
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 732–739
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

732

Long Short-Term Memory
as a Dynamically Computed Element-wise Weighted Sum

Omer Levy∗ Kenton Lee∗ Nicholas FitzGerald Luke Zettlemoyer
Paul G. Allen School, University of Washington, Seattle, WA

{omerlevy,kentonl,nfitz,lsz}@cs.washington.edu

Abstract

LSTMs were introduced to combat van-
ishing gradients in simple RNNs by aug-
menting them with gated additive recur-
rent connections. We present an alterna-
tive view to explain the success of LSTMs:
the gates themselves are versatile recurrent
models that provide more representational
power than previously appreciated. We
do this by decoupling the LSTM’s gates
from the embedded simple RNN, produc-
ing a new class of RNNs where the recur-
rence computes an element-wise weighted
sum of context-independent functions of
the input. Ablations on a range of prob-
lems demonstrate that the gating mecha-
nism alone performs as well as an LSTM
in most settings, strongly suggesting that
the gates are doing much more in practice
than just alleviating vanishing gradients.

1 Introduction

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) has become the de-facto re-
current neural network (RNN) for learning repre-
sentations of sequences in NLP. Like simple re-
current neural networks (S-RNNs) (Elman, 1990),
LSTMs are able to learn non-linear functions of
arbitrary-length input sequences. However, they
also introduce an additional memory cell to mit-
igate the vanishing gradient problem (Hochreiter,
1991; Bengio et al., 1994). This memory is con-
trolled by a mechanism of gates, whose additive
connections allow long-distance dependencies to
be learned more easily during backpropagation.
While this view is mathematically accurate, in this
paper we argue that it does not provide a complete
picture of why LSTMs work in practice.

∗The first two authors contributed equally to this paper.

We present an alternate view to explain the suc-
cess of LSTMs: the gates themselves are power-
ful recurrent models that provide more representa-
tional power than previously realized. To demon-
strate this, we first show that LSTMs can be seen
as a combination of two recurrent models: (1) an
S-RNN, and (2) an element-wise weighted sum of
the S-RNN’s outputs over time, which is implicitly
computed by the gates. We hypothesize that, for
many practical NLP problems, the weighted sum
serves as the main modeling component. The S-
RNN, while theoretically expressive, is in practice
only a minor contributor that clouds the mathemat-
ical clarity of the model. By replacing the S-RNN
with a context-independent function of the input,
we arrive at a much more restricted class of RNNs,
where the main recurrence is via the element-wise
weighted sums that the gates are computing.

We test our hypothesis on NLP problems, where
LSTMs are wildly popular at least in part due
to their ability to model crucial phenomena such
as word order (Adi et al., 2017), syntactic struc-
ture (Linzen et al., 2016), and even long-range se-
mantic dependencies (He et al., 2017). We con-
sider four challenging tasks: language modeling,
question answering, dependency parsing, and ma-
chine translation. Experiments show that while re-
moving the gates from an LSTM can severely hurt
performance, replacing the S-RNN with a simple
linear transformation of the input results in min-
imal or no loss in model performance. We also
show that, in many cases, LSTMs can be further
simplified by removing the output gate, arriving
at an even more transparent architecture, where
the output is a context-independent function of
the weighted sum. Together, these results suggest
that the gates’ ability to compute an element-wise
weighted sum, rather than the non-linear transition
dynamics of S-RNNs, are the driving force behind
LSTM’s success.

733

2 What Do Memory Cells Compute?

LSTMs are typically motivated as an augmenta-
tion of simple RNNs (S-RNNs), defined as:

ht = tanh(Whhht−1 +Whxxt + bh) (1)

S-RNNs suffer from the vanishing gradient prob-
lem (Hochreiter, 1991; Bengio et al., 1994) due to
compounding multiplicative updates of the hidden
state. By introducing a memory cell and an output
layer controlled by gates, LSTMs enable shortcuts
through which gradients can flow when learning
with backpropagation. This mechanism enables
learning of long-distance dependencies while pre-
serving the expressive power of recurrent non-
linear transformations provided by S-RNNs.

Rather than viewing the gates as simply an aux-
iliary mechanism to address a learning problem,
we present an alternate view that emphasizes their
modeling strengths. We argue that the LSTM
should be interpreted as a hybrid of two distinct
recurrent architectures: (1) the S-RNN which pro-
vides multiplicative connections across timesteps,
and (2) the memory cell which provides additive
connections across timesteps. On top of these re-
currences, an output layer is included that simply
squashes and filters the memory cell at each step.

Throughout this paper, let {x1, . . . ,xn} be the
sequence of input vectors, {h1, . . . ,hn} be the se-
quence of output vectors, and {c1, . . . , cn} be the
memory cell’s states. Then, given the basic LSTM
definition below, we can formally identify three
sub-components.

c̃t = tanh(Wchht−1 +Wcxxt + bc) (2)

it = σ(Wihht−1 +Wixxt + bi) (3)

ft = σ(Wfhht−1 +Wfxxt + bf) (4)

ct = it ◦ c̃t + ft ◦ ct−1 (5)

ot = σ(Wohht−1 +Woxxt + bo) (6)

ht = ot ◦ tanh(ct) (7)

Content Layer (Equation 2) We refer to c̃t as
the content layer, which is the output of an S-
RNN. Evaluating the need for multiplicative recur-
rent connections in the content layer is the focus of
this work. The content layer is passed to the mem-
ory cell, which decides which parts of it to store.

Memory Cell (Equations 3-5) The memory cell
ct is controlled by two gates. The input gate it
controls what part of the content (c̃t) is written
to the memory, while the forget gate ft controls

what part of the memory is deleted by filtering the
previous state of the memory (ct−1). Writing to
the memory is done by adding the filtered content
(it ◦ c̃t) to the retained memory (ft ◦ ct−1).

Output Layer (Equations 6-7) The output
layer ht passes the memory cell through a tanh
activation function and uses an output gate ot to
read selectively from the squashed memory cell.

Our goal is to study how much each of these
components contribute to the empirical perfor-
mance of LSTMs. In particular, it is worth consid-
ering the memory cell in more detail to reveal why
it could serve as a standalone powerful model of
long-distance context. It is possible to show that
it implicitly computes an element-wise weighted
sum of all the previous content layers by expand-
ing the recurrence relation in Equation 5:

ct = it ◦ c̃t + ft ◦ ct−1

=

t∑
j=0

(
ij ◦

t∏
k=j+1

fk

)
◦ c̃j

=
t∑

j=0

wt
j ◦ c̃j

(8)

Each weight wt
j is a product of the input gate ij

(when its respective input c̃j was read) and every
subsequent forget gate fk. An interesting property
of these weights is that, like the gates, they are also
soft element-wise binary filters.

3 Standalone Memory Cells are Powerful

The restricted space of element-wise weighted
sums allows for easier mathematical analysis, vi-
sualization, and perhaps even learnability. How-
ever, constrained function spaces are also less ex-
pressive, and a natural question is whether these
models will work well for NLP problems that in-
volve understanding context. We hypothesize that
the memory cell (which computes weighted sums)
can function as a standalone contextualizer. To
test this hypothesis, we present several simplifica-
tions of the LSTM’s architecture (Section 3.1), and
show on a variety of NLP benchmarks that there
is a qualitative performance difference between
models that contain a memory cell and those that
do not (Section 3.2). We conclude that the content
and output layers are relatively minor contributors,
and that the space of element-wise weighted sums
is sufficiently powerful to compete with fully pa-
rameterized LSTMs (Section 3.3).

734

3.1 Simplified Models

The modeling power of LSTMs is commonly as-
sumed to derive from the S-RNN in the content
layer, with the rest of the model acting as a learn-
ing aid to bypass the vanishing gradient problem.
We first isolate the S-RNN by ablating the gates
(denoted as LSTM – GATES for consistency).

To test whether the memory cell has enough
modeling power of its own, we take an LSTM
and replace the S-RNN in the content layer from
Equation 2 with a simple linear transformation
(c̃t = Wcxxt) creating the LSTM – S-RNN model.

We further simplify the LSTM by removing the
output gate from Equation 7 (ht = tanh(ct)),
leaving only the activation function in the output
layer (LSTM – S-RNN – OUT). After removing the
S-RNN and the output gate from the LSTM, the
entire ablated model can be written in a modular,
compact form:

ht = OUTPUT
(t∑

j=0

wt
j ◦ CONTENT(xj)

)
(9)

where the content layer CONTENT(·) and the out-
put layer OUTPUT(·) are both context-independent
functions, making the entire model highly con-
strained and mathematically simpler. The com-
plexity of modeling contextual information is
needed only for computing the weights wt

j . As
we will see in Section 3.2, both of these ablations
perform on par with LSTMs on several tasks.

Finally, we ablate the hidden state from the
gates as well, by computing each gate gt via
σ(Wgxxt+bg). In this model, the only recurrence
is the additive connection in the memory cell; it
has no multiplicative recurrent connections at all.
It can be seen as a type of QRNN (Bradbury et al.,
2016) or SRU (Lei et al., 2017b), but for consis-
tency we label it as LSTM – S-RNN – HIDDEN.

3.2 Experiments

We compare model performance on four NLP
tasks, with an experimental setup that is lenient
towards LSTMs and harsh towards its simplifica-
tions. In each case, we use existing implementa-
tions and previously reported hyperparameter set-
tings. Since these settings were tuned for LSTMs,
any simplification that performs equally to (or bet-
ter than) LSTMs under these LSTM-friendly set-
tings provides strong evidence that the ablated
component is not a contributing factor. For each

task we also report the mean and standard devia-
tion of 5 runs of the LSTM settings to demonstrate
the typical variance observed due to training with
different random initializations.

Language Modeling We evaluate the models on
the Penn Treebank (PTB) (Marcus et al., 1993)
language modeling benchmark. We use the im-
plementation of Zaremba et al. (2014) from Ten-
sorFlow’s tutorial while replacing any invocation
of LSTMs with simpler models. We test two of
their configurations: medium and large (Table 1).

Question Answering For question answering,
we use two different QA systems on the Stan-
ford question answering dataset (SQuAD) (Ra-
jpurkar et al., 2016): the Bidirectional Atten-
tion Flow model (BiDAF) (Seo et al., 2016) and
DrQA (Chen et al., 2017). BiDAF contains
3 LSTMs, which are referred to as the phrase
layer, the modeling layer, and the span end en-
coder. Our experiments replace each of these
LSTMs with their simplified counterparts. We di-
rectly use the implementation of BiDAF from Al-
lenNLP (Gardner et al., 2017), and all experiments
reuse the existing hyperparameters that were tuned
for LSTMs. Likewise, we use an open-source
implementation of DrQA1 and replace only the
LSTMs, while leaving everything else intact. Ta-
ble 2 shows the results.

Dependency Parsing For dependency pars-
ing, we use the Deep Biaffine Dependency
Parser (Dozat and Manning, 2016), which relies
on stacked bidirectional LSTMs to learn context-
sensitive word embeddings for determining arcs
between a pair of words. We directly use their re-
leased implementation, which is evaluated on the
Universal Dependencies English Web Treebank
v1.3 (Silveira et al., 2014). In our experiments,
we use the existing hyperparameters and only re-
place the LSTMs with the simplified architectures.
Table 3 shows the results.

Machine Translation For machine translation,
we used OpenNMT (Klein et al., 2017) to train En-
glish to German translation models on the multi-
modal benchmarks from WMT 2016 (used in
OpenNMT’s readme file). We use OpenNMT’s
default model and hyperparameters, replacing the
stacked bidirectional LSTM encoder with the sim-

1https://github.com/hitvoice/DrQA

https://github.com/hitvoice/DrQA

735

Configuration Model Perplexity

PTB
(Medium)

LSTM 83.9 ± 0.3
– S-RNN 80.5
– S-RNN – OUT 81.6
– S-RNN – HIDDEN 83.3
– GATES 140.9

PTB
(Large)

LSTM 78.8 ± 0.2
– S-RNN 76.0
– S-RNN – OUT 78.5
– S-RNN – HIDDEN 82.9
– GATES 126.1

Table 1: Performance on language modeling
benchmarks, measured by perplexity.

System Model EM F1

BiDAF

LSTM 67.9 ± 0.3 77.5 ± 0.2
– S-RNN 68.4 78.2
– S-RNN – OUT 67.4 77.2
– S-RNN – HIDDEN 66.5 76.6
– GATES 62.9 73.3

DrQA

LSTM 68.8 ± 0.2 78.2 ± 0.2
– S-RNN 68.0 77.2
– S-RNN – OUT 68.7 77.9
– S-RNN – HIDDEN 67.9 77.2
– GATES 56.4 66.5

Table 2: Performance on SQuAD, measured by
exact match (EM) and span overlap (F1).

plified architectures.2 Table 4 shows the results.

3.3 Discussion

We showed four major ablations of the LSTM. In
the S-RNN experiments (LSTM – GATES), we ab-
late the memory cell and the output layer. In the
LSTM – S-RNN and LSTM – S-RNN – OUT exper-
iments, we ablate the S-RNN. In the LSTM – S-
RNN – HIDDEN, we remove not only the S-RNN
in the content layer, but also the S-RNNs in the
gates, resulting in a model whose sole recurrence
is in the memory cell’s additive connection.

As consistent with previous literature, removing
the memory cell degrades performance drastically.
In contrast, removing the S-RNN makes little to
no difference in the final performance, suggesting
that the memory cell alone is largely responsible
for the success of LSTMs in NLP.

Even after removing every multiplicative recur-
rence from the memory cell itself, the model’s
performance remains well above the vanilla S-

2For the S-RNN baseline (LSTM – GATES), we had to
tune the learning rate to 0.1 because the default value (1.0)
resulted in exploding gradients. This is the only case where
hyperparameters were modified in all of our experiments.

Model UAS LAS

LSTM 90.60 ± 0.21 88.05 ± 0.33
– S-RNN 90.77 88.49
– S-RNN – OUT 90.70 88.31
– S-RNN – HIDDEN 90.53 87.96
– GATES 87.75 84.61

Table 3: Performance on the universal dependen-
cies parsing benchmark, measured by unlabeled
(UAS) and labeled attachment score (LAS).

Model BLEU

LSTM 38.19 ± 0.1
– S-RNN 37.84
– S-RNN – OUT 38.36
– S-RNN – HIDDEN 36.98
– GATES 26.52

Table 4: Performance on the WMT 2016 multi-
modal English to German benchmark.

RNN’s, and falls within the standard deviation of
an LSTM’s on some tasks (see Table 3). This latter
result indicates that the additive recurrent connec-
tion in the memory cell – and not the multiplicative
recurrent connections in the content layer or in the
gates – is the most important computational ele-
ment in an LSTM. As a corollary, this result also
suggests that a weighted sum of context words,
while mathematically simple, is a powerful model
of contextual information.

4 LSTM as Self-Attention

Attention mechanisms are widely used in the NLP
literature to aggregate over a sequence (Cho et al.,
2014; Bahdanau et al., 2015) or contextualize to-
kens within a sequence (Cheng et al., 2016; Parikh
et al., 2016) by explicitly computing weighted
sums. In the previous sections, we demonstrated
that LSTMs implicitly compute weighted sums as
well, and that this computation is central to their
success. How, then, are these two computations
related, and in what ways do they differ?

After simplifying the content layer and remov-
ing the output gate (LSTM – S-RNN – OUT),
the model’s computation can be expressed as a
weighted sum of context-independent functions of
the inputs (Equation 9 in Section 3.1). This for-
mula abstracts over both the simplified LSTM and
the family of attention mechanisms, and through
this lens, the memory cell’s computation can be
seen as a “cousin” of self-attention. In fact, we
can also leverage this abstraction to visualize the

736

simplified LSTM’s weights as is commonly done
with attention (see Appendix A for visualization).

However, there are three major differences in
how the weights wt

j are computed.
First, the LSTM’s weights are vectors, while

attention typically computes scalar weights; i.e.
a separate weighted sum is computed for every
dimension of the LSTM’s memory cell. Multi-
headed self-attention (Vaswani et al., 2017) can
be seen as a middle ground between the two ap-
proaches, allocating a scalar weight for different
subsets of the dimensions.

Second, the weighted sum is accumulated with
a dynamic program. This enables a linear rather
than quadratic complexity in comparison to self-
attention, but reduces the amount of parallel com-
putation. This accumulation also creates an induc-
tive bias of attending to nearby words, since the
weights can only decrease over time.

Finally, attention has a probabilistic interpreta-
tion due to the softmax normalization, while the
sum of weights in LSTMs can grow up to the se-
quence length. In variants of the LSTM that tie the
input and forget gate, such as coupled-gate LSTMs
(Greff et al., 2016) and GRUs (Cho et al., 2014),
the memory cell instead computes a weighted av-
erage with a probabilistic interpretation. These
variants compute locally normalized distributions
via a product of sigmoids rather than globally nor-
malized distributions via a single softmax.

5 Related Work

Many variants of LSTMs (Hochreiter and Schmid-
huber, 1997) have been previously explored.
These typically consist of a different parameteri-
zation of the gates, such as LSTMs with peephole
connections (Gers and Schmidhuber, 2000), or a
rewiring of the connections, such as GRUs (Cho
et al., 2014). However, these modifications invari-
ably maintain the recurrent content layer. Even
more systematic explorations (Józefowicz et al.,
2015; Greff et al., 2016; Zoph and Le, 2017) do
not question the importance of the embedded S-
RNN. This is the first study to provide apples-
to-apples comparisons between LSTMs with and
without the recurrent content layer.

Several other recent works have also reported
promising results with recurrent models that
are vastly simpler than LSTMs, such as quasi-
recurrent neural networks (Bradbury et al., 2016),
strongly-typed recurrent neural networks (Bal-

duzzi and Ghifary, 2016), recurrent additive net-
works (Lee et al., 2017), kernel neural net-
works (Lei et al., 2017a), and simple recurrent
units (Lei et al., 2017b), making it increasingly ap-
parent that LSTMs are over-parameterized. While
these works indicate an obvious trend, they do not
focus on explaining what LSTMs are learning. In
our carefully controlled ablation studies, we pro-
pose and evaluate the minimal changes required
to test our hypothesis that LSTMs are powerful
because they dynamically compute element-wise
weighted sums of content layers.

6 Conclusion

We presented an alternate view of LSTMs: they
are a hybrid of S-RNNs and a gated model that dy-
namically computes weighted sums of the S-RNN
outputs. Our experiments investigated whether the
S-RNN is a necessary component of LSTMs. In
other words, are the gates alone as powerful of
a model as an LSTM? Results across four ma-
jor NLP tasks (language modeling, question an-
swering, dependency parsing, and machine trans-
lation) indicate that LSTMs suffer little to no per-
formance loss when removing the S-RNN. This
provides evidence that the gating mechanism is
doing the heavy lifting in modeling context. We
further ablate the recurrence in each gate and find
that this incurs only a modest drop in performance,
indicating that the real modeling power of LSTMs
stems from their ability to compute element-wise
weighted sums of context-independent functions
of their inputs.

This realization allows us to mathemati-
cally relate LSTMs and other gated RNNs to
attention-based models. Casting an LSTM as a
dynamically-computed attention mechanism en-
ables the visualization of how context is used at
every timestep, shedding light on the inner work-
ings of the relatively opaque LSTM.

Acknowledgements

The research was supported in part by DARPA
under the DEFT program (FA8750-13-2-0019),
the ARO (W911NF-16-1-0121), the NSF (IIS-
1252835, IIS-1562364), gifts from Google, Ten-
cent, and Nvidia, and an Allen Distinguished In-
vestigator Award. We also thank Yoav Goldberg,
Benjamin Heinzerling, Tao Lei, and the UW NLP
group for helpful conversations and comments on
the work.

737

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

David Balduzzi and Muhammad Ghifary. 2016.
Strongly-typed recurrent neural networks. In Pro-
ceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. pages 1292–
1300. http://jmlr.org/proceedings/
papers/v48/balduzzi16.html.

Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks 5(2):157–166.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2016. Quasi-recurrent neural net-
works. CoRR abs/1611.01576.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to answer
open-domain questions. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Vancouver,
Canada, pages 1870–1879. http://aclweb.
org/anthology/P17-1171.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics, Austin, Texas, pages 551–561. https://
aclweb.org/anthology/D16-1053.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Associa-
tion for Computational Linguistics, Doha, Qatar,
pages 1724–1734. http://www.aclweb.org/
anthology/D14-1179.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. CoRR abs/1611.01734.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science 14:179–211.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2017.

Allennlp: A deep semantic natural language pro-
cessing platform. http://allennlp.org/
papers/AllenNLP_white_paper.pdf.

Felix A. Gers and Jürgen Schmidhuber. 2000. Recur-
rent nets that time and count. In IJCNN.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R
Steunebrink, and Jürgen Schmidhuber. 2016. Lstm:
A search space odyssey. IEEE Transactions on Neu-
ral Networks and Learning Systems .

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen netzen. Diploma, Technische Uni-
versität München 91.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-term Memory. Neural computation
9(8):1735–1780.

Rafal Józefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In ICML.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL. https://doi.org/10.18653/
v1/P17-4012.

Kenton Lee, Omer Levy, and Luke Zettlemoyer.
2017. Recurrent additive networks. arXiv preprint
arXiv:1705.07393 .

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi
Jaakkola. 2017a. Deriving neural architectures from
sequence and graph kernels. In ICML.

Tao Lei, Yu Zhang, and Yoav Artzi. 2017b. Train-
ing rnns as fast as cnns. arXiv preprint
arXiv:1709.02755 .

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. TACL 4:521–535.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics 19:313–330.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable atten-
tion model for natural language inference. In
Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Austin,
Texas, pages 2249–2255. https://aclweb.
org/anthology/D16-1244.

http://jmlr.org/proceedings/papers/v48/balduzzi16.html
http://jmlr.org/proceedings/papers/v48/balduzzi16.html
http://jmlr.org/proceedings/papers/v48/balduzzi16.html
http://aclweb.org/anthology/P17-1171
http://aclweb.org/anthology/P17-1171
http://aclweb.org/anthology/P17-1171
http://aclweb.org/anthology/P17-1171
https://aclweb.org/anthology/D16-1053
https://aclweb.org/anthology/D16-1053
https://aclweb.org/anthology/D16-1053
https://aclweb.org/anthology/D16-1053
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://allennlp.org/papers/AllenNLP_white_paper.pdf
http://allennlp.org/papers/AllenNLP_white_paper.pdf
http://allennlp.org/papers/AllenNLP_white_paper.pdf
http://allennlp.org/papers/AllenNLP_white_paper.pdf
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://aclweb.org/anthology/D16-1244
https://aclweb.org/anthology/D16-1244
https://aclweb.org/anthology/D16-1244
https://aclweb.org/anthology/D16-1244

738

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR
abs/1611.01603.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 .

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

Barret Zoph and Quoc V Le. 2017. Neural architecture
search with reinforcement learning. In ICLR.

A Weight Visualization

Given the empirical evidence that LSTMs are ef-
fectively learning weighted sums of the content
layers, it is natural to investigate what weights the
model learns in practice. Using the more mathe-
matically transparent simplification of LSTMs, we
can visualize the weights wt

j that are placed on ev-
ery input j at every timestep t (see Equation 9).

Unlike attention mechanisms, these weights are
vectors rather than scalar values. Therefore, we
can only provide a coarse-grained visualization of
the weights by rendering their L2-norm, as shown
in Table 5. In the visualization, each column
indicates the word represented by the weighted
sum, and each row indicates the word over which
the weighted sum is computed. Dark horizontal
streaks indicate the duration for which a word was
remembered. Unsurprisingly, the weights on the
diagonal are always the largest since it indicates
the weight of the current word. More interesting
task-specific patterns emerge when inspecting the
off-diagonals that represent the weight on the con-
text words.

The first visualization uses the language model.
Due to the language modeling setup, there are
only non-zero weights on the current or previous
words. We find that the common function words
are quickly forgotten, while infrequent words that

signal the topic are remembered over very long
distances.

The second visualization uses the dependency
parser. In this setting, since the recurrent architec-
tures are bidirectional, there are non-zero weights
on all words in the sentence. The top-right triangle
indicates weights from the forward direction, and
the bottom-left triangle indicates from the back-
ward direction. For syntax, we see a significantly
different pattern. Function words that are useful
for determining syntax are more likely to be re-
membered. Weights on head words are also likely
to persist until the end of a constituent.

This illustration provides only a glimpse into
what the model is capturing, and perhaps future,
more detailed visualizations that take the individ-
ual dimensions into account can provide further
insight into what LSTMs are learning in practice.

739

Language model weights Dependency parser weights

The hymn
was sung

at my first inaugural

church
service

as governor

The

hymn

was

sung

at

my

first

inaugural

church

service

as

governor

The hymn
was sung

at my first inaugural

church
service

as governor

The

hymn

was

sung

at

my

first

inaugural

church

service

as

governor

US troops
there clashed

with guerrilla
s

in a fight
that left one Iraqi

dead

US
troops
there

clashed
with

guerrillas
in
a

fight
that
left
one

Iraqi
dead

US troops
there clashed

with guerrilla
s

in a fight
that left one Iraqi

dead

US
troops
there

clashed
with

guerrillas
in
a

fight
that
left
one

Iraqi
dead

He did comment

on what
he meant

by the phrase
.

He

did

comment

on

what

he

meant

by

the

phrase

.

He did comment

on what
he meant

by the phrase
.

He

did

comment

on

what

he

meant

by

the

phrase

.

I spoke
to Bruce

Garcey
at NiMo

regarding
their RFP

I

spoke

to

Bruce

Garcey

at

NiMo

regarding

their

RFP

I spoke
to Bruce

Garcey
at NiMo

regarding
their RFP

I

spoke

to

Bruce

Garcey

at

NiMo

regarding

their

RFP

Table 5: Visualization of the weights on context words learned by the memory cell. Each column rep-
resents the current word t, and each row represents a context word j. The gating mechanism implicitly
computes element-wise weighted sums over each column. The darkness of each square indicates the L2-
norm of the vector weights wt

j from Equation 9. Figures on the left show weights learned by a language
model. Figures on the right show weights learned by a dependency parser.

