
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 285–291
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

285

Injecting Relational Structural Representation in Neural Networks
for Question Similarity

Antonio Uva† and Daniele Bonadiman† and Alessandro Moschitti
†DISI, University of Trento, 38123 Povo (TN), Italy

Amazon, Manhattan Beach, CA, USA, 90266
{antonio.uva,d.bonadiman}@unitn.it

amosch@amazon.com

Abstract

Effectively using full syntactic parsing in-
formation in Neural Networks (NNs) to
solve relational tasks, e.g., question sim-
ilarity, is still an open problem. In this pa-
per, we propose to inject structural repre-
sentations in NNs by (i) learning an SVM
model using Tree Kernels (TKs) on rel-
atively few pairs of questions (few thou-
sands) as gold standard (GS) training data
is typically scarce, (ii) predicting labels on
a very large corpus of question pairs, and
(iii) pre-training NNs on such large cor-
pus. The results on Quora and SemEval
question similarity datasets show that NNs
trained with our approach can learn more
accurate models, especially after fine tun-
ing on GS.

1 Introduction

Recent years have seen an exponential growth and
use of web forums, where users can exchange
and find information just asking questions in nat-
ural language. Clearly, the possibility of reusing
previously asked questions makes forums much
more useful. Thus, many tasks have been pro-
posed to build automatic systems for detecting
duplicate questions. These were both organized
in academia, e.g., SemEval (Nakov et al., 2016,
2017), or companies, e.g., Quora 1. An interest-
ing outcome of the SemEval challenge was that
syntactic information is essential to achieve high
accuracy in question reranking tasks. Indeed, the
top-systems were built using Support Vector Ma-
chines (SVMs) trained with Tree Kernels (TKs),
which were applied to a syntactic representation
of question text (Filice et al., 2016, 2017; Barrón-
Cedeño et al., 2016).

1https://www.kaggle.com/c/quora-question-pairs

In contrast, NNs-based models struggled to get
good accuracy as (i) large training sets are typi-
cally not available 2, and (ii) effectively exploit-
ing full-syntactic parse information in NNs is still
an open issue. Indeed, despite Das et al. (2016)
showed that NNs are very effective to manage lex-
ical variability, no neural model encoding syntac-
tic information has shown a clear improvement.
Indeed, also NNs directly exploiting syntactic in-
formation, such as the Recursive Neural Networks
by Socher et al. (2013) or the Tree-LSTM by Tai
et al. (2015), have been shown to be outperformed
by well-trained sequential models (Li et al., 2015).

Finally, such tree-based approaches depend on
sentence structure, thus are difficult to optimize
and parallelize. This is a shame as NNs are very
flexible in general and enable an easy system de-
ployment in real applications, while TK models
require syntactic parsing and longer testing time.

In this paper, we propose an approach that aims
at injecting syntactic information in NNs, still
keeping them simple. It consists of the follow-
ing steps: (i) train a TK-based model on a few
thousands training examples; (ii) apply such clas-
sifier to a much larger set of unlabeled training ex-
amples to generate automatic annotation; (iii) pre-
train NNs on the automatic data; and (iv) fine-tune
NNs on the smaller GS data.

Our experiments on two different datasets, i.e.,
Quora and Qatar Living (QL) from SemEval,
show that (i) when NNs are pre-trained on the pre-
dicted data, they achieve accuracy higher than the
one of TK models and (ii) NNs can be further
boosted by fine-tuning them on the available GS
data. This suggests that the TK properties are cap-
tured by NNs, which can exploit syntactic infor-
mation even more effectively, thanks to their well-
known generalization ability.

2SQuAD by Rajpurkar et al. (2016) is an exception, also
possible because dealing with a simpler factoid QA task

{antonio.uva, d.bonadiman}@unitn.it
amosch@amazon.com


286

In contrast to other semi-supervised ap-
proaches, e.g., self-training, we show that the im-
provement of our approach is obtained only when
a very different classifier, i.e., TK-based, is used
to label a large portion of the data. Indeed, us-
ing the same NNs in a self-training fashion (or
another NN in a co-training approach) to label
the semi-supervised data does not provide any im-
provement. Similarly, when SVMs using standard
similarity lexical features are applied to label data,
no improvement is observed in NNs.

One evident consideration is the fact that TKs-
based models mainly exploit syntactic information
to classify data. Although, assessing that NNs
specifically learn such syntax should require fur-
ther investigation, our results show that only the
transfer from TKs produces improvement: this is
a significant evidence that makes it worth to fur-
ther investigate the main claim of our paper. In any
case, our approach increases the accuracy of NNs,
when small datasets are available to learn high-
level semantic task such as question similarity.
It consists in (i) using heavier syntactic/semantic
models, e.g., based on TKs, to produce training
data; and (ii) exploit the latter to learn a neural
model, which can then be fine-tuned on the small
available GS data.

2 Tasks and Baseline Models

We introduce our question similarity tasks along
with two of the most competitive models for their
solutions.

2.1 Question Matching and Ranking

Question similarity in forums can be set in dif-
ferent ways, e.g., detecting if two questions are
semantically similar or ranking a set of retrieved
questions in terms of their similarity with the orig-
inal question. We describe the two methods below:

The Quora task regards detecting if two ques-
tions are duplicate or not, or, in other words, if
they have the same intent. The associated dataset
(Wang et al., 2017) contains over 404, 348 pairs
of questions, posted by users on the Quora web-
site, labelled as duplicate pair or not. For exam-
ple, How do you start a bakery? and How can
one start a bakery business? are duplicated while
What are natural numbers? and What is a least
natural number? are not. The ground-truth labels
contain some amount of noise.

In the QL task at SemEval-2016 (Nakov et al.,

2016) users were provided with a new (origi-
nal) question qo and a set of related questions
(q1, q2, ...qn) from the QL forum3 retrieved by a
search engine, i.e., Google. The goal is to rank
question candidates, qi, by their similarity with re-
spect to qo. qi were manually annotated as Perfect-
Match, Relevant or Irrelevant, depending on their
similarity with qo. PerfectMatch and Relevant are
considered as relevant. A question is composed of
a subject, a body and a unique identifier.

2.2 Support Vector machines

A top-performing model in the SemEval challenge
is built with SVMs, which learn a classification
function, f : Q × Q → {0, 1}, on the relevant
vs. irrelevant questions belonging to the question
set, Q. The classifier score is used to rerank a set
of candidate questions qi provided in the dataset
with respect to an original question qo. Three
main representations were proposed: (i) vectors of
similarity features derived between two questions;
(ii) a TK function applied to the syntactic structure
of question pairs; or (iii) a combination of both.

Feature Vectors (FV) are built for question pairs,
(q1, q2), using a set of text similarity features
that capture the relations between two questions.
More specifically, we compute 20 similarities
sim(q1, q2) using word n-grams (n = [1, . . . , 4]),
after stopword removal, greedy string tiling (Wise,
1996), longest common subsequences (Allison
and Dix, 1986), Jaccard coefficient (Jaccard,
1901), word containment (Lyon et al., 2001), and
cosine similarity.

Tree Kernels (TKs) measure the similarity
between the syntactic structures of two ques-
tions. Following (Filice et al., 2016), we build
two macro-trees, one for each question in
the pair, containing the syntactic trees of the
sentences composing a question. In addition,
we link two macro-trees by connecting the
phrases, e.g., NP, VP, PP, etc., when there is
a lexical match between the phrases of two
questions. We apply the following kernel to two
pairs of question trees: K(〈q1, q2〉, 〈q′1, q′2〉) =
TK(t(q1, q2), t(q

′
1, q
′
2))+TK(t(q2, q1), t(q

′
2, q
′
1)),

where t(x, y) extracts the syntactic tree from the
text x, enriching it with relational tags (REL)
derived by matching the lexical between x and y.

3http://www.qatarliving.com/forum



287

3 Injecting Structures in NNs

We inject TK knowledge in two well-known and
state-of-the-art networks for question similarity,
enriching them with relational information.

3.1 NNs for question similarity
We implemented the Convolutional NN (CNN)
model proposed by (Severyn and Moschitti, 2016).
This learns f , using two separate sentence en-
coders fq1 : Q → Rn and fq2 : Q → Rn, which
map each question into a fixed size dense vector
of dimension n. The resulting vectors are concate-
nated and passed to a Multi Layer Perceptron that
performs the final classification. Each question is
encoded into a fixed size vector using an embed-
ding layer, a convolution operation and a global
max pooling function. The embedding layer trans-
forms the input question, i.e., a sequence of token,
Xq = [xq1 , ..., xqi , ..., xqn ], into a sentence ma-
trix, Sq ∈ Rm×n, by concatenating the word em-
beddings wi corresponding to the tokens xqi in the
input sentence.

Additionally, we implemented a Bidirectional
(BiLSTM), using the standard LSTM by Hochre-
iter and Schmidhuber (1997). An LSTM iterates
over the sentence one word at the time by creat-
ing a new word representation hi by composing
the representation of the previews word and the
current word vector hi = LSTM(wi, hi−1). A
BiLSTM iterates over the sentence in both direc-
tions and the final representation is a concatena-
tion of the hidden representations, hN , obtained
after processing the whole sentence. We apply two
sentence models (with different weights), one for
each question, then we concatenate the two fixed-
size representations and fed them to a Multi-Layer
Perceptron.

3.2 Relational Information
Severyn and Moschitti (2016) showed that rela-
tional information encoded in terms of overlap-
ping words between two pairs of text can highly
improve accuracy. Thus, for both networks above,
we mark each word with a binary feature indicat-
ing if a word from a question appears in the other
pair question. This feature is encoded with a fixed
size vector (in the same way it is done for words).

3.3 Learning NNs with structure
To inject structured information in the network,
we use a weak supervision technique: (i) an SVM
with TK is trained on the GS data; (ii) this model

classifies an additional unlabelled dataset, creat-
ing automatic data; and (iii) a neural network is
trained on the latter data.

The pre-trained network can be fine-tuned on
the GS data, using a smaller learning rate γ.
This prevents catastrophic forgetting (Goodfellow
et al., 2013), which may occur with a larger learn-
ing rate.

4 Experiments
We experiment with two datasets comparing mod-
els trained on gold and automatic data and their
combination, before and after fine tuning.

4.1 Data
Quora dataset contains 384, 358 pairs in the
training set and 10, 000 pairs both in the dev. and
test sets. The latter two contain the same number
of positive and negative examples.
QL dataset contains 3, 869 question pairs di-
vided in 2, 669, 500 and 700 pairs in the train-
ing, dev. and test sets. We created 93k4 unlabelled
pairs from the QL dump, retrieving 10 candidates
with Lucene for 9, 300 query questions.

4.2 NN setup
We pre-initialize our word embeddings with skip-
gram embeddings of dimensionality 50 jointly
trained on the English Wikipedia dump (Mikolov
et al., 2013) and the jacana corpus5. The input
sentences are encoded with fixed-sized vectors us-
ing a CNN with the following parameters: a win-
dow of size 5, an output of 100 dimensions, fol-
lowed by a global max pooling. We use a single
non-linear hidden layer, whose size is equal to the
size of the sentence embeddings, i.e., 100. The
word overlap embeddings is set to 5 dimensions.
The activation function for both convolution and
hidden layers is ReLU. During training the model
optimizes the binary cross-entropy loss. We used
SGD with Adam update rule, setting the learning
rate to γ to 10−4 and 10−5 for the pre-training and
fine tuning phases, respectively.

4.3 Results on Quora
Table 1 reports our different models, FV, TK,
CNN and LSTM described in the previous section,
where the suffix, -10k or -5k, indicates the amount
of GS data used to train them, and the name in

4Note that we will release the 400k automatically labelled
pairs from Quora as well as the new 93k pairs of QL along
with their automatic labels for research purposes.

5Embeddings are available in the repository: https://
github.com/aseveryn/deep-qa

https://github.com/aseveryn/deep-qa
https://github.com/aseveryn/deep-qa


288

Model Automatic data GS data DEV TEST

FV-10k – 10k 0.7046 0.7023
TK-10k – 10k 0.7405 0.7337
CNN-10k – 10k 0.7646 0.7569
LSTM-10k – 10k 0.7521 0.7450

CNN(CNN-10k) 50k – 0.7666 0.7619
CNN(CNN-10k)* 50k 10k 0.7601 0.7598
CNN(FV-10k) 50k – 0.6960 0.6931
CNN(FV-10k)* 50k 10k 0.7681 0.7565

CNN(TK-10k) 50k – 0.7446 0.7370
CNN(TK-10k)* 50k 10k 0.7748 0.7652
LSTM(TK-10k) 50k – 0.7478 0.7371
LSTM(TK-10k)* 50k 10k 0.7706 0.7505

TK-5k – 5k 0.6859 0.6774
CNN-5k – 5k 0.7532 0.7450
CNN(TK-5k) 50k – 0.7239 0.7208
CNN(TK-5k)* 50k 5k 0.7574 0.7493

CNN(TK-10k) 375k – 0.7524 0.7471
CNN(TK-10k)* 375k 10k 0.7796 0.7728

Voting(TK+CNN) – 10k 0.7838 0.7792

Table 1: Accuracy on the Quora dataset.

parenthesis indicates the model used for gener-
ating automatic data, e.g., CNN(TK-10k) means
that a CNN has been pre-trained with the data la-
belled by a TK model trained on 10k GS data. The
amount of automatic data for pre-training is in the
second column, while the amount of GS data for
training or fine tuning (indicated by ∗) is in the
third column. Finally, the results on the dev. and
test sets are in the fourth and fifth columns.

We note that: first, NNs trained on 10k of GS
data obtain higher accuracy than FV and TK on
both dev. and test sets (see the first four lines);

Second, CNNs pre-trained with the data gen-
erated by FV or in a self-training setting, i.e.,
CNN(CNN-10k), and also fine-tuned do not im-
prove6 on the baseline model, i.e., CNN-10K, (see
the second part of the table).

Third, when CNNs and LSTMs are trained on
the data labelled by the TK model, match the TK
model accuracy (third part of the table). Most im-
portantly, when they are fine-tuned on GS data,
they obtain better results than the original mod-
els trained on the same amount of data, e.g., 1%
accuracy over CNN-10k.

Next, the fourth part of the table shows that the
improvement given by our method is still present
when training TK (and fine tuning the NNs) on

6The improvement of 0.5 is not statistically significant.

less GS data, i.e., only 5k.
Additionally, the fifth section of the table shows

a high improvement by training NNs on all avail-
able Quora data annotated by TK-10k (trained on
just 10k). This suggests that NNs require more
data to learn complex relational syntactic patterns
expressed by TKs. However, the plot in Figure
1 shows that the improvement reaches a plateau
around 100k examples.

Finally, in the last row of the table, we report
the result of a voting approach using a combi-
nation of the normalized scores of TK-10k and
CNN-10k. The accuracy is almost the same than
CNN(TK-10k)*. This shows that NNs completely
learn the combination of a TK model, mainly ex-
ploiting syntax, and a CNN, only using lexical in-
formation. Note that the voting model is heavy to
deploy as it uses syntactic parsing and the kernel
algorithm, which has a time complexity quadratic
in the number of support vectors.

4.4 Results on Qatar Living

Table 2 reports the results when applying our tech-
nique to a smaller and different dataset such as
QL. Here, CNNs have lower performance than TK
models as 2,669 pairs are not enough to train their
parameters, and the text is also noisy, i.e., there
are a lot of spelling errors. Despite this problem,
the results show that CNNs can approximate the



289

50 100 150 200 250 300 350 400

Pretraining data (x1000)

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

A
cc

u
ra

cy

TK

NN

NN(TK)

NN(TK)*

Figure 1: Impact of the pre-training data.

TK models well, when using a large set of au-
tomatic data. For example, the CNN trained on
93k automatically annotated examples and then
fine tuned exhibits 0.4% accuracy improvement on
the dev. set and almost 3% on the test set over
TK models. On the other hand, using too much
automatically labeled data may hurt the perfor-
mance on the test set. This may be due to the fact
the quality of information contained in the gold
labeled data deteriorates. In other words, using
the right amount of weekly-supervision is an im-
portant hyper-parameter that needs to be carefully
chosen.

5 Related Work

Determining question similarity is one of the main
challenges in building systems that answer real
user questions (Agichtein et al., 2015, 2016) in
community QA, thus different approaches have
been proposed. Jeon et al. (2005) used a language
model based on word translation table to com-
pute the probability of generating a query ques-
tion, given a target/related question. Zhou et al.
(2011) showed the effectiveness of phrase-based
translation models on Yahoo! Answers. Cao et al.
(2009); Duan et al. (2008) proposed a similarity
between two questions based on a language model
that exploits the category structure of Yahoo! An-
swers. Wang et al. (2009) proposed a model to find
semantically related questions by computing sim-
ilarity between syntactic trees representing ques-
tions. Ji et al. (2012) and Zhang et al. (2014)
used latent semantic topics that generate ques-
tion/answer pairs.

Regarding the use of automatically labelled
data, Blum and Mitchell (1998) applied semi-
supervised approaches, such as self-training and
co-training to non-neural models. The main point

Model Automatic Data Dev Test

CNN 0.7000 0.7514
TK 0.7340 0.7686

CNN(TK) 50k 0.5580 0.5428
CNN(TK)* 50k 0.7160 0.7814
CNN(TK) 93k 0.7000 0.6957
CNN(TK)* 93k 0.7380 0.7614

Table 2: Accuracy on QL using all available GS
data.

of our paper is the use standard weakly-supervised
methods to inject syntactic information in NNs.

Hu et al. (2016) tried to combine symbolic rep-
resentations with NNs by transferring structured
information of logic rules into the weights of NNs.
Our work is rather different as we inject syntactic,
and not logic, information in NNs.

The work most similar to our is the one by
Croce et al. (2017), who use Nystrom methods to
compact the TK representation in embedding vec-
tors and use the latter to train a feed forward NNs.
In contrast, we present a simpler approach, where
NNs learn syntactic properties directly from data.

To our knowledge, ours is the first work trying
to use NNs to learn structural information from
data labelled by TK-based models. Finally, no sys-
tems of the SemEval challenges used NNs trained
on syntactic information.

6 Conclusion

In this work, we have trained TK-based models,
which make use of structural information, on rel-
atively small data and applied them to new data
to produce a much larger automatically labeled
dataset. Our experiments show that NNs trained
on the automatic data improve their accuracy. We
may speculate that NNs learn relational structural
information as (i) TK models mainly use syntac-
tic structures to label data and (ii) other advanced
models based on similarity feature vectors do not
produce any improvement. Indeed, the latter only
exploit lexical similarity measures, which are typ-
ically also generated by NNs. However, even if
our conjecture were wrong, the bottom line would
be that, thanks to our approach, we can have NN
models comparable to TK-based approaches, by
also avoiding to use syntactic parsing and expen-
sive TK processing at deployment time.



290

References
Eugene Agichtein, David Carmel, Dan Pelleg, Yuval

Pinter, and Donna Harman. 2015. Overview of the
TREC 2015 LiveQA Track. In TREC.

Eugene Agichtein, David Carmel, Dan Pelleg, Yuval
Pinter, and Donna K. Harman. 2016. Overview of
the TREC 2016 LiveQA Track. In TREC.

Lloyd Allison and Trevor Dix. 1986. A bit-string
longest-common-subsequence algorithm. Informa-
tion Processing Letters, 23(6):305–310.

Alberto Barrón-Cedeño, Daniele Bonadiman, Giovanni
Da San Martino, Shafiq Joty, Alessandro Moschitti,
Fahad A Al Obaidli, Salvatore Romeo, Kateryna Ty-
moshenko, and Antonio Uva. 2016. ConvKN at
SemEval-2016 Task 3: Answer and question selec-
tion for question answering on Arabic and English
fora. Proceedings of SemEval, pages 896–903.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92–100. ACM.

Xin Cao, Gao Cong, Bin Cui, Christian Søndergaard
Jensen, and Ce Zhang. 2009. The use of categoriza-
tion information in language models for question re-
trieval. In Proceedings of the 18th ACM conference
on Information and knowledge management, pages
265–274. ACM.

Danilo Croce, Simone Filice, Giuseppe Castellucci,
and Roberto Basili. 2017. Deep learning in seman-
tic kernel spaces. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
345–354.

Arpita Das, Harish Yenala, Manoj Chinnakotla, and
Manish Shrivastava. 2016. Together we stand:
Siamese networks for similar question retrieval. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 378–387, Berlin, Germany. As-
sociation for Computational Linguistics.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong
Yu. 2008. Searching questions by identifying ques-
tion topic and question focus. In Proceedings of
ACL-08: HLT, pages 156–164, Columbus, Ohio.
Association for Computational Linguistics.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-
2016 Task 3: Learning Semantic Relations between
Questions and Answers. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1116–1123. Associa-
tion for Computational Linguistics.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2017. KeLP at SemEval-2017 Task 3:
Learning Pairwise Patterns in Community Question

Answering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 326–333. Association for Computational Lin-
guistics.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An em-
pirical investigation of catastrophic forgetting in
gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep neu-
ral networks with logic rules. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2410–2420. Association for Computational Linguis-
tics.

Paul Jaccard. 1901. Étude comparative de la distribu-
tion florale dans une portion des Alpes et des Jura.
Bulletin del la Société Vaudoise des Sciences Na-
turelles.

Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and an-
swer archives. In Proceedings of the 14th ACM in-
ternational conference on Information and knowl-
edge management, pages 84–90. ACM.

Zongcheng Ji, Fei Xu, Bin Wang, and Ben He. 2012.
Question-answer topic model for question retrieval
in community question answering. In Proceedings
of the 21st ACM international conference on Infor-
mation and knowledge management, pages 2471–
2474. ACM.

Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Eu-
dard Hovy. 2015. When are tree structures necessary
for deep learning of representations? arXiv preprint
arXiv:1503.00185.

Caroline Lyon, James Malcolm, and Bob Dickerson.
2001. Detecting short passages of similar text in
large document collections. In Proceedings of the
2001 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP, pages 118–125,
Pittsburgh, PA, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. Semeval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 27–48. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/S16-1138
https://doi.org/10.18653/v1/S16-1138
https://doi.org/10.18653/v1/S16-1138
https://doi.org/10.18653/v1/S16-1138
http://www.aclweb.org/anthology/P16-1036
http://www.aclweb.org/anthology/P16-1036
http://www.aclweb.org/anthology/P/P08/P08-1019
http://www.aclweb.org/anthology/P/P08/P08-1019
https://doi.org/10.18653/v1/S16-1172
https://doi.org/10.18653/v1/S16-1172
https://doi.org/10.18653/v1/S16-1172
https://doi.org/10.18653/v1/S17-2053
https://doi.org/10.18653/v1/S17-2053
https://doi.org/10.18653/v1/S17-2053
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P16-1228
https://doi.org/10.18653/v1/P16-1228
https://doi.org/10.18653/v1/S17-2003
https://doi.org/10.18653/v1/S17-2003


291

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. Semeval-
2016 task 3: Community question answering. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 525–
545. Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392. Asso-
ciation for Computational Linguistics.

Aliaksei Severyn and Alessandro Moschitti. 2016.
Modeling relational information in question-answer
pairs with convolutional neural networks. arXiv
preprint arXiv:1604.01178.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. 2009.
A syntactic tree matching approach to finding sim-
ilar questions in community-based QA services. In
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 187–194. ACM.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814.

Michael J. Wise. 1996. YAP3: Improved detection of
similarities in computer program and other texts. In
ACM SIGCSE Bulletin, volume 28, pages 130–134.
ACM.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li, and
Ming Zhou. 2014. Question retrieval with high qual-
ity answers in community question answering. In
Proceedings of the 23rd ACM International Confer-
ence on Conference on Information and Knowledge
Management, pages 371–380. ACM.

Guangyou Zhou, Li Cai, Jun Zhao, and Kang Liu.
2011. Phrase-based translation model for question
retrieval in community question answer archives. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 653–662. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/S16-1083
https://doi.org/10.18653/v1/S16-1083
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

