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Abstract

We present a generative neural network
model for slot filling based on a sequence-
to-sequence (Seq2Seq) model together
with a pointer network, in the situation
where only sentence-level slot annotations
are available in the spoken dialogue data.
This model predicts slot values by jointly
learning to copy a word which may be
out-of-vocabulary (OOV) from an input
utterance through a pointer network, or
generate a word within the vocabulary
through an attentional Seq2Seq model.
Experimental results show the effective-
ness of our slot filling model, especially
at addressing the OOV problem. Addi-
tionally, we integrate the proposed model
into a spoken language understanding sys-
tem and achieve the state-of-the-art perfor-
mance on the benchmark data.

1 Introduction

Slot filling is a key component in spoken language
understanding (SLU), which is usually treated
as a sequence labeling problem and solved us-
ing methods such as conditional random fields
(CRFs) (Raymond and Riccardi, 2007) or recur-
rent neural networks (RNNs) (Yao et al., 2013;
Mesnil et al., 2015).

Although these models have achieved good re-
sults, they are learned on the datasets with word-
level annotations, e.g., with the BIO tagging
schema as in ATIS (Hemphill et al., 1990). Man-
ual annotations at word level require big effort
and some corpora has only sentence-level annota-
tions available, e.g., the utterance “... moderately
priced restaurant” has a slot-value pair annotation
of “pricerange=moderate”. As such datasets lack
explicit alignment between the annotations and the

input words, some systems rely on handcrafted
rules to find the alignments in order to automati-
cally create word-level labels to learn the sequence
model (Zhou and He, 2011; Henderson, 2015), but
finding such alignments is non-trivial. For exam-
ple, it was shown in (Henderson, 2015) that when
applying the manually created word aliases to the
speech recognition hypotheses, only around 73%
of alignments can be found due to the noise, and
a CRF model trained on such noisy data performs
particularly worse than some other methods. In
addition it is time-consuming to adapt the manual
rules or aliases to new domains.

Some other work avoids this issue by regard-
ing slot filling as a classification task (Hender-
son et al., 2012; Williams, 2014; Barahona et al.,
2016), where an utterance is classified into one or
more slot-value pairs. This, however, brings other
challenges. One is that some types of slots may
have a large or even unlimited number of possible
values, so the classifiers may suffer from the data
sparsity problem when the training data is limited.
Another is the OOV problem caused by unknown
slot values (e.g., restaurant name, street name),
which is impossible to predefine and is very com-
mon in real-world spoken dialogue applications.

To address these challenges, we present a neural
generative model for slot filling on unaligned dia-
log data, specifically for slot value prediction as
it has more challenges caused by OOV. The model
uses Seq2Seq learning to predict a sequence of slot
values from an utterance. Inspired by the ability of
pointer network (Ptr-Net) (Vinyals et al., 2015) at
addressing OOV problems, we incorporate Ptr-Net
into a standard Seq2Seq attentional model to han-
dle OOV slots. It can predict slot values by either
generating one from a fixed vocabulary or select-
ing a word from the utterance. The final model is
a weighted combination of the two operations.

To summarize, our main contributions are:
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Figure 1: Our model for slot value prediction based on Seq2Seq learning with attention and Ptr-Net.

• We use a neural generative model for slot fill-
ing on the data without word-level annota-
tions which has received less attention.

• We adopt the pointer network to handle
the OOV problem in slot value prediction,
which achieves good performance without
any manually-designed rules or features.

2 Background of Pointer Network

Ptr-Net is a variation of the standard Seq2Seq
model with attention. At each decoding step, it
selects a position from the input sequence based
on the attention distribution instead of generating
a token from the target vocabulary. Given the in-
put X = {x1, ..., xT }, the output yt at time step t
is predicted by:

Pptr(yt = w|yt−1
1 , X) =

∑
i:xi=w

ati (1)

where ati is the attention weight of position i at
step t. The advantage of Ptr-Net is that it can make
better predictions on unknown or rare words. It
has been successfully applied to tasks such as ab-
stractive summarization (See et al., 2017), ques-
tion answering (He et al., 2017), reading com-
prehension (Wang and Jiang, 2016), and chunk-
ing (Zhai et al., 2017).

3 Model for Slot Value Prediction

Our model for slot value prediction is a hybrid of
a Seq2Seq attentional model and a Ptr-Net, simi-
lar as the one in See et al. (2017). The input is a
sequence of words in an utterance, and the output
is a sequence of slot values whose tokens may or
may not appear in the input.

The hybrid model, illustrated in Figure 1, allows
us to both generate a slot value from a fixed vo-
cabulary and pick a value from the input via point-
ing. The two components (Seq2Seq and Ptr-Net)
share the same encoder-decoder architecture and
attention scores. We adopt a single-layer bidirec-
tional GRU (Cho et al., 2014) for the encoder, and
a single-layer unidirectional GRU for the decoder.
The attention is calculated as in Bahdanau et al.
(2014).

The slot vocabulary is set to contain only the
values of enumerable slots, but not those of
non-enumerable slots (e.g., values of “restaurant
name”) as we assume these are not known in ad-
vance in the real scenarios.

We use the term “extended vocabulary” to de-
note the union of the slot vocabulary and all words
from the input utterances. The probability distri-
bution over the extended vocabulary is calculated
as:

P (w) = ptPgen + (1− pt)Pptr (2)

That is, the model makes the final predictions
using a weighted combination of the predictions
from two individual components. At the decod-
ing step t, the Seq2Seq component produces the
probability distribution Pgen for the next slot value
within the vocabulary, while Ptr-Net produces the
probability distribution Pptr over the input posi-
tions. pt ∈ [0, 1] is a parameter to balance the two
components. It is learned at each time step based
on the decoder input dt, decoder state st and the
context vector ct as follows:

pt = σ(wcct + wsst + wddt + b) (3)

where σ is a sigmoid function. wc, ws and wd are
all trainable weights.
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Model P R F
CNN 93.3 76.3 84.0

Seq2Seq w/ attention 86.6 81.9 84.2
Our model 88.8 81.3 84.9

Table 1: Results of slot value prediction.

4 Experiments

In this section, we present our experimental re-
sults on DSTC2 (Dialog State Tracking Chal-
lenge) (Henderson et al., 2014), including the re-
sults of slot value prediction solely and a complete
SLU system. Our models are implemented using
Keras1 with TensorFlow as backend. In all the ex-
periments, the dimension of hidden states is 128,
dimension of word embeddings is 100, dropout
rate is 0.5, and batch size is 32. Word embeddings
are not pre-trained but learned from scratch during
training. Teacher forcing is used during training,
with Adam optimizer (Kingma and Ba, 2014). All
training consists of 10 epochs with early stopping
on the development set.

4.1 Data
DSTC2 consists of multi-turn dialogues between
users and a dialog system, in the restaurant search
domain. Each utterance is annotated with seman-
tics including dialog-acts and slot-value pairs. For
an utterance, both its transcription and 10-best hy-
potheses are provided. We use the top hypothesis
as input throughout our experiments. The corpus
has been separated into training, development and
testing, containing 11,677, 3,934 and 9,890 utter-
ances respectively.

4.2 A Complete SLU System
For better evaluation and comparison, we inte-
grated our model of slot value prediction into a
complete SLU system, which uses a CNN clas-
sifier to obtain dialog-acts and slot types respec-
tively after slot value prediction. For dialog act
prediction, the input to the CNN model is the ut-
terance and the output is one or more dialog acts
(some utterances can have more than one dialog
acts). For slot type prediction, the input is each
predicted slot value together with the utterance,
and the output is one of the predefined slot types.
Given the limited numbers of various dialog-acts
and slot types for classification, a standard CNN
model is expected to achieve good performance.

1https://keras.io

Training size 5% 10% 15% 20%
OOV ratio (16%) (12%) (4%) (2%)

CNN
P 91.6 93.0 92.7 93.4
R 61.7 62.5 65.8 69.2
F 73.7 74.8 77.0 79.5

Seq2Seq
w/ attention

P 81.3 83.6 84.1 85.3
R 69.6 74.7 74.9 76.5
F 75.0 78.9 79.2 80.7

Our model
P 86.9 86.4 85.7 85.9
R 73.2 75.3 77.0 77.4
F 79.5 80.5 81.1 81.4

Table 2: Results of slot value prediction with vary-
ing training size and OOV ratio.

Note that we can adopt other SLU frameworks
as well (e.g., some joint frameworks), but given
our focus in this work is to explore the hybrid
Seq2Seq solutions for slot filling, we do not ex-
plore much on the SLU architecture, nor do we
use any extra information (e.g., dialogue context).
Despite the simplicity of our SLU system, it out-
performs the prior state-of-the-art. In the whole
process, neither manually designed features nor
domain-specific rules are employed.

4.3 Baselines

We compare the overall SLU performance of our
system against two existing baselines on DSTC2.
One baseline (Williams, 2014) uses binary SVM
classifiers to predict the existence of each slot-
value pair and dialog act. The other (Barahona
et al., 2016) uses CNN and LSTM jointly for clas-
sification.

For slot value prediction, since it is a sub-task
of SLU and not reported in the prior work, we im-
plemented another two models for it. One adopts
CNN to classify an utterance into one or more slot
values. The other uses the basic Seq2Seq atten-
tional model (without Ptr-Net). Note that when
learning this basic model, the target vocabulary is
set to contain all the slot values in the training set.

4.4 Results of Slot Value Prediction

We first report the results on slot value predic-
tion only. We compare the results of our proposed
model and our own implemented baselines in Ta-
ble 1, using precision, recall and F1.

We can see that the proposed hybrid model
achieves the best F1 score. Although CNN has a
high precision, it suffers from the low recall. By
looking into the results for each slot type, it is ob-

https://keras.io
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Model P R F
SLU1 (Williams, 2014) 84.6 76.2 80.2
SLU2 (Williams, 2014) 87.0 77.7 82.1

CNN+LSTM w4
(Barahona et al., 2016)

- - 83.6

CNN 93.5 78.5 85.3
Seq2Seq w/ attention 87.5 82.7 85.0

Our model 89.0 82.8 85.8

Table 3: Overall SLU performance.

Training Size 5% 10% 15% 20%

CNN
P 91.6 92.0 92.3 93.0
R 67.5 70.4 71.7 72.7
F 77.8 79.8 80.7 81.6

Seq2Seq
w/ attention

P 82.8 87.2 86.4 87.9
R 74.3 75.1 78.0 78.4
F 78.3 80.7 82.0 82.9

Our model
P 84.9 86.3 88.4 88.0
R 76.8 77.9 79.0 79.9
F 80.6 81.9 83.4 83.8

Table 4: SLU results with varying training size.

served that CNN performs much poorer on non-
enumerable types of slots such as “food” due to
its high cardinality. While both our model and the
basic Seq2Seq model have higher recall.

Since our assumption is that the proposed model
can better handle the OOV problem, we analyze
the OOV rate in the corpus to obtain more insight.
By checking the percentage of slot values in the
testing set that do not exist in the training, we find
that the OOV problem in DSTC2 is not that severe,
with a OOV ratio less than 0.1%. This could be a
reason why our model does not obtain larger gain
on the complete dataset. We therefore design more
experiments in the next section to assess the model
when the OOV problem is more severe.

4.5 OOV Slot Prediction

We create specific datasets by re-sampling from
the original corpus. In particular, let group A de-
note all the training utterances that contain non-
enumerable slots, and group B denote the rest of
the training utterances. We randomly select 5%,
10%, 15%, and 20% of group A, plus the whole
set of group B. In this way, we can create training
data with less non-enumerable slot values thus re-
sulting in a higher OOV ratio. The testing set is
same as before. We compare the proposed model
with the baselines on these four specific datasets
with different OOV ratios (Table 2).

Input: danish food in the centre of town
Output: danish centre | spanish centre | centre
Input: i would like singaporean food
Output: singaporean | korean | None
Input: what about chiquito (portuguese)
Output: chiquito | portuguese | None
Input: an expensive restaurant serving cantonese food
Output: cantonese | portuguese expensive | expensive

Table 5: Examples of predicted slot values. Out-
put is from the proposed model, Seq2Seq w/ attn,
and CNN respectively (split by “|”). Bold denotes
gold standard and “None” denotes empty result.

As shown in each column, on all the specific
datasets, our model achieves the best performance.
The CNN model performs much poorer than be-
fore in terms of the recall. We can see that by
reducing the training size, the OOV ratio (indi-
cated in the first row in the brackets) goes up, and
the performance of all models decreases in gen-
eral. While CNN and the basic Seq2Seq model de-
cline 10.3% and 9.2% in F1 respectively using the
smallest training set compared to using the com-
plete one, our model is the most stable one with
the least performance drop of 5.4%. The gain of
our model over the other two becomes more sig-
nificant with the larger OOV rate. This shows the
capability of the Ptr-Net to correctly predict the
OOV slots.

Overall, the results in Section 4.4 and 4.5
demonstrate the effectiveness of the proposed hy-
brid model for slot value prediction, especially
when the training set is small and the OOV ratio
is large.

4.6 SLU Results

Table 3 compares the results of the overall SLU
task by our systems (incorporated with different
slot value prediction models) and prior arts. All
our systems outperform the prior work, and among
them the one with the proposed hybrid model
achieves the best F1 score.

We also conduct the similar OOV experiments
as in Section 4.5 for SLU (Table 4). Similar trend
is observed as discussed before. The performance
of the proposed model with 20% training data al-
ready reaches that of the best system reported in
the literature with 100% training data.

4.7 Case Study and Error Analysis

Table 5 gives some examples of slot values pre-
dicted by the proposed model and baselines. We
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can see that for the less frequent slots, our model
can still predict the values correctly, while without
the Ptr-Net, the basic Seq2Seq model tends to gen-
erate words not appearing in the input, and CNN
outputs nothing in many cases, which aligns with
our assumption. We analyze the cases where Ptr-
Net does not perform well and find several major
types of errors: 1) partial prediction (e.g., detect
only “oriental” for “asian oriental food”; 2) the
prediction contains repetition of correct values; 3)
speech recognition error although the prediction is
proper if we look at the hypothesis itself (the third
example). There are also cases where all the mod-
els fail to give a completely correct prediction, yet
with different behaviors (the last example).

5 Conclusion

We adopt an attentional Seq2Seq model with
Ptr-Net to predict slot values on dialogue data
when only sentence-level semantic annotations are
available. By switching between copying and gen-
erating words, this solution can bypass the need of
word-level annotations and overcome the OOV is-
sue which is very common in real-world spoken
dialogue applications. It does not require any do-
main specific rules or dictionaries, and therefore
can be easily adapted to new domains. Our model
has achieved the state-of-the-art performance for
both slot value prediction and SLU on the bench-
mark even with less training data.
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