
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 339–344
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

339

Improving Beam Search by Removing Monotonic Constraint for
Neural Machine Translation

Raphael Shu
The University of Tokyo

shu@nlab.ci.i.u-tokyo.ac.jp

Hideki Nakayama
The University of Tokyo

nakayama@ci.i.u-tokyo.ac.jp

Abstract

To achieve high translation performance,
neural machine translation models usually
rely on the beam search algorithm for de-
coding sentences. The beam search finds
good candidate translations by consider-
ing multiple hypotheses of translations si-
multaneously. However, as the algorithm
searches in a monotonic left-to-right order,
a hypothesis can not be revisited once it
is discarded. We found such monotonicity
forces the algorithm to sacrifice some de-
coding paths to explore new paths. As a
result, the overall quality of the hypothe-
ses selected by the algorithm is lower than
expected. To mitigate this problem, we re-
lax the monotonic constraint of the beam
search by maintaining all found hypothe-
ses in a single priority queue and using
a universal score function for hypothesis
selection. The proposed algorithm allows
discarded hypotheses to be recovered in a
later step. Despite its simplicity, we show
that the proposed decoding algorithm en-
hances the quality of selected hypotheses
and improve the translations even for high-
performance models in English-Japanese
translation task.

1 Introduction

Machine translation models composed of end-
to-end neural networks (Sutskever et al., 2014;
Bahdanau et al., 2014; Shazeer et al., 2017;
Gehring et al., 2017) are starting to become main-
stream. Essentially, neural machine translation
(NMT) models define a probabilistic distribution
p(yt|y1, ..., yt−1, X) to generate translations. Dur-
ing translation phase, new words are sampled from
this distribution.

As the search space of possible outputs is in-
credibly large, we can only afford to explore a
limited number of search paths. In practice, NMT
models use the beam search algorithm to generate
output sequences in a limited time budget (Graves,
2012; Sutskever et al., 2014). Beam search limits
the search space by considering only a fixed num-
ber of hypotheses (i.e., partial translations) in each
step, and predicting next output words only for the
selected hypotheses. The fixed number B is re-
ferred to as beam size. Beam search keeps decod-
ing until B finished translations that end with an
end-of-sequence token “〈/s〉” are found.

Comparing to the greedy search that only con-
siders the best hypothesis in each step, beam
search can find a good candidate translation that
suffers in a middle step. Generally, using beam
search can improve the quality of outputs over the
greedy search. However, we found that the hard
restriction of hypothesis selection imposed by the
beam search affects the quality of the decoding
paths negatively.

We can think the decoding process of an NMT
model as solving a pathfinding problem, where we
search for an optimal path starts from “〈s〉” and
ends at “〈/s〉”. For any pathfinding algorithm, a
certain amount of exploration is crucial for making
sure that the algorithm is following a right path.
For beam search, since the beam size is fixed, it
must give up some currently searching paths in or-
der to explore new paths. The problem has a sim-
ilar flavor as the exploration-exploitation dilemma
in reinforcement learning. As the beam search de-
codes in left-to-right order monotonically, a dis-
carded decoding path can not be recovered later.

As the decoding algorithm is essentially driven
by a language model, an output with high proba-
bility (local score) is not guaranteed to have high
scores for future predictions. Beam search can be
trapped by such a high-confidence output. This is-

340

an

there is a

apple

an

tree

fruit

apple

<s>

here tree

apricot fruit

1 2

2

3

4

4
was

3

5

an

there is a

apple

an

tree

fruit

apple

<s>

here tree

1

1

2

3 4
was

2 3

5

is
54

there
6

tree
51

fruit

here

(a) beam search (b) SQD

Figure 1: An intuitive comparison between beam search and single-queue decoding (SQD) with a beam
size of 2. In each step, two selected hypotheses (solid boxes) and one immediately discarded hypothesis
(dashed boxes) are shown in the figure. In the top right of selected hypotheses, the step numbers when
they are selected are marked. The hypothesis “an apple tree” is discarded in step 3 in both algorithms.
Comparing to beam search, SQD is able to recover this hypothesis in step 4 when other hypotheses have
worse scores.

sue is more severe for language pairs that are not
well aligned. One solution is to predict the ex-
pected future scores, which is considerably diffi-
cult. Another workaround for this problem is to
enable the algorithm to revisit a previous hypothe-
sis when the quality of current ones degrades.

In this work, we extend the beam search to in-
troduce more flexibility. We manage all found hy-
potheses in a single priority queue so that they can
be selected later when necessary. Based on a uni-
versal score function, the hypotheses with highest
scores are selected to be expanded. The proposed
algorithm is referred to as single-queue decoding
(SQD) in this paper.

As the priority queue can contain massive hy-
potheses, we design two auxiliary score functions
to help the algorithm select proper candidates. Ex-
periments show that the proposed algorithm is
able to improve the quality of selected hypotheses
and thus results in better performance in English-
Japanese translation task.

2 Related Work

To improve the quality of the score function in
beam search, Wiseman and Rush (2016) propose
to run beam search in the forward pass of train-
ing, then apply a new objective function to ensure
the gold output does not fall outside the beam. An
alternative approach is to correct the scores with
reinforcement learning (Li et al., 2017). Diverse
decoding (Li et al., 2016; Li and Jurafsky, 2016)
modifies the score function for increase the diver-
sity of hypotheses. In contrast, this work focuses
on removing the constraint of beam search rather
than improving the score function.

Hu et al. (2015) also describes a priority queue
integrated with the standard beam search but has
a different mechanism and purpose. The prior-
ity queue in their work contains top-1 hypothe-
ses from different hypothesis stacks. In each step,
only one hypothesis from the queue is allowed to
be considered. Their purpose is to use the priority
queue to speed up beam search at the cost of slight
performance loss, which is different to this work.

As the proposed algorithm is a best-first search-
ing algorithm, which has a flavor similar to A∗

search (Hart et al., 1968). Typical implementa-
tions of A∗ search also use a priority queue (heap)
to maintain visited paths.

3 Deficiency of Beam Search

Since the beam size is fixed, when the algorithm
attempts to explore multiple new decoding paths
for a hypothesis, it has to discard some existing
decoding paths. However, the new decoding paths
may lead to bad hypotheses in the near future.
As past hypotheses can not be revisited again, the
beam search has to decode the hypotheses with de-
graded qualities continually. This phenomenon is
illustrated in Fig. 1 (a), where the graph depicts the
decoding process of a sentence. The correct output
is supposed to be “an apple tree is there” or “there
is an apple tree”. In step 3, as the algorithm ex-
plores two new hypotheses in the bottom branch,
the hypothesis “an apple tree” is discarded. In the
next step, it realized that the hypothesis “there is
a” leads to a wrong path. However, as the algo-
rithm can not return to a discarded hypothesis, the
beam search has to keep searching in the hopeless
path. In this case, the candidate “an apple tree is
there” can never be reached.

341

Algorithm 1 Single-queue decoding

Initialize:
B ← beam size
H ← empty hypothesis queue
T ← max steps

for t← 1 to T do
S ← pop best B unfinished hyps from H
S′ ← expand S to get B ×K new hyps
Evaluate scores of hyps in S′ with Eq. 1
Push S′ into H
if #(finished hyps in H) ≥ B then

break
ŷ ← best finished hyp in H
output ŷ

4 Single-Queue Decoding

In this section, we introduce an extended decod-
ing algorithm of the beam search, which main-
tains a single priority queue that contains all vis-
ited hypotheses. In contrast to the standard beam
search, which only considers hypotheses with the
same length in each step, the proposed algorithm
selected arbitrary hypotheses from the queue that
may differ in length. Therefore, a hypothesis dis-
carded in one step can be recovered in a later step.

An intuitive illustration of the proposed algo-
rithm can be found in Fig. 1 (b). In step 4, the pro-
posed algorithm is able to recover the hypothesis
“an apple tree” from the queue which is discarded
a previous step.

The pseudo code of the single-queue decod-
ing algorithm is given in Alg. 1. Let B be the
beam size. The algorithm will keep decoding un-
til finding B finished translation candidates. The
proposed decoding algorithm relies on a universal
score function score(y) to evaluate a hypothesis
y. In each step, the hypotheses with highest scores
are removed from the queue to predict next words
for them. New expanded hypotheses are pushed
back into the queue after scoring.

In hypothesis expansion, we collect B×K (but
not B × |V |) hypotheses that have highest local
scores (word probability). This simple filtering is
essential to avoid spending to much time comput-
ing the score function. In practice, we set K = B.

4.1 Universal Score Function

In the proposed algorithm, a score function is re-
quired to fairly evaluate hypotheses with different

lengths, which has the following form:

score(y) =
1

|y|λ
log p(y|X)+αPG(y)+β LMP(y).

(1)
The first part of the equation is the log probabil-

ity with length-normalization, where λ is a hyper-
parameter that is similar to the definition of length
penalty in Wu et al. (2016). We found simply uti-
lizing this score function will sometimes cause the
algorithm decode for infinite steps. To help the
algorithm select proper candidates from the large
queue, we designed two auxiliary penalties.

Progress Penalty: The second part of Eq. 1 is a
progress penalty, which encourages the algorithm
to select longer hypotheses:

PG(y) =

{
0 if y finished
|y|γ
|X|γ otherwise

(2)

where γ are is weight that control the strength of
this function. The progress penalty encourages the
algorithm to select longer hypotheses.

Length Matching Penalty: The last part of
Eq. 1 is a length matching penalty. It filters out
the hypotheses that tend to produce a final transla-
tion much shorter or longer than expected.

To achieve this, we predict two Gaussian distri-
butions. One distribution plx predicts the expected
length of a correct translation. Another Gaussian
ply predicts the expected final length if decoding a
particular hypothesis. The parameters of the dis-
tributions (µx, σx and µy, σy) are predicted by an
additional simple neural network, which is trained
separately from the NMT model. Then we com-
pute the cross-entropy of the two Gaussians to
measure whether the expected length of transla-
tion tends to match the correct length as:

H(plx, p
l
y) =

1

2
log(2πσy

2) +
σx

2 + (µy − µx)2

2σy2
.

(3)

We penalize a hypothesis if the cross entropy
exceeds a threshold τ as:

LMP(y) =

{
0 if y finished
I(H(plx, p

l
y) > τ) otherwise

(4)

where I(·) is an indicator function.

342

5 Experiments

5.1 Experimental Settings

We evaluate the proposed decoding algorithm
mainly with an off-the-shelf NMT model (Bah-
danau et al., 2014), which has a bi-directional
LSTM encoder and a single-layer LSTM decoder.
The embeddings and LSTM layers have a size
of 1000. We evaluate the algorithms on AS-
PEC English-Japanese translation task (Nakazawa
et al., 2016). The vocabulary contains 80k words
for English side and 40k words for the Japanese
side. We report BLEU score based on a standard
post-processing procedure 1.

All NMT models in this work are trained with
Nesterov’s accelerated gradient (Nesterov, 1983)
with an initial learning rate of 0.25. The learn-
ing rate is decreased by a factor of 10 if no im-
provement is observed in 20k iterations. The train-
ing ends after the learning rate is annealed for
three times. The models are trained on 4 GPUs;
each GPU computes the gradient of a mini-batch.
The gradients are averaged and distributed to each
GPU using the nccl framework.

The hyperparameters of the decoding algo-
rithms are tuned by Bayesian optimization (Snoek
et al., 2012) on a small validation set composed of
500 sentences. We utilize the “bayes opt” pack-
age for Bayesian optimization. We use the default
acquisition function “ucb” with a κ value of 5. We
first explore 50 initial points, then optimize for an-
other 50 iterations.

We allow the decoding algorithms to run for a
maximum of 150 steps. If the algorithm fails to
find a finished translation in the limited steps, an
empty translation is outputted.

5.2 Main Results

The main evaluation results are shown in Table
1, which uses a beam size of 5 as such a small
beam size is more useful in a production system.
The results show that the proposed single-queue
decoding (SQD) algorithm significantly improves
the quality of translations. With the length match-
ing penalty (LMP), SQD outperforms the beam
search with length-normalization by 1.14 BLEU
on the test set. Without the progress penalty (PG),
the scores are much worse.

Since SQD computes B hypotheses in batch
mode at each step just like beam search, the com-

1We use Kytea to re-tokenize results in evaluation.

BLEU(%)
#step

time
(ms)valid test

vanilla beam search 29.61 32.87 30.3 199
w/ length-normalization 37.16 34.29 30.3 208

SQD w/o PG 38.09 34.62 36.1 238
SQD w/ PG 38.50 35.03 33.8 225

SQD w/ PG, LMP 38.93 35.43 35.0 260

Table 1: Evaluation results using a baseline model
with a beam size of 5

Test BLEU(%)
BS=3 BS=5 BS=8 BS=12

beam search w/ LN 37.69 37.93 38.26 38.38
SQD w/ PG 38.18 38.68 38.98 39.02

SQD w/ PG, LMP 38.37 38.73 38.89 38.98

Table 2: Evaluation results using a large NMT
model with different beam sizes (BS). The scores
of the beam search with length-normalization
(LN) are reported as the baselines.

putational cost inside the loop of Alg. 1 remains
the same. The factor affecting the decoding time
is the actual number of time steps. To clarify that
SQD does not improve the performance by signif-
icantly increasing the number of steps, we also re-
port the average number of steps and the decoding
time for translating one sentence. We can see that
it is effective applying length matching penaltiy.
However, it slows down the algorithm as extra
computation is required.

5.3 Experiments with a Large NMT Model

In order to see whether the performance gain can
be generalized to deeper models, we train a large
NMT model with two layers of LSTM decoders.
We apply residual connection (He et al., 2016)
to the decoder states. Before the softmax layer,
an additional fully-connected layer with 600 hid-
den units is applied. For the attention mechanism,
we use a variant of the key-value attention (Miller
et al., 2016), where the keys are computed by
a linear transformation of the encoder states, the
queries of the attention are the sum of the feedback
word embeddings and the LSTM states of the first
decoder. Dropout (Srivastava et al., 2014) is ap-
plied everywhere after non-recurrent layers with a
dropping rate of 0.2. To further enhance the model
performance, we use byte pair encoding (Sennrich

343

et al., 2016) with a coding size of 40k to segment
the sentences of the training data into subwords.
The experiment results are shown in Table 2.

By applying various techniques, the NMT
model achieves high single-model BLEU scores.
The results indicate that SQD is still effective with
a high-performance NMT model. The proposed
algorithm is more effective with a small beam size.
For this model, the contribution of length match-
ing penalty is only beneficial when the beam size
is smaller than 8, which may be a side-effect of
applying byte pair encoding (BPE). As it is more
difficult to correctly predict the number of output
tokens in sub-word level.

6 Discussion

The proposed algorithm requires a block of GPU
memory for storing the states of LSTM decoders
for all stored hypotheses in the priority queue. The
increased memory usage does not cause a problem
unless a large beam size is used.

Although all hypotheses are expected to be
evaluated fairly, we found only averagely 2 dis-
carded hypotheses are recovered when decoding
each sentence. The reason is that longer hypothe-
ses tend to have higher local scores in general,
which makes it difficult for the algorithm to select
a short hypothesis. As a future work, a better score
function is required to fully exploit the flexibility
of the proposed algorithm.

7 Conclusion

In this paper, we present a novel decoding algo-
rithm that removes the constraint imposed by the
monotonicity of beam search, so that a discarded
hypothesis can be revisited in a later step.

The proposed algorithm maintains all reusable
hypotheses in a single priority queue. In each step,
the algorithm selects hypotheses from the queue
with highest scores evaluated by a universal score
function. We design two auxiliary scores to help
selecting proper hypotheses from a large queue.

Acknowledgments

This work is supported by JSPS KAKENHI Grant
Number 16H05872.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly

learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann Dauphin. 2017. Convo-
lutional sequence to sequence learning. CoRR,
abs/1705.03122.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. CoRR, abs/1211.3711.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael.
1968. Correction to ”a formal basis for the heuris-
tic determination of minimum cost paths”. SIGART
Newsletter, 37:28–29.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Xiaoguang Hu, Wei Li, Xiang Lan, Hua Wu, and
Haifeng Wang. 2015. Improved beam search with
constrained softmax for nmt. Proceedings of MT
Summit XV, page 297.

Jiwei Li and Daniel Jurafsky. 2016. Mutual informa-
tion and diverse decoding improve neural machine
translation. CoRR, abs/1601.00372.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Learn-
ing to decode for future success. arXiv preprint
arXiv:1701.06549.

Jiwei Li, Will Monroe, and Daniel Jurafsky. 2016. A
simple, fast diverse decoding algorithm for neural
generation. CoRR, abs/1611.08562.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In EMNLP.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. Aspec: Asian
scientific paper excerpt corpus. In LREC.

Yurii Nesterov. 1983. A method for unconstrained con-
vex minimization problem with the rate of conver-
gence o (1/k2). In Doklady an SSSR, volume 269,
pages 543–547.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In NIPS.

344

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In EMNLP.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

