (left), and explains why
it’s making those guesses (bottom right). The writer can then adapt their question to “trick” the model.

an inverted index built using the shared task train-
ing data (which consists of Quiz Bowl questions
and Wikipedia pages).

We select an information retrieval model as it
enables us to extract meaningful reasoning behind
the model’s predictions. In particular, the Elastic-
search Highlight API (Gormley and Tong, 2015)
visually highlights words in the Evidence section
of the interface. This helps users understand which
words and phrases are present in the training data
and may be revealing the answer. Though the
users never see outputs from a neural system, the
questions they write are quite challenging for them
(Section 4).

2.4 Farmed from the Maddeningly Smart
Crowd

In contrast to crowd-sourced datasets, our data
comes from the fecund pool of thousands of
questions written annually for Quiz Bowl tour-
naments (Jennings, 2006). We connect with the
question writers of these tournaments, who find
the adversarial writing process useful to help write
high quality, original questions.

The current dataset (we intend to have twice-
yearly competitions to continually collect data)
consists of 651 questions made of 3219 sentences.
A few of the writers have indicated that they plan
to use their question submissions in an upcoming
tournament. We will release these questions after
those respective tournaments have completed.

3 Validating Written Questions

We next verify the validity of the challenge ques-
tions. We do not want to collect questions that are
a jumble of random characters or contain insuf-
ficient information to discern the answer. Thus,
we first automatically filter out invalid questions
based on length, the presence of vulgar statements,
or repeated submissions (including re-submissions
from the Quiz Bowl training or evaluation data).
Next, we manually verify all of the resulting ques-
tions appear legitimate and that no obviously in-
valid questions made it into the challenge set.

We further wish to investigate not only the va-
lidity, but also the difficulty of the challenge ques-
tions according to human Quiz Bowl players. To
do so, we play a portion of the submitted questions
in a live Quiz Bowl event, using intermediate and
expert players (current and former collegiate Quiz
Bowl players) as the human baseline. We sample
60 challenge questions from categories that match
typical tournament distributions. As a baseline,
we additionally select 60 unreleased high school
tournament questions (to ensure no player has seen
them before).

When answering in Quiz Bowl, a player must
interrupt the question with a buzz. The earlier that
a player buzzes, the less of a chance their oppo-
nent has to answer the question before them. To
capture this, we consider two metrics to evaluate
performance, the average buzz position (as a per-
centage of the question seen) and the correspond-
ing answer accuracy. We randomly shuffle the
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baseline and challenge questions, play them, and
record these two metrics. On average for the chal-
lenge set, humans buzz with 41.6% of the ques-
tion remaining and an accuracy of 89.7%. On the
baseline questions, humans buzz with 28.3% of
the question remaining and an accuracy of 84.2%.
The difference in accuracy between the two types
of questions is not significantly different (p = 0.16
using Fisher’s exact test), but the buzzing position
is significantly earlier for the challenge questions
(a two-sided t-test yields p = 0.0047). Humans
find the challenge questions easier on average than
the regular test examples (they buzz much earlier).
We expect human performance to be comparable
on the questions not played, as all questions went
through the same submission and post-processing
stages.

4 Models and Experiments

In this section, we evaluate numerous QA systems
on the challenge questions. We consider a diverse
set of models: ones based on recurrent networks,
feed-forward networks, and IR systems to prop-
erly explore the difficulty of the examples.

We consider two neural models: a recurrent
neural network (RNN) and Deep Averaging Net-
work (Iyyer et al., 2015, DAN). The two models
treat the problem as text classification and predict
which of the answer entities the question is about.
The RNN is a bidirectional GRU (Cho et al., 2014)
and the DAN uses fully connected layers with a
word vector average as input.

To train the systems, we collect the data used
at the 2017 NIPS Human-Computer Question An-
swering competition (Boyd-Graber et al., 2018).
The dataset consists of about 70,000 questions
with 13,500 answer options. We split the data into
validation and test sets to provide baseline evalu-
ations for the models. We also report results on
the baseline system (IR) shown to users during the
writing process. For evaluation, we report the ac-
curacy as a function of the question position (to
capture the incremental nature of the game). The
accuracy varies as the words are fed in (mostly im-
proving, but occasionally degrading).

The buzz position of all models significantly de-
grades on the challenge set. We compare the accu-
racy on the original test set (Test Questions) to the
challenge questions in Figure 3.

For both the challenge and original test data,
the questions begin with abstract clues that are

difficult to answer (accuracy at or below 10%).
However, during the crucial middle portions of
the questions (after revealing 25% to 75%), where
buzzes in Quiz Bowl matches most frequently oc-
cur, the accuracy on original test questions rises
significantly quicker than the challenge ones. For
both questions, the accuracy rises towards the end
as the “give-away” clues arrive. Despite users
never observing the output of a neural system,
the two neural models decreased more in absolute
accuracy than the IR system. The DAN model
had the largest absolute accuracy decrease (from
54.1% to 32.4% on the full question), likely be-
cause a vector average isn’t capable of capturing
the difficult wording of the challenge questions.

The human results are displayed on the left of
Figure 3 and show a different trend. For both ques-
tion types, human accuracy rises very quickly after
about 50% of the question has been seen. We sus-
pect this occurs because the “give-aways”, which
often contain common sense or simple knowledge
clues, are easy for humans but quite difficult for
computers. The reverse is true for the early clues.
They contain quotes and entities that models can
retrieve but humans struggle to remember.

5 Challenge Set Reveals Model
Limitations

In this section, we conduct an analysis of the chal-
lenge questions to better understand the source
of their difficulty. We harvest recurring pat-
terns using the user edit logs and corresponding
model predictions, grouping the questions into
linguistically-motivated clusters (Table 1).

These groups provide an informative analysis of
model errors on a diverse set of phenomena. In our
dataset, we additionally provide the most similar
training questions for each challenge question.

A portion of the examples contain clues that
are unseen during training time. Many of these
clues are quite interesting, for example, the com-
mon knowledge clue “this man is on the One Dol-
lar Bill”. However, because we experiment with
systems that are not able to capture open-domain
information, we do not investigate these examples
further as they trivially break systems.

5.1 Understanding Changes in Language

The first categories of challenge questions contain
previously seen clues that have been written in a
misleading manner. Table 1 shows snippets of ex-
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Figure 3: Both types of questions (challenge questions and original test set questions) begin with abstract
clues the models are unable to capture, but the challenge questions are significantly harder during the
crucial middle portions (0.25 to 0.75) of the question. The human results (displayed on the left of the
figure) show their performance on a sample of the challenge questions and a separate test set.

emplar challenge questions for each category.

Paraphrases A common adversarial writing
strategy is to paraphrase clues to remove exact n-
gram matches from the training data. This renders
an IR system useless but also hurts neural models.

Entity Type Distractors One key component
for QA is determining the answer type that is de-
sired from the question. Writers often take advan-
tage of this by providing clues that lead the system
into selecting a wrong answer type. For example,
in the second question of Table 1, the “lead in” im-
plies the answer may be an actor. This triggers the
model to answer Don Cheadle despite previously
seeing the Bill Clinton “Saxophone” clue.

5.2 Composing Existing Knowledge
The other categories of challenge questions re-
quire composing knowledge from multiple exist-
ing clues. Table 2 shows snippets of exemplar
challenge questions for each category.

Triangulation In these questions, entities that
have a first order relationship to the correct answer
are given. The system must then triangulate the
correct answer by “filling in the blank”. For ex-
ample, in the first question of Table 2, the place
of death and the brother of the entity are given.
The training data contains a clue about the place
of death (The Battle of Thames) reading “though

stiff fighting came from their Native American al-
lies under Tecumseh, who died at this battle”. The
system must connect these two clues to answer.

Operator One extremely difficulty question
type requires applying a mathematical or logical
operator to the text. For example, the training data
contains a clue about the Battle of Thermopylae
reading “King Leonidas and 300 Spartans died at
the hands of the Persians” and the second question
in Table 2 requires one to add 150 to the number
of Spartans.

Multi-Step Reasoning The final type of ques-
tions requires a model to make multiple reason-
ing steps between entities. For example, in the
last question of Table 2, a model needs to make
a reasoning step first from the “I Have A Dream”
speech to the Lincoln Memorial and an additional
step to reach president Abraham Lincoln.

6 Related Work

Creating evaluation datasets to get fine-grained
analysis of particular linguistics features or model
attributes has been explored in past work. The
LAMBADA dataset tests a model’s ability to under-
stand the broad contexts present in book passages
(Paperno et al., 2016). Linzen et al. (2016) create
a dataset to evaluate if language models can learn
subject-verb number agreement. The most closely
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Set Question Answer Rationale
Training Name this sociological phenomenon, the taking of

one’s own life.
Suicide

Paraphrase

Challenge Name this self-inflicted method of death. Arthur Miller
Training Clinton played the saxophone on The Arsenio Hall

Show
Bill Clinton Entity Type

Distractor
Challenge He was edited to appear in the film “Contact”. . .

For ten points, name this American president who
played the saxophone on an appearance on the Ar-
senio Hall Show.

Don Cheadle

Table 1: Snippets from challenge questions show the difficulty in retrieving previously seen evidence.
Training questions indicate relevant snippets from the training data. Answer displays the RNN Reader’s
answer prediction (always correct on Training, always incorrect on Challenge).

Question Prediction Answer Rationale
This man, who died at the Battle of the
Thames, experienced a setback when
his brother Tenskwatawa’s influence
over their tribe began to fade

Battle of Tippecanoe Tecumseh Triangulation

This number is one hundred and fifty
more than the number of Spartans at
Thermopylae.

Battle of Thermopylae 450 Operator

A building dedicated to this man was
the site of the “I Have A Dream”
speech

Martin Luther King Jr. Abraham Lincoln Multi-Step
Reasoning

Table 2: Snippets from challenge questions show examples of composing existing evidence. Answer
displays the RNN Reader’s answer prediction. For these examples, connecting the training and challenge
clues is quite simple for humans but very difficult for models.

related work to ours is Ettinger et al. (2017) who
also consider using humans as adversaries. Our
work differs in that we use model interpretation
methods to facilitate breaking a specific system.

Other methods have found very simple input
modifications can break neural models. For ex-
ample, adding character level noise drastically re-
duces machine translation quality (Belinkov and
Bisk, 2018), while paraphrases can fool natural
language inference systems (Iyyer et al., 2018).
Jia and Liang (2017) placed distracting sentences
at the end of paragraphs and caused QA systems
to incorrectly pick up on the misleading informa-
tion. These types of input modifications can evalu-
ate one specific type of phenomenon and are com-
plementary to our approach.

7 Conclusion

It is difficult to automatically expose the limi-
tations of a machine learning system, especially
when that system reaches very high performance

metrics on a held-out evaluation set. To address
this, we have introduced a human driven evalua-
tion setting, where users try to break a trained sys-
tem. By facilitating this process with interpreta-
tion methods, users can understand what a model
is doing and how to create challenging examples
for it. An analysis of the resulting data can re-
veal unknown model limitations and provide in-
sight into improving a system.
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Abstract

Ranking functions in information retrieval
are often used in search engines to recom-
mend the relevant answers to the query.
This paper makes use of this notion of
information retrieval and applies onto the
problem domain of cognate detection. The
main contributions of this paper are: (1)
positional segmentation, which incorpo-
rates the sequential notion; (2) graphical
error modelling, which deduces the trans-
formations. The current research work
focuses on classification problem; which
is distinguishing whether a pair of words
are cognates. This paper focuses on a
harder problem, whether we could predict
a possible cognate from the given input.
Our study shows that when language mod-
elling smoothing methods are applied as
the retrieval functions and used in con-
junction with positional segmentation and
error modelling gives better results than
competing baselines, in both classification
and prediction of cognates.

1 Introduction

Cognates are a collection of words in different lan-
guages deriving from the same origin. The study
of cognates plays a crucial role in applying com-
parative approaches for historical linguistics, in
particular, solving language relatedness and track-
ing the interaction and evolvement of multiple lan-
guages over time. A cognate instance in Indo-
European languages is given as the word group:
night (English), nuit (French), noche (Spanish)
and nacht (German).

The existing studies on cognate detection in-
volve experiments which distinguish between a
pair of words whether they are cognates or non-

cognates (Ciobanu and Dinu, 2014; List, 2012a).
These studies do not approach the problem of pre-
dicting the possible cognate of the target language,
if the cognate of the source language is given. For
example, given the word nuit, could the algorithm
predict the appropriate German cognate within the
huge German wordlist? This paper tackles this
problem by incorporating heuristics of the prob-
abilistic ranking functions from information re-
trieval. Information retrieval addresses the prob-
lem of scoring a document with a given query,
which is used in every search engine. One can
view the above problem as the construction of a
suitable search engine, through which we want to
find the cognate counterpart of a word (query) in a
lexicon of another language (documents).

This paper deals with the intersection between
the areas of information retrieval and approximate
string similarity (like the cognate detection prob-
lem), which is largely under-explored in the liter-
ature. Retrieval methods also provide a variety of
alternative heuristics which can be chosen for the
desired application areas (Fang et al., 2011). Tak-
ing such advantage of the flexibility of these mod-
els, the combination of approximate string simi-
larity operations with an information retrieval sys-
tem could be beneficial in many cases. We demon-
strate how the notion of information retrieval can
be incorporated into the approximate string sim-
ilarity problem by breaking a word into smaller
units. Regarding this, Nguyen et al. (2016) has
argued that segmented words are a more practi-
cal way to query large databases of sequences,
in comparison with conventional query methods.
This further encourages the heuristic attempt at
imposing an information retrieval model on the
cognate detection problem in this paper.

Our main contribution is to design an informa-
tion retrieval based scoring function (see section
4) which can capture the complex morphological
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shifts between the cognates. We tackled this by
proposing a shingling (chunking) scheme which
incorporates positional information (see section 2)
and a graph-based error modelling scheme to un-
derstand the transformations (see section 3). Our
test harness focuses not only on distinguishing be-
tween a pair of cognates, but also the ability to pre-
dict the cognate for a target language (see section
5).

2 Positional Character-based Shingling

This section examines on converting a string into
a shingle-set which includes the encodings of the
positional information. In this paper, we notify,
S as the shingle-set of cognate from the source
language and T as the shingle-set of cognate for
the target language. The similarity between these
split-sets is denoted by S ∩ T . An example of
cognate from the source language, S (Romanian)
could be shingle set of the word rosmarin and T
(Italian) could be romarin.

K-gram shingling: Usually, set based string
similarity measures are based on comparing over-
lap between the shingles of two strings. Shingling
is a way of viewing a string as a document by con-
sidering k characters at a time. For example, the
shingle of the word rosmarin is created with k = 2
as: S = {〈s〉r, ro, os, sm, ma, ar, ri, in, n〈/s〉}.
Here, 〈s〉 is the start sentinel token and 〈/s〉 is
the stop sentinel token. For the sake of simplic-
ity, we have ignored sentinel tokens; which trans-
forms into: S = {r, ro, os, sm, ma, ar, ri, in, n}.
This method splits the strings into smaller k-grams
without any positional information.

2.1 Positional Shingling from 1 End
We argue that the unordered k-grams splitting
could lead to an inefficient matching of strings
since a shingle set is visualized as the bag-of-
words method. Given this, we propose a po-
sitional k-gram shingling technique, which in-
troduces position number in the splits to incor-
porate the notion of the sequence of the to-
kens. For example, the word rosmarin could
be position-wise split with k = 2 as: S =
{1r, 2ro, 3os, 4sm, 5ma, 6ar, 7ri, 8in, 9n}.

Thus, the member 4sm means that it is the
fourth member of the set. The motivation behind
this modification is that it retains the positional in-
formation which is useful in probabilistic retrieval
ranking functions.

2.2 Positional Shingling from 2 Ends
The main disadvantage of the positional shin-
gling from single end is that any mismatch
can completely disturb the order of the rest,
leading to low similarity. For example,
if the query is rosmarin with cognate ro-
marin, the corresponding split sets would be
{1r, 2ro, 3os, 4sm, 5ma, 6ar, 7ri, 8in, 9n} and
{1r, 2ro, 3om, 4ma, 5ar, 6ri, 7in, 8n}. The order
of the members after 2ro is misplaced, thus this
will lead to low similarity between two cognates.
Only {1r, 2ro} is common between the cognates.
Considering this, we propose positional shingling
from both ends, which is robust against such
displacements.

We attach a position number to the left if the
numbering begins from the start, and to the right
if the numbering begins from the end. Then the
smallest position number is selected between the
two position numbers. If the position numbers are
equal, then we select the left position number as
a convention. Figure 1 gives an exemplification
of this algorithm illustrated with splits of romarin
and rosmarin.

rosmarin

rosmarin

1
2
3
4
5
6
7
8
9

9
8
7
6
5
4
3
2
1

1
2
3
4
5
6
7
8

8
7
6
5
4
3
2
1

romarin

romarin rosmarin
romarin

Figure 1: The process of positional tokeni-
sation from both ends. On the left, algo-
rithm segments the Romanian word romarin into
the split-set {1r, 2ro, 3om, 4ma, ar4, ri3, in2, n1}.
On the right, the algorithm segments rosmarin into
{1r, 2ro, 3os, 4sm, 5ma, ar4, ri3, in2, n1}.

In Figure 1, split sets of rosmarin and romarin
are shown. After taking intersection of them, we
get {1r, 2ro, ar4, ri3, in2, n1}, indicating a higher
similarity.
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3 Graphical Error Modelling

Once shingle sets are created, common overlap
set measures like set intersection, Jaccard (Järvelin
et al., 2007), XDice (Brew et al., 1996) or TF-IDF
(Wu et al., 2008) could be used to measure simi-
larities between two sets. However, these methods
only focus on similarity of the two strings. For
cognate detection, it is crucial to understand how
substrings are transformed from source language
to target language. This section discusses on how
to view this ”dissimilarity” by creating a graphical
error model.

Algorithm 1 explicates the process of graphical
error modelling. For illustration purposes, we vi-
sualize the procedure via a Romanian-Italian cog-
nate pair (mesia, messia). If the source language is
Romanian, then S = {1m, 2me, 3es, si3, ia2, a1},
which is the split-set of mesia. Let the tar-
get language by Italian. Then the split-set of
the Italian word messia, denoted as T , will be
{1m, 2me, 3es, 4ss, si3, ia2, a1}. Thus |S ∩ T |
is the number of common terms. Thus the term
matches are, S∩T = {1m, 2me, 3es, si3, ia2, a1}.
We are interested in examining the ”dissimilar-
ity”, which are the leftover terms in the sets. That
means, we need to infer a certain pattern from left-
over sets, which are S−{S∩T} and T −{S∩T}.
Thus we can draw mappings to gather informa-
tion of the corrections. Let top and bottom be
the ordered sets referring to S − {S ∩ T} and
T − {S ∩ T} respectively. Referring to the exam-
ple, T − S ∩ T = {4ss}, a bottom set. Similarly,
S − S ∩ T = {}, a top set. Then we follow in-
structions given in algorithm 1.

Algorithm 1: Graphical Error Model
Graphical Error Model takes two split sets

generated by the shingling variants, namely top
and bottom. The objective is to output a graphical
structure showing connections between members
of the top and the bottom sets.

1. Initialization of the top and bottom: If the
given sets top and bottom are empty, we ini-
tialize them by inserting an empty token (φ)
into those sets.
Running example: This step transforms top
set as {φ} and bottom as {4ss}.

2. Equalization of the set cardinalities: The
cardinalities of the sets top and bottom made
equal by inserting empty tokens (φ) into the
middle of the sets.

Running example: The set cardinalities of
top and bottom were already equal. Thus the
output of this step are top set as {φ} and bot-
tom as {4ss}.

3. Inserting the mappings of the set members
into the graph: The empty graph is initial-
ized as graph = {}. The directed edges are
generated, originating from every set member
of top to every set member of bottom. This
results in a complete directed bipartite graph
between top and bottom sets. Each edge is as-
signed a probability P (e) which is discussed
in a later section.
Running example: The output of this
step would be complete directed bipartite
graph between top and bottom sets which is
{φ→ 4ss}
One more example is provided in figure 2.

Intuition: The edges created as the result of
this graph could be used for probabilistic calcula-
tions which are detailed more in section 4.2. Intu-
itively, φ → 4ss means that if the letter s is added
at position 4 of the word of the source mesia, then
one could get the target word messia.

{po3, ϕ, or2}

{pe4, eu3, ur2}
Figure 2: The figure shows the bipartite graph out-
put of the algorithm when the source cognate is
stupor and the target cognate is stupeur.

4 Evaluation Function

The design of our evaluation function focuses on
two main properties: set based similarity (see
section 4.1) and probabilistic calculation through
graphical model (see section 4.2)

4.1 Similarity Function
Usually, the computation of similarity between
two sets is done by metrics like Jaccard, Dice
and XDice (Brew et al., 1996). Dynamic pro-
gramming based methods like edit distance and
LCSR (Longest Common Subsequence Ratio,
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(Melamed, 1999)) are also often used to calculate
similarity between two strings. Ranking functions
incorporate more complex but necessary features
which are needed to distinguish between the doc-
uments.

In this paper, we use BM25 and a Dirichlet
smoothing based ranking function to compute the
similarity. BM25 considers term-frequency, in-
verse document frequency and length normaliza-
tion based penalization features for similarity cal-
culations. Dirichlet smoothing function (Robert-
son and Zaragoza, 2009) makes use of language
modelling features and tunable parameter which
aids in Bayesian smoothing of unseen shingles in
the split sets (Blei et al., 2003).

4.2 Error Modelling Function
The information of the common morphological
transformations for cognates between two differ-
ent languages helps in determining if a pair of
words could be cognates. Based on the graphs of
cognate pairs between Italian and Romanian (sec-
tion 3), which models the morphological shifts be-
tween the cognates in the two languages, we define
an error modelling function on any pair of words
from the two languages. The split set from the
source language is denoted by S and target lan-
guage by T , then probabilistic function would be:

π(S, T) =
1

|G(S, T )|
∑

e∈G(S,T )

P(e)q

where G(S, T ) is the constructed graph of S and
T , the strength parameter is called q here with the
range of (0,∞), and P (e) is the probability of
edge e to occur in between two cognates, which
is estimated by its frequency of being observed in
the graphs of cognate pairs in the training set.

Figure 3 illustrates the aggregation of edges in
the graph and figure 4 shows the final output of the
error modelling function after normalizing.
π(S, T) is called the error modelling function

defined for the word pair, which is an intuitive
calculation of probabilty between a pair of cog-
nates through estimating their transformations. q
is a tunable parameter that controls the effect of
the probabilistic frequencies P (e) observed in the
training set, often useful in avoiding overfitting.

1
|G(S,T )| is the normalization factor to allow us to
compare the quantity across different word pairs.

po3

po3

po3

ϕ

ϕ

ϕ

or2

or2

or2

pe4

eu3

ur2

pe4

eu3

ur2

pe4

eu3

ur2

aggregate the
edge probabilities

Figure 3: From the graph created in figure 2, we
calculate the probabilities of each edge (by com-
puting frequencies and smoothing) and then ag-
gregate all the probabilities of edges in the graph.

po3

ϕ

or2

pe4

eu3

ur2

normalizing
after aggregation

Figure 4: After aggregating, we normalize the sum
and the graph conversion score is outputted.

4.3 Combining Error Modelling and
Similarity Function metrics

In this subsection, we merge the notion of sim-
ilarity and dissimilarity together. We combine a
set-based similarity function (discussed in section
4.1) and the error modelling function (discussed
in section 4.2) into a score function by a weighted
sum of them, which is,

score(S, T ) = λ× sim(S, T) + (1− λ)× π(S, T)

where λ ∈ [0, 1] is a weight based hyperparameter,
sim(S, T ) is a set-based similarity between S and
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T , and π(S, T ) is the graphical error modelling
function defined above.

5 Test Harness

Table 1 summarizes the results of the experimental
setup. The elements of test harness are mentioned
as following:

5.1 Setup Description
Dataset: The experiments in this paper are per-
formed on the dataset used by Ciobanu et al
(2014). The dataset consists 400 pairs of cognates
and non-cognates for Romanian-French (Ro - Fr),
Romanian-Italian (Ro - It), Romanian-Spanish
(Ro - Es) and Romanian-Portuguese (Ro - Pt). The
dataset is divided into a 3:1 ratio for training and
testing purposes. Using cross-validation, hyperpa-
rameters and thresholds for all the algorithms and
baselines were tuned accordingly in a fair manner.
Experiments: Two experiments are included in
test harness.

1. We provide a pair of words and the algo-
rithms would aim to detect whether they are
cognates. Accuracy on the test set is used as
a metric for evaluation.

2. We provide a source cognate as the input and
the algorithm would return a ranked list as the
output. The efficiency of the algorithm would
depend on the rank of the desired target cog-
nate. This is measured by MRR (Mean Re-
ciprocal Rank), which is defined as,MRR =∑|dataset|

i=1
1

ranki
, where ranki is the rank of

the true cognate in the ranked list returned to
the ith query.

5.2 Baselines
String Similarity Baselines: It is intuitive to
compare our methods with the prevalent string
similarity baselines since the notions behind cog-
nate detection and string similarity are almost sim-
ilar. Edit Distance is often used as the baseline
in the cognate detection papers (Melamed, 1999).
This computes the number of operations required
to transform from source to target cognate. We
have also incorporated XDice (Brew et al., 1996),
which is a set based similarity measure that oper-
ates between shingle set between two strings. Hid-
den alignment conditional random fields (CRF)
are often used in transliteration which serves as the
generative sequential model to compute the prob-
abilities between the cognates, which is analogous

to learnable edit distance (McCallum et al., 2012).
Among these baselines, CRF performs the best in
accuracy and MRR.
Orthographic Cognate Detection: Papers re-
lated to this notion usually take alignment of sub-
strings which in classifier like support vector ma-
chines (Ciobanu and Dinu, 2015, 2014) or hidden
markov models (Bhargava and Kondrak, 2009).
We included Alina et al as the baseline (2014),
which employs the dynamic programming based
methods for sequence alignment following which
features were extracted from the mismatches in the
word alignments. These features are plugged into
the classifier like SVM which results in decent per-
formance on accuracy with an average of 84%, but
only 16% on MRR. This result is due to the fact
that a large number of features leads to overfitting
and scoring function is not able to distinguish the
appropriate cognate.
Phonetic Cognate Detection: Research in au-
tomatic cognate identification using phonetic as-
pects involve computation of similarity by de-
composing phonetically transcribed words (Kon-
drak, 2000), acoustic models (Mielke, 2012), pho-
netic encodings (Rama, 2015), aligned segments
of transcribed phonemes (List, 2012b). We im-
plemented Rama’s research (2015), which em-
ploys a Siamese convolutional neural network to
learn the phonetic features jointly with language
relatedness for cognate identification, which was
achieved through phoneme encodings. Although
it performs well on accuracy, it shows poor results
with MRR, possibly the reason as same as SVM
performance.

5.3 Ablation experiments
We experiment with the variables like length
of substrings, ranking functions, shingling tech-
niques, and graphical error model, which are de-
tailed in the Table 1. Amongst the shingling tech-
niques, we found that character bigrams with 2-
ended positioning give better results. Adding tri-
grams to the database does not give major effect
on the results. The results clearly indicate that
adding graphical error model features greatly im-
prove the test results. Amongst the ranking func-
tions, Dirichlet smoothing tends to give better re-
sults, possibly due to the fact that it requires fewer
parameters to tune and is able to capture the se-
quential data (like substrings) better than other
ranking functions (Fang et al., 2011). The hy-
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Algorithms Ro - It Ro - Fr Ro - Es Ro - Pt

Acc MRR Acc MRR Acc MRR Acc MRR

Edit Distance (Melamed, 1999) 0.53 0.11 0.52 0.13 0.58 0.15 0.54 0.13
XDice (Brew et al., 1996) 0.54 0.19 0.53 0.14 0.59 0.16 0.53 0.14

SVM with Orthographic Aligment (Ciobanu and Dinu, 2014) 0.81 0.18 0.87 0.15 0.86 0.16 0.73 0.14
Phonetic Encodings in CNN (Rama, 2016) 0.69 0.21 0.78 0.17 0.77 0.19 0.66 0.15

Hidden alignment CRF (McCallum et al., 2012) 0.84 0.51 0.85 0.48 0.84 0.50 0.71 0.45

Shingling Technique Ranking Function

Bigram, 0-ended TF-IDF 0.54 0.18 0.52 0.14 0.59 0.15 0.55 0.11
Bigram, 1-ended TF-IDF 0.59 0.19 0.54 0.18 0.60 0.18 0.57 0.12
Bigram, 2-ended TF-IDF 0.64 0.25 0.63 0.21 0.68 0.22 0.65 0.17
(Bi + Tri)-gram, 2-ended TF-IDF 0.64 0.25 0.64 0.21 0.57 0.22 0.65 0.18
Bigram, 2-ended BM25 0.84 0.40 0.87 0.37 0.86 0.34 0.73 0.35
Bigram, 2-ended Dirichlet 0.84 0.41 0.86 0.38 0.86 0.39 0.74 0.36
Bigram, 2-ended BM25 + Graphical Error Model 0.87 0.64 0.89 0.51 0.86 0.54 0.78 0.55
Bigram, 2-ended Dirichlet + Graphical Error Model 0.88 0.67 0.89 0.59 0.87 0.60 0.80 0.58

Table 1: Results on the test dataset. The upper half denotes the baselines used and the lower half de-
scribes our ablation experiments. For the experiment 1, we evaluate using the accuracy (Acc) met-
ric. We used MRR (Mean Reciprocal Rank) for describing the second experiment. Higher scores
signify the better performance. The maximum value possible is 1.0. It is worth noting that for the
classification problem (experiment 1), our algorithm has slight improvement. However for the rec-
ommendation problem (experiment 2), our algorithm shows massive improvement. The thresholds,
hyper-parameters, source code and sample Python notebooks are available at our github repository:
https://github.com/pranav-ust/cognates

perparameter λ mentioned in the section 4.3, was
tuned around 0.6, which shows the 60% contribu-
tion by the similarity function and 40% contribu-
tion by the dissimilarity. Overall, the combina-
tion of bigrams with 2-ended positional shingling,
graphical error modelling with Dirichlet ranking
function gives the best performance with an aver-
age of 86% on accuracy metric and 60% on MRR.

6 Conclusions

We approach towards the harder problem where
the algorithm aims to find a target cognate when a
source cognate is given. Positional shingling out-
performed non-positional shingling based meth-
ods, which demonstrates that inclusion of posi-
tional information of substrings is rather impor-
tant. Addition of graphical error model boosted
the test results which shows that it is crucial to add
dissimilarity information in order to capture the
transformations of the substrings. Methods whose
scoring functions rely only on complex machine
learning algorithms like CNN or SVM tend to give
worse results when searching for a cognate.
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Abstract

Conversational agents, having the goal of
natural language generation, must rely on
language models which can integrate emo-
tion into their responses. Recent projects
outline models which can produce emo-
tional sentences, but unlike human lan-
guage, they tend to be restricted to one af-
fective category out of a few (e.g. Zhao
et al. (2018)). To my knowledge, none
allow for the intentional coexistence of
multiple emotions on the word or sen-
tence level. Building on prior research
which allows for variation in the inten-
sity of a singular emotion (Ghosh et al.,
2017), this research proposal outlines an
LSTM (Long Short-Term Memory) lan-
guage model which allows for variation in
multiple emotions simultaneously.

1 Introduction

In closing her landmark paper on affective com-
puting, Rosalind Picard charges researchers of
artificial intelligence with a task. She writes,
“Computers that will interact naturally and
intelligently with humans need the ability to at
least recognize and express affect” (Picard, 1995).
While Picard herself has since spent her time
primarily studying the physiology behind emotion
and health, there is also a strong relationship
between linguistics and emotion. The task for
computer scientists who study this relationship is
to symbolize and express emotion through verbal
language alone.

Although this goal easy to articulate, accom-
plishing it has proven to be quite challenging.
However, in the same way AI researchers acquired
valuable insight from reviewing models of cellular
neuroscience to produce an artificial neural net-
work, perhaps we can demystify affect generation

by reviewing psychological models which build
on neuro-biological findings in regards to human
emotion.

1.1 Need for Affective Mixing

I will now summarize two key ideas from these
findings: emotion/language dynamic and classifi-
cation of emotion.

First, emotion usually precedes language.
In describing phenomenal consciousness as it
pertains to emotion, Carroll Izard wrote that
“an emotion feeling remains functional and
motivational without being symbolized and
made accessible in reflective consciousness via
language” (Izard, 2009). One might support this
claim by noting how complex emotional qualia
feels and how rather limited language can be. For
example, how accurate is it to say that “Alice is
happy”? To what extent is she happy? Is it the
same happiness that she feels when being in good
company, or in favorable weather? Do they only
differ in magnitude, or also along some other
dimension? Or as a second example, can you
recall a moment where you couldn’t describe how
you were feeling, but felt it nonetheless? Clearly,
emotion is rather difficult to express in simple
words. Yet, recent affective generation techniques
tend to presume that they fall neatly into one
of five or six discrete categories (Zhao et al.,
2018). Recently, researchers added nuance to
affect generation via variation in intensity (Ghosh
et al., 2017), but to my knowledge no model adds
nuance along extra dimensions, such as other
emotions.

Second, emotion is usually the conflation of
two distinct phenomena: “basic emotions” and
“dynamic emotion-cognition interactions” (Izard,
2009). The basic emotions are linked to old evolu-
tionary stimuli and are more automatic (e.g. fear
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as a response mechanism to avoid danger). That
is to say, basic emotions have little involvement
with cognition. Emotion schemas, on the other
hand, result directly from interactions between
cognition and emotion. This type of emotion is
underscored by research which casts emotion and
cognition as interdependent processes (Storbeck
and Clore, 2007), closely mirroring Picard’s insis-
tence that intelligence is comprised of emotion.

The categorizations usually found in lexicons
(e.g. Linguistic Inquiry and Word Count or
LIWC) treat words as stimuli which humans re-
spond to with emotions. This model aligns closely
with basic emotions, and supposes language pre-
cedes emotion. However, in actuality humans tend
to incorporate cognitive processes such as memory
and perspective-taking, allowing us to have multi-
ple emotions simultaneously. If we are to use this
as inspiration for generating affective text algorith-
mically, we might then permit the AI to intention-
ally express multiple emotions.

1.2 Project Overview
Having established this need for emotional
intelligence in AI (including natural language
processing), and reviewed psychological research
in this area, we might conclude that emotions
should not be modeled as singular, discrete
categories but continuous and constantly mixing.

This project aims to create an algorithm which
is capable of taking some priming text and the
desired affective state which can vary along
different emotional dimensions simultaneously,
and produce a corresponding utterance. This
algorithm is primarily meant for conversational
agents, but could be adapted for other purposes.

1.3 Use Cases
Mixing emotions are not only more realistic to
human emotion, since they allow for significantly
more flexibility in expression, but also more
helpful for specific applications. I will introduce
three such applications here.

First, the ability to mix emotions in a contin-
uous fashion allows for conversational agents to
gradually and imperceptibly shift the tone of a
conversation toward a new tone. Human tendency
to mirror the emotions of others through empathy

would make this an effective strategy to improve
attitude and emotional outlook.

Second, mixing emotions in this way also al-
lows for an extra layer of nuance in conversational
practice, as we are affected by emotional language
as often as we produce it. For example, in sim-
ulating a realistic conversation, the deliverance
of emotionally-charged statements should cause
the computer to respond appropriately. However,
models which treat emotion as discrete categories
would “overreact” and abruptly switch from one
emotion to another.

Third, realistic personality can be introduced as
a tendency to hover near or avoid specific points.
Naturally, the conversational agent will vary in
emotion, but ultimately return to some default
state. For example, if an agent were to express
optimistic personality, it might impose some min-
imum on the joy vector, and a maximum on the
sadness and anger vectors. This is not possible
with models that suppose emotions are discrete
categories.

1.4 Algorithm Overview

We can encapsulate this goal with a broad formula

g(p, e) = w (1)

where p is the priming text, e is a quadruple of
values such that

ex ∈ R | x ∈ {j, s, f, a}, 0 ≤ ex ≤ 1 (2)

which correspond to the intensity of joy, sadness,
fear, anger, respectively; and w is an array
of words and punctuation which represent the
algorithm’s response to p with emotional state
e. The emotional categories are selected to
correspond with the DepecheMood database,
which I will describe in section 3.2. The priming
text can be a sentence fragment which the user
seeks to complete or a natural sentence which the
algorithm is meant to respond to.

The purpose for g is to be embedded into a
conversational setting with improvements on
parsing and production. I will not detail what
this embedding looks like for sake of brevity and
coherency.
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An example set of sentences generated across a
gradient beginning at high happiness (ej ≈ 1), low
fear (ef ≈ 0) and ending at moderate happiness
(ej ≈ 0.5), high fear (ef ≈ 1) might look like
this:

• I am happy to go to work today

• I am content to go . . .

• I am hesitant to go . . .

• I am worried to go . . .

• I am nervous to go . . .

• I am anxious to go . . .

since anxiety is, in a sense, the combination of
fear and partial excitement or happiness.

2 Related Work

In the last two years, different models have been
used to create conversational agents which can
express affect. Namely, the Emotional Chatting
Machine (ECM) (Zhao et al., 2018) and Affect-
LM (Ghosh et al., 2017). These models are
motivated by the psychological finding that agents
with subtle expressivity can improve the affective
state of the user (Prendinger et al., 2005). These
projects utilize an array of emotional categories
including liking, happiness, sadness, disgust,
anger, and anxiety.

To accomplish this, different language mod-
els which utilize machine learning algorithms
have been crafted and tested for accuracy and
grammaticality. The most popular include feed-
forward neural networks, recurrent neural net-
works (RNNs), and long short-term memory
(LSTM) neural networks (Sundermeyer et al.,
2015). Among these, the LSTM model is notably
superior for establishing long-term dependencies
in text, and reducing the vanishing gradient prob-
lem found in RNNs. This is the method used
by (Ghosh et al., 2017), with an additional net-
work for including emotionally-charged words of
the desired strength. Importantly, they accommo-
dated and tested for loss in grammaticality, which
was predicted for expressions of intense emotion
but not low emotions, where standard LSTMs typ-
ically suffice.

3 Model

3.1 LSTM Language Model
The LSTM Language Model allows for the use of
all prior words as evidence in predicting the next
best word, wt. We can write this prediction as a
probability like so:

p(wM
1 ) =

M∏

i=1

p(wi|wi−1
1 ) (3)

for a sequence of M words. We can utilize the
LSTM as a function l of the prior words wi−1

1 to
calculate p(wi). An additional bias term bi corre-
sponding to unigram occurrence of wi may be in-
cluded to favor more common words, as in Ghosh
et al. (2017). The output layer of l summed with
this bias term then pass through a softmax activa-
tion function to normalize the outputs, producing

p(wi|wi−1
1 ) = softmax(l(wi−1

1 ) + bi) (4)

The algorithm would simply repeat this calcu-
lation, each step incrementing i and selecting the
most probable word, until a period is produced in-
dicating the end of the sentence and completion of
the algorithm.

3.2 Incorporating Affective Data
The DepecheMood lexicon contains affective data
for over 13,500 words, each rated along a contin-
uous interval [0, 1] for eight affective dimensions:
{Fear, Amusement, Anger, Annoyance, Indiffer-
ence, Happiness, Inspiration, Sadness} (Staiano
and Guerini, 2014). As a comical American exam-
ple, DepecheMood rates the word “president” as
{0.2, 0.346, 0.626, 1.0, 0.528, 0.341, 0.0, 0.115}
respectively – that is, moderately infuriating,
never inspiring, and completely annoying.

For this project, I would use the more typical
categories of joy, sadness, fear, and anger. This
lexicon contrasts other popular lexicons with
affective data, e.g. LIWC, in that these ratings
are continuous along [0, 1]. This property allows
for more precise matching to the affective state,
and movement along a gradient between the four
dimensions.

In addition to the bias term from the previous
section, we would account for affect by intro-
ducing a third term d(wi, e) which favors words
most affectively similar to the desired output.
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Graphically, this equation maps the vocabulary V
into four-dimensional space corresponding to each
word’s emotional valences, and calculates the dis-
tance between e, a point in this space, and each
word wi ∈ V . This inverse distance function can
be written as such:

d(wi, e) = softmax


 1√∑|e|

j=1(wij − ej)2




(5)
where j enumerates each of the four affective di-
mensions, wij is the intensity along that dimension
ej is the target intensity.

3.3 Optimizing d(wi, e)

In its current form, this function requires a calcu-
lation for each wi ∈ V which is has a subideal
time complexity of O(n). We can reduce this to
O(log n) by estimating e to its nearest neighbor in
V (a O(log n) operation, as I will soon explain),
whose distances to every other word can be
precomputed and accessed via a hash table O(1).
This replacement can be done without loss of
accuracy due to the density of the data set.

To find e nearest neighbor in V , we can uti-
lize a modified QuadTree algorithm to reduce the
search space to some arbitrary n much smaller
than 13,500. To briefly review, this algorithm or-
ganizes a set of data points into a hierarchical tree
with leaf nodes containing a list of less than n
points (Finkel and Bentley, 1974). Querying this
tree to find nearby data points has been empirically
shown to take on average O(log n) time, a modest
improvement over O(n).

3.4 Avoiding Over-Emphasis

As Zhao et al. (2018) noted in their ECM project,
“emotional responses are relatively short lived and
involve changes.” These changes, which the au-
thors call “emotion dynamics”, involve modeling
emotions as quantities which decays at each step.
This avoids the problem of over-emphasizing the
input e by repeatedly expressing the same state,
unintentionally compounding its strength. Their
implementation of this decay involves updating ej
in (5) by subtracting wij for each dimension j.
Therefore, upon completion, e would be close to
[0, 0, 0, 0].

Preliminary experimentation would certainly
need to reveal the appropriate weights for g, d, and

bi such that precision of emotion does not sacrifice
grammaticality.

4 Implementation, Training, and Review

For the LSTM, we would follow the suggestion of
Sundermeyer et al. (2012) and implement a net-
work using TensorFlow1 with two hidden layers
of 200 nodes: the first being a projection layer of
standard neural network units and the second be-
ing hidden layer of LSTM units. The output layer
would also have 200 nodes.

The same authors later suggest training the net-
work using the cross-entropy error criterion, using
the function

F (A) = −
M∑

i=1

log pA(wi|wi−1
i−n+1) (6)

where M is the size of the training corpus (Sun-
dermeyer et al., 2015). For a stochastic gradient
descent algorithm, we can obtain a gradient using
epochwise backpropogation through time (BPTT)
on the first pass, and update the weights on the sec-
ond pass as specified in Sundermeyer et al. (2014).

The training corpus for this algorithm would
need only be some collection of natural dialogue.
This can be catered to the environment it will be
used in, but for our purposes the Ubuntu Dialogue
Corpus will be used for its generality, accessibil-
ity, dyadic nature, and size (Lowe et al., 2016).

Additional funds have been secured to utilize
Amazon’s Mechanical Turk to analyze loss in
grammaticality and verify the manipulation of e
by simply assessing sentences along a Likert scale
and comparing this data to the intended affect. I
predict that certain categories and combinations
will be harder to express in text than others, result-
ing in higher variability and weaker correlations.
For example, anger and sadness (an approxima-
tion of remorse) may be rather easy to express, but
joy and sadness may be difficult. Visualizing these
strengths and weaknesses will be an interesting re-
flection of the English language.

5 Conclusion

In this research proposal, I have given a brief
overview of a natural language generation algo-
rithm which is capable of producing utterances ex-
pressive of multiple emotional dimensions simul-
taneously. The DepecheMood lexicon enables the

1http://www.tensorflow.org
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mapping of words into n-dimensional space, al-
lowing us to prefer words which minimize the dis-
tance between it and the target affective state along
the four emotional dimensions.

After clarifying implementation details such as
LSTM node construction, neural architecture, and
use of the training corpus, this algorithm has the
potential to add further nuance to our current mod-
els of generating affect which are consistent with
psychological and neuro-biological findings.
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Abstract

Spelling correction is a well-known task
in Natural Language Processing (NLP).
Automatic spelling correction is impor-
tant for many NLP applications like web
search engines, text summarization, sen-
timent analysis etc. Most approaches
use parallel data of noisy and correct
word mappings from different sources as
training data for automatic spelling cor-
rection. Indic languages are resource-
scarce and do not have such parallel data
due to low volume of queries and non-
existence of such prior implementations.
In this paper, we show how to build an
automatic spelling corrector for resource-
scarce languages. We propose a sequence-
to-sequence deep learning model which
trains end-to-end. We perform experi-
ments on synthetic datasets created for In-
dic languages, Hindi and Telugu, by incor-
porating the spelling mistakes committed
at character level. A comparative evalua-
tion shows that our model is competitive
with the existing spell checking and cor-
rection techniques for Indic languages.

1 Introduction

Spelling correction is important for many of the
potential NLP applications such as text summa-
rization, sentiment analysis, machine translation
(Belinkov and Bisk, 2017). Automatic spelling
correction is crucial in search engines as spelling
mistakes are very common in user-generated text.
Many websites have a feature of automatically
giving correct suggestions to the misspelled user
queries in the form of Did you mean? suggestions
or automatic corrections. Providing suggestions
makes it convenient for users to accept a proposed
correction without retyping or correcting the query

manually. This task is approached by collecting
similar intent queries from user logs (Hasan et al.,
2015; Wilbur et al., 2006; Ahmad and Kondrak,
2005). The training data is automatically extracted
from event logs where users re-issue their search
queries with potentially corrected spelling within
the same session. Example query pairs are (house
lone, house loan), (ello world, hello world), (mo-
bilephone, mobile phone). Thus, large amounts of
data is collected and models are trained using tech-
niques like Machine Learning, Statistical Machine
Translation etc.

The task of spelling correction is challenging
for resource-scarce languages. In this paper, we
consider Indic languages, Hindi and Telugu, be-
cause of their resource scarcity. Due to lesser
query share, we do not find the same level of par-
allel alteration data from logs. We also do not have
many language resources such as Parts of Speech
(POS) Taggers, Parsers etc. to linguistically an-
alyze and understand these queries. Due to lack
of relevant data, we create synthetic dataset using
highly probable spelling errors and real world er-
rors in Hindi and Telugu given by language ex-
perts. Similarly, synthetic dataset can be created
for any resource-scarce language incorporating the
real world errors. Deep Learning techniques have
shown enormous success in sequence to sequence
mapping tasks (Sutskever et al., 2014). Most of
the existing spell-checkers for Indic languages are
implemented using rule-based techniques (Kumar
et al., 2018). In this paper, we approach the
spelling correction problem for Indic languages
with Deep learning. This model can be em-
ployed for any resource-scarce language. We pro-
pose a character based Sequence-to-sequence text
Correction Model for Indic Languages (SCMIL)
which trains end-to-end.

Our main contributions in this paper are sum-
marized as follows:

• We propose a character based recurrent
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sequence-to-sequence architecture with a
Long Short Term Memory (LSTM) encoder
and a LSTM decoder for spelling correction
of Indic languages.

• We create synthetic datasets1 of noisy and
correct word mappings for Hindi and Telugu
by collecting highly probable spelling errors
and inducing noise in clean corpus.

• We evaluate the performance of SCMIL by
comparing with various approaches such as
Statistical Machine Translation (SMT), rule-
based methods, and various deep learning
models, for this task.

2 Related Work

Significant work has been done in the field of Spell
checking for Indian languages. There are spell-
checkers available for Indian languages like Hindi,
Marathi, Bengali, Telugu, Tamil, Oriya, Malay-
alam, Punjabi.

Dixit et al. (2005) designed a rule-based spell-
checker for Marathi, a major Indian Language.
This is the first initiative for morphology-based
spell checking for Marathi. The spell-checker is
based on the rules of morphology and the rules of
orthography.

A spell-checker is designed for Telugu (Rao,
2011), an agglutinating Indian language which has
a very complex morphology. This spell-checker
is based on Morphological Analysis and Sandhi
splitting rules. It consists of two parts: a set
of routines for scanning the text (Morphological
Analyzer and sandhi splitting rules) and identify-
ing valid words, and an algorithm for comparing
the unrecognized words and word parts against a
known list of variantly spelled words and word
parts.

Another Hindi Spell-checker (Sharma and Jain,
2013) uses a dictionary with word, frequency pairs
as language model. Error detection is done by
dictionary look-up. Error correction is performed
using Damerau-Levenshtein edit distance and n-
gram technique. These candidates are ranked by
sorting in increasing order of edit distance. Words
at same edit distance are sorted in order of their
frequencies.

HINSPELL(Singh et al., 2015) is a spell-
checker designed for Hindi which is implemented

1https://github.com/PravallikaRao/SpellChecker

using a hybrid approach. Error is detected by dic-
tionary look-up. Error correction is done by using
Minimum Edit Distance technique where the clos-
est words in the dictionary to the error word are
obtained. These obtained words are given priority
using a weightage algorithm and Statistical Ma-
chine Translation (SMT).

Ambili et al. (2016) designed a Malayalam
spell-checker that detects the error by a dictio-
nary look-up approach and error correction is done
through N-gram based technique. If a word is not
present in the dictionary, it is identified as an er-
ror and N-gram based technique corrects error by
finding similarity between words and computing a
similarity coefficient.

Recently, Ghosh and Kristensson (2017) pro-
posed a Deep Learning model for text correction
and completion in keyboard decoding for English.
This is a first attempt at text correction using Deep
Neural Networks which gave promising results.

Sakaguchi et al. (2017) approached the prob-
lem of Spell Correction using semi-character Re-
current Neural Networks on English data.

Studies of spell checking techniques for In-
dian Languages (Kumar et al., 2018; Gupta
and Mathur, 2012) show that the existing spell-
checkers have two major steps: Error detection
and error correction. Error detection is done by
dictionary look-up. Error correction consists of
two steps: the generation of candidate correc-
tions and the ranking of candidate corrections.
The most studied spelling correction algorithms
are: edit distance, similarity keys, rule-based
techniques, n-gram-based techniques, probabilis-
tic techniques, neural networks, and noisy channel
model. All of these methods can be thought of
as calculating a distance between the misspelled
word and each word in the dictionary or index.
The shorter the distance the higher the dictionary
word is ranked.

While there have been a few attempts to de-
sign spell-checkers for English and few other lan-
guages using Machine Learning, to the best of our
knowledge, no such prior work has been attempted
for Indian languages.

3 Model Description

We address the spelling correction problem for
Indic languages by having a separate corrector
network as an encoder and an implicit language
model as a decoder in a sequence-to-sequence at-
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tention model that trains end-to-end.

3.1 Sequence-to-sequence Model

Sequence-to-sequence (seq2seq) models
(Sutskever et al., 2014; Cho et al., 2014)
have enjoyed great success in a variety of tasks
such as machine translation, speech recognition,
image captioning, and text summarization. A
basic sequence-to-sequence model consists of
two neural networks: an encoder that processes
the input and a decoder that generates the output.
This model has shown great potential in input-
output sequence mapping tasks like machine
translation. An input side encoder captures the
representations in the data, while the decoder gets
the representation from the encoder along with
the input and outputs a corresponding mapping to
the target language. Intuitively, this architectural
set-up seems to naturally fit the regime of map-
ping noisy input to de-noised output, where the
corrected prediction can be treated as a different
language and the task can be treated as Machine
Translation.

3.2 System Architecture

The Recurrent Neural Network (RNN) (Rumelhart
et al., 1986; Werbos, 1990) is a natural generaliza-
tion of feed-forward neural networks to sequences.
Given a sequence of inputs (x1, . . . , xT ), a stan-
dard RNN computes a sequence of outputs (y1,
. . . , yT ) by iterating the following equation:

ht = sigm(W hxxt +W hhht−1) (1)

yt = W yhht (2)

The RNN can easily map sequences to se-
quences whenever the alignment between the in-
puts the outputs is known ahead of time. In
fact, recurrent neural networks, long short-term
memory networks (Hochreiter and Schmidhu-
ber, 1997), and gated recurrent neural networks
(Chung et al., 2014) have become standard ap-
proaches in sequence modelling and transduction
problems such as language modelling and ma-
chine translation.

RNNs struggle to cope with long-term depen-
dency in the data due to vanishing gradient prob-
lem (Hochreiter, 1998). This problem is solved
using Long Short Term Memory (LSTM) recur-
rent neural networks.

SCMIL has the similar underlying architecture
of sequence-to-sequence models. The encoder and
decoder in SCMIL operate at character level.

Encoder: In SCMIL, the encoder is a character
based LSTM. With LSTM as encoder, the input se-
quence is modeled as a list of vectors, where each
vector represents the meaning of all characters in
the sequence read so far.

Decoder: The decoder in SCMIL is a character
level LSTM recurrent network with attention. The
output from the encoder is the final hidden state of
the character based LSTM encoder. This becomes
the input to the LSTM decoder.

By letting the decoder have an attention mecha-
nism (Bahdanau et al., 2014), the encoder is re-
lieved from the burden of having to encode all
information in the source sequence into a fixed-
length vector. With attention, the information can
be spread throughout the sequence of annotations,
which can be selectively retrieved by the decoder
accordingly. The attention mechanism computes a
fixed-size vector that encodes the whole input se-
quence based on the sequence of all the outputs
generated by the encoder as opposed to the plain
encoder-decoder model which looks only at the
last state generated by the encoder for all the slices
of the decoder.

Thus, SCMIL is a sequence-to-sequence atten-
tion model with Bidirectional RNN encoder and
attention decoder which is trained end-to-end hav-
ing a character based representation on both en-
coder and decoder sides.

3.3 Training details

All the code is written in Python 2.7 us-
ing tf-seq2seq (Britz et al., 2017), a general-
purpose encoder-decoder framework for Tensor-
flow (Abadi et al., 2016) deep learning library ver-
sion 1.0.1. Both the encoder and the decoder are
jointly trained end-to-end on the synthetic datasets
we created. SCMIL has a learning rate of 0.001,
batch size of 100, sequence length of 50 (charac-
ters) and number of training steps 10,000. The size
of the encoder LSTM cell is 256 with one layer.
The size of the decoder LSTM cell is 256 with
two layers. We use Adam optimization (Kingma
and Ba, 2014) for training SCMIL. The charac-
ter embedding dimension are fixed to 256 and the
dropout rate to 0.8.
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4 Experiments and Results

We performed experiments with SCMIL and other
models using synthetic datasets which we created
for the Indic languages: Hindi and Telugu. Hindi
is the most prominent Indian language and the
third most spoken language in the world. Telugu
is the most widely spoken Dravidian language in
the world and third most spoken native language
in India.

4.1 Dataset details

Due to lack of data with error patterns in Indic
languages, we have built a synthetic dataset that
SCMIL is trained on. Initially, we create data lists
for Hindi and Telugu. For this, we have extracted
a corpus of most frequent Hindi words2 and most
frequent Telugu words3. We have also extracted
Hindi movie names and Telugu movie names of
the movies released between the years 1930 and
2018 from Wikipedia which constitute phrases in
the data lists. Thus, the Hindi and Telugu data lists
consist of words and phrases consisting maximum
of five words.

For each data instance in the data list, multiple
noisy words are generated by introducing error.
The type of errors include insertion, deletion, sub-
stitution of one character, and word fusing. Spaces
between words are randomly dropped in phrases to
simulate the word fusing problem. The list of er-
rors for Hindi and Telugu is created by collecting
the highly committed spelling errors users make
in each of these languages. We created this error
list from linguistic resources and with help from
language experts. The language experts analyzed
Hindi and Telugu usage and listed the most prob-
able errors. These errors are based on observa-
tions on real data and lexicon of Hindi and Telugu.
Thus, the synthetic datasets are made as close as
possible to real world user-generated data.

Table 2 shows the example of generation of
noisy words corresponding to a correct word con-
sidering a Hindi word. Thus, the pairs of noisy
word and original word constitute the parallel data
for training. Table 1 gives the details about size of
the synthetic datasets for Hindi and Telugu.

4.2 Baseline Methods

We perform experiments on various models. The
datasets are divided into train, dev, test partitions

2https://ltrc.iiit.ac.in/download.php
3https://en.wiktionary.org/Frequency lists/Telugu

randomly in the ratio 80:10:10 respectively. In all
our results, the models learn over the train parti-
tion, get tuned over the dev partition, and are eval-
uated over the test partition.

We train a SMT model using Moses (Koehn
et al., 2007) on Hindi and Telugu synthetic
datasets. This is our main baseline model. The
standard set of features is used, including a phrase
model, length penalty, jump penalty and a lan-
guage model. This SMT model is trained at the
character-level. Hence, the system learns map-
pings between character-level phrases. Moses
framework allows us to easily conduct experi-
ments with several settings and compare with
SCMIL.

Other baselines are character based sequence-
to-sequence attention models: CNN-GRU and
GRU-GRU. All the models compared in this set
of experiments look at batch sizes of 100 inputs
and a maximum sequence size of 50 characters
with a learning rate of 0.001 and run for 10000
steps. Throughout, the size of GRU cell is 256
with one layer. The CNN consists of 5 filters with
sizes varying in the range of [2,3,4]. These multi-
ple filters of particular widths produce the feature
map, which is then concatenated and flattened for
further processing.

4.3 Results and Analysis

Table 3 shows the accuracies reported by SCMIL
and SMT methods. To check if Moses performs
better on larger training data, we increased the
size of Hindi synthetic dataset to 20567 and per-
formed SMT. The accuracy value was 62% which
is almost equivalent to the accuracy on original
synthetic dataset. SCMIL outperforms Moses, an
SMT technique by a huge margin. In Table 3,
we find that SCMIL performs better than other
sequence-to-sequence models with different con-
volutional and recurrent encoder-decoder combi-
nations. These accuracies are on test set over
the entire sequence. Thus, the results show that
SCMIL performs better than all other baseline
models. Our results support the conclusion by
Britz et al. (2017) that LSTMs outperform GRUs.

The rule-based spell-checker for Hindi, HIN-
SPELL (Singh et al., 2015) reported an accuracy
of 77.9% on a data of 870 misspelled words ran-
domly collected from books, newspapers and peo-
ple etc. Te data used in Singh et al. (2015) and the
HINSPELL system are not available. Hence, we
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Language High Frequency Words Movie names Size of parallel corpus
Hindi 15000 3021 108587
Telugu 10000 3689 92716

Table 1: Details of the synthetic datasets for Hindi and Telugu.

Correct word Noisy words
þ�mA khAnF (prema kahaanii)

þ�m khAnF þ�m khnF (prem kahanii)
(prem kahaanii) þ�mkhAnF (premkahaanii)

þ�m khAEn (prem kahaani)
þ{m khAnF (praim kahaanii)

Table 2: Example of noisy words generation for a
Hindi word with corresponding transliterations.

implemented HINSPELL using Shabdanjali dic-
tionary4 consisting of 32952 Hindi word. This
system when tested on our Hindi synthetic dataset,
gave an accuracy is 72.3%. This accuracy being
lower than the original HINSPELL accuracy can
be accounted to larger size of testing data and in-
clusion of out-of-vocabulary words. Thus, SCMIL
outperforms HINSPELL by reporting an accuracy
of 85.4%.

In Table 4, we have shown predictions given by
SCMIL on few Hindi inputs. The results show that
errors are contextually learned by the model. It
can also be seen that the model has learned the
word fusing problem. Also, the error detection
step is not required separately as SCMIL trains
end-to-end and learns the presence of noise in the
input based on context. The advantage of SCMIL
over rule-based techniques is that it can handle
out of vocabulary words as it is trained at char-
acter level. For example, the last entry in the Ta-
ble 4, is the English word bomb spelled in Hindi.
The model has learned it and corrected when mis-
spelled in Hindi as bombh. Dictionary based tech-
niques fail in such cases. The model fails in few
cases when it corrects one character of the mis-
spelled word instead of other like the example in
fourth row of 4.

The slightly higher accuracy of SCMIL on Tel-
ugu data than on Hindi data might be due to the
fact that the highly probable spelling errors used in
data creation are slightly less in number for Telugu
when compared to Hindi. This can be handled for
any language with more errors by increasing size

4https://ltrc.iiit.ac.in/download.php

Model Hindi(%) Telugu(%)
Moses (SMT) 62.8 64.7
CNN-GRU 74.4 79.7
GRU-GRU 77.6 84.3
SCMIL 85.4 89.3

Table 3: Accuracy of spelling correction on Hindi
and Telugu synthetic datasets given by Moses,
character-based deep learning models(CNN-GRU
and GRU-GRU), and SCMIL.

of dataset which includes enough data instances
capturing each kind of error.

5 Future Work

This paper is the initial approach to automatic
spelling correction for Indic languages using Deep
Learning and we have obtained results that are
competitive with the existing techniques. SCMIL
can be improved and extended in many ways.

SCMIL presently deals with spelling correc-
tions at word level. It can be further extended
to automatically make not only spelling correc-
tions but also grammar corrections at phrase
level/sentence level.

The synthetic dataset can be improved by col-
lecting noisy words from different platforms like
social media, blogs etc. and introducing these real
world errors into clean corpus. This will improve
the performance of the model on user-generated
data. Further, for proper evaluation of the model,
The model should be tested on real world user-
generated parallel data.

One more potential improvement would be to
change the training data from words and phrases
to sentences. This will help in achieving context
based spelling correction.

The spelling correction model can be extended
to a text correction and completion model. Chang-
ing the decoder from character-level to word-level
will add the functionality of auto completion. This
will improve the scope of the model in various ap-
plications.
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Input Prediction Correct Output
rAjEs rAjsF rAjsF
(raajasi) (raajasii) (raajasii)
doaA K�\ do aA K�\ do aA K�\
(dhoaankhei) (dho aankhei) (dho aankhei)
a\s a\f a\f
(ans) (ansh) (ansh)
dfAvtr dfvtr dfAvtAr
(dhashaavatar) (dhashavatar) (dhashaavataar)
bA�MB bA�Mb bA�Mb
(baambh) (baamb) (baamb)
bA�MB bA�Mb bA�Mb
(baambh) (baamb) (baamb)

Table 4: Qualitative evaluation of predictions by
SCMIL on few Hindi inputs along with expected
outputs and corresponding transliterations.

6 Summary and Conclusion

In this paper, we proposed SCMIL for automatic
spelling correction in Indic languages which em-
ploys a recurrent sequence-to-sequence attention
model to learn the spelling corrections from noisy
and correct word pairs. We created a parallel
corpus of noisy and correct spellings for training
by introducing spelling errors in correct words.
We validated SCMIL on these synthetic datasets
created for Hindi and Telugu. We implemented
spelling correction using Moses, a SMT system
as a baseline model. We evaluated our system
against existing techniques for Indic languages
and showed favorable results. Finally, we dis-
cussed possible extensions to improve the scope
of SCMIL and perform better evaluation.

SCMIL can be used in applications like search
engines as we have shown that it automatically
corrects the input text in Indic languages. Most
of the deep learning models train on billions of
data instances. On the contrary, SCMIL trains on
a dataset of less than a million parallel instances
and gives competitive results. This shows that our
approach can be used for automatic spelling cor-
rection of any resource-scarce language.
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Abstract

This paper presents a system that auto-
matically generates multiple, natural lan-
guage questions using relative pronouns
and relative adverbs from complex English
sentences. Our system is syntax-based,
runs on dependency parse information of
a single-sentence input, and achieves high
accuracy in terms of syntactic correctness,
semantic adequacy, fluency and unique-
ness. One of the key advantages of our
system, in comparison with other rule-
based approaches, is that we nearly elim-
inate the chances of getting a wrong wh-
word in the generated question, by fetch-
ing the requisite wh-word from the input
sentence itself. Depending upon the input,
we generate both factoid and descriptive
type questions. To the best of our infor-
mation, the exploitation of wh-pronouns
and wh-adverbs to generate questions is
novel in the Automatic Question Genera-
tion task.

1 Introduction

Asking questions from learners is said to facili-
tate interest and learning (Chi, 1994), to recognize
problem learning areas (Tenenberg and Murphy,
2005) to assess vocabulary (Brown et al., 2005)
and reading comprehension (Mitkov, 2006); (Ku-
nichika et al., 2004), to provide writing support
(Liu et al., 2012), to support inquiry needs (Ali
et al., 2010), etc. Manual generation of questions
from a text for creating practice exercises, tests,
quizzes, etc. has consumed labor and time of aca-
demicians and instructors since forever, and with
the invent of a large body of educational mate-
rial available online, there is a growing need to
make this task scalable. Along with that, in the
recent times, there is an increased demand to cre-

ate Intelligent tutoring systems that use computer-
assisted instructional material or self-help prac-
tice exercises to aid learning as well as objec-
tively check learner’s aptitude and accomplish-
ments. Inevitably, the task of Automatic Question
Generation (QG) caught the attention of NLP re-
searchers from across the globe. Automatic QG
has been defined as ”the task of automatically gen-
erating questions from various inputs like raw text,
database or semantic representation” (Rus et al.,
2008). Apart from its direct application in the ed-
ucational domain, in general, the core NLP areas
like Question Answering, Dialogue Generation,
Information Retrieval, Summarization, etc. also
benefit from large scale automatic Question Gen-
eration.

2 Related Work

Previous work on Automatic QG has focused
on generating questions using question tem-
plates (Liu et al., 2012); (Mostow and Chen,
2009); (Sneiders, 2002), transformation rules
based largely on case grammars (Finn, 1975),
general-purpose, transformation rules (Heilman
and Smith, 2009), tree manipulation rules (Heil-
man, 2011); (Ali et al., 2010); (Gates, 2008), dis-
course cues (Agarwal et al., 2011), queries (Lin,
2008), various scopes (Mannem et al., 2010), de-
pendency parse information (Mazidi and Nielsen,
2015), topic information (Chali and Hasan, 2015),
ontologies (Alsubait et al., 2015), etc. More recent
approaches also apply neural methods (Subrama-
nian et al., 2017); (Zhou et al., 2017); (Yuan et al.,
2017); (Du et al.), etc. to generate questions.

In the current paper, we fetch relative pronouns
and relative adverbs from complex English sen-
tences and use dependency-based rules, grounded
in linguistic theory of relative clause syntactic
structure, to generate multiple relevant questions.
The work follows in the tradition of question
writing algorithm (Finn, 1975) and transformation
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rules based approach (Heilman and Smith, 2009).
However, while Finn’s work was based largely
around case grammars (Fillmore, 1968), our sys-
tem exploits dependency parse information using
the Spacy parser (Honnibal and Johnson, 2015),
which provides us with a better internal structure
of complex sentences to work with. The general-
purpose transformation rules in Heilman’s system
do not work well on sentences with a highly com-
plex structure, as we show in the section on com-
parison and evaluation. Although no other state-
of-the art system focuses specifically on QG from
relative pronouns and relative adverbs, a more re-
cent Minimal Recursion semantics-based QG sys-
tem (Yao et al., 2012) has a sub part that deals with
sentences with a relative clause, but less compre-
hensively. We differ from their system in that, for
one, we do not decompose the complex sentence
into simpler parts to generate questions. The rules
are defined for the dependencies between relative
pronouns and relative adverbs and the rest of the
sentence as a whole. Secondly, our system gener-
ates a different set and more number of questions
per sentence than their system.

3 Why Relative Clauses?

In complex sentences, relative pronouns or rela-
tive adverbs perform the function of connecting
or introducing the relative clause that is embed-
ded inside the matrix clause. Examples of these in
English include who, whom, which, where, when,
how, why, etc. An interesting thing about both
relative pronouns and relative adverbs is that they
carry unique information on the syntactic relation-
ship between specific parts of the sentence. For
example, consider the following sentence in En-
glish:
I am giving fur balls to John who likes cats.

In this sentence, the relative pronoun who mod-
ifies the object of the root verb give of the matrix
sentence. At the same time, it acts as the subject
of the relative clause likes cats, which it links the
matrix clause with. In this paper, we aim to ex-
actly exploit this structural relationship to generate
questions, thereby adding to the pool of questions
that can be generated from a given sentence. One
of the key benefits of using the information from
relative pronouns and relative adverbs is that we
are not likely to go wrong with the wh-word, as
we fetch it from the relative clause itself to gen-
erate the question. This gives our system an edge

over other QG systems.

4 System Description

We split the complete QG task into the following
sub parts - the input natural language sentence is
first fed into the Spacy parser. Using the parse in-
formation, the system checks for the presence of
one or more relative pronouns or adverbs in the
sentence. Post that, it further checks for well-
defined linguistic features in the sentence, such as
tense and aspect type of the root and relative clause
verb, head-modifier relationship between different
parts of the sentence, etc. to accordingly send
the information to the rule sets. Depending upon
which rule in the rule sets the information is sent
to, questions are generated. We define our rule sets
in the next section.

5 Rule Sets

For each of the nine relative pronouns and rela-
tive adverbs in English (who, whom, whose, which,
that, where, when, why, how) that we took into
consideration, we defined three sets of rules. Each
of the three rule sets further contains a total of ten
rules, backed by linguistic principles. Each rela-
tive pronoun or relative adverb in the sentence is
first checked for a set of requirements before get-
ting fed into the rules. Depending upon the relative
pronoun and relative adverb and the type of rela-
tive clause (restrictive or unrestrictive), questions
are generated. We present an example of one out
of the ten rules from each of the three rule sets in
the next section.

5.1 Rule Set 1.

We know that the relative pronoun (RP) modi-
fies the object of the root of the matrix sentence.
Before feeding the sentence to the rule, we first
check the sentence for the tense and aspect of the
root verb and also for the presence of modals and
auxiliary verbs (aux). Based on this information,
we then accordingly perform do-insertion before
Noun Phrase (NP) or aux/modal inversion. For a
sentence of the following form, with an optional
Preposition Phrase (PP) and RP who that precedes
a relative clause (RC),
NP (aux) Root NP (PP)+ {RC}
The rule looks like this:
RP aux NP root NP Preposition?

Hence, for the example sentence introduced in
the previous section, we get the following question
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using the first rule:
Who/Whom am I giving fur balls to?

In representation of the rules, we follow the
general linguistic convention which is to put round
brackets on optional elements and ’+’ symbol for
multiple possible occurrences of a word or phrase.

5.2 Rule Set 2.
The next understanding about the relative pronoun
or adverb comes from the relative clause it intro-
duces or links the matrix sentence with. The rel-
ative pronoun can sometimes act as the subject of
the verb of relative clause. This forms the basis for
rules in the second set.

After checking for dependency of the RP, which
should be noun subject (n-subj) to the verb in the
relative clause, we then check the tense and as-
pect of the relative clause verb and the presence of
modals and auxiliary verbs. Based on this infor-
mation, we then accordingly perform do-insertion
or modal/auxiliary inversion. For a relative clause
of the following form, with the relative pronoun
who,
{matrix } RP (aux/modals)+ RC verb (NP)
(PP)+
The rule looks like this:
RP do-insertion/aux/modal RC verb (NP)
(Preposition)?
Taking the same example sentence, we get the fol-
lowing question using the second rule:
Who likes cats?

5.3 Rule Set 3.
The relative pronoun modifies or gives more in-
formation on the head of the noun phrase of the
preceding sentence. This forms the basis to rules
in the third set. Before feeding the sentence to this
rule, we first check the tense of the relative clause
verb along with its number agreement. We do this
because English auxiliaries and copula carry tense
and number features and we need this information
to insert their correct form. For a sentence of the
following form:
NP (aux/modals) Root NP RP (aux)+ RC
verb (NP) (PP)+
The rule looks like this:
RP aux Head of NP?
Taking the first example sentence, from the previ-
ous sections, we get the following question using
the fourth rule:
Who is John?
In a similar fashion, we define rules for all other

relative pronouns and adverbs that we listed in the
previous section.

6 Evaluation Criteria

There is no standard way to evaluate the output
of a QG system. In the current paper, we go
with manual evaluation, where 4 independent hu-
man evaluators, all non-native English speakers
but proficient in English, give scores to questions
generated from the system. The scoring schema is
similar to one used by (Agarwal et al., 2011) albeit
with some modifications. To judge syntactic cor-
rectness, the evaluators give a score of 3 when the
questions are syntactically well-formed and natu-
ral, 2 when they have a few syntactic errors and
1 when they are syntactically unacceptable. Sim-
ilarly, for semantic correctness, the raters give a
score of 3 when the questions are semantically
correct, 2 when they have a weird meaning and
1 when they are semantically unacceptable. Un-
like (Agarwal et al., 2011), we test the fluency and
semantic relatedness separately. The former tells
us how natural the question reads. A question with
many embedded clauses and adjuncts is syntacti-
cally acceptable, but disturbs the intended purpose
of the question and, hence, should be avoided.
For example, a question like Who is that girl who
works at Google which has its main office in Amer-
ica which is a big country? is syntactically and
semantically fine, but isn’t as fluent as the ques-
tion Who is that girl who works at Google? which
is basically the same question but is more fluent.
The evaluators give a score of 1 for questions that
aren’t fluent and 2 to the ones that are. Lastly, eval-
uators rate the questions for how unique they are.
Adding this criteria is important because questions
generated for academic purposes need to cover
different aspects of the sentence. This is why if
the generated questions are more or less alike, the
evaluators give them a low score on distribution or
variety. For a well distributed output, the score is
2 and for a less distributed one, it is 1. The evalua-
tors give a score of 0 when there is no output for a
given sentence. The scores obtained separately for
syntactic correctness, semantic adequacy, fluency
and distribution are used to compare the perfor-
mance of the two systems.

7 Evaluation

We take sentences from the Wikipedia corpus. Out
of a total of 25773127 sentences, 3889289 sen-
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tences have one or more relative pronoun or rel-
ative adverb in them. This means that sentences
with relative clauses form roughly 20% of the cor-
pus. To conduct manual evaluation, we take 300
sentences from the set of sentences with relative
clauses, and run ours and Heilman’s system on
them. We give the questions generated per sen-
tence for both the systems to 4 independent human
evaluators who rate the questions on syntactic cor-
rectness, semantic adequacy, fluency and distribu-
tion.

8 Results

The results of our system and comparison with
Heilman’s is given in Figure 1. The ratings pre-
sented are average of ratings of all the evaluators.
Our system gets 2.89/3.0 on syntactic correctness,
2.9/3.0 on semantic adequacy, 1.85/2.0 in fluency
and 1.8/2.0 in distribution. On the same met-
rics, Heilman’s system gets 2.56, 2.58, 1.3 and
1.1. The Cohen’s kappa coefficient or the inter
evaluator agreement is 0.6, 0.7, 0.7 and 0.7 on
syntactic correctness, semantic adequacy, fluency
and distribution respectively, which indicate
reliability. The overall rating of our system is 9.44
out of 10 in comparison of Heilman’s which is
7.54.

Figure 1: Evaluation scores: Our system performs better
than Heilman’s system on all of the given criteria; syntactic
correctness, semantic adequacy, fluency and uniqueness.

9 Discussion

On all the four evaluation criteria that we used
for comparison, our system performs better than
Heilman’s state-of-the-art rule based system,
while generating questions from complex English
sentences. Let us take a look at some specific
input example cases to analyze the results. First
of all, by fetching and modifying the wh-word

from the sentence itself, we nearly eliminate
the possibility of generating a sentence with a
wrong wh-word. From the example comparison
in Figure.2, we can see that the output of both
the systems is the same. However, our system
generates the correct wh-word for the generated
question.

Figure 2: Wh-Word: Our system performs better than Heil-
man’s system at fetching the correct Wh-word for the given
input.

By exploiting the unique structural relationships
between relative pronouns and relative adverbs
with the rest of the sentence, we are able to cover
different aspects of the same sentence. Also, by
eliminating unwanted dependencies, we ensure
that the system generates fluent questions. See
Figure 3 for a reference example.

Figure 3: Fluency: As compared to Heilman’s system, our
system generates more fluent questions for the given input.

Since Heilman’s system does not look deeper
into the internal structural dependencies between
different parts of the sentence, it fails to generate
reasonable questions for most cases of complex
sentences. Our system, on the other hand, exploits
such dependencies and is, therefore, able to
handle complex sentences better. See Figure 4 for
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a reference example of this case. Lastly, there is a
restriction put on the length of the input sentence
in Heilman’s system. Due to this, there is zero
or no output at all for complex sentences that are
very long. Our system, however, works well on
such sentences also and gives reasonable output.

Figure 4: Complex Sentences: Our system is able to han-
dle the given highly complex sentence better than Heilman’s
system.

10 Conclusion

This paper presented a syntax, rule-based system
that runs on dependency parse information from
the Spacy parser and exploits dependency relation-
ship between relative pronouns and relative ad-
verbs and the rest of the sentence in a novel way
to automatically generate multiple questions from
complex English sentences. The system is sim-
ple in design and can handle highly complex sen-
tences. The evaluation was done by 4 independent
human evaluators who rated questions generated
from our system and Heilman’s system on the ba-
sis of how syntactically correct, semantically ad-
equate, fluent and well distributed or unique the
questions were. Our system performed better than
Heilman’s system on all the aforesaid criterion. A
predictable limitation of our system is that it is
only meant to generate questions for sentences that
contain at least one relative clause. Such sentences
form about 20% of the tested corpus.
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