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Abstract

Measuring the performance of automatic
speech recognition (ASR) systems re-
quires manually transcribed data in order
to compute the word error rate (WER),
which is often time-consuming and expen-
sive. In this paper, we propose a novel
approach to estimate WER, or e-WER,
which does not require a gold-standard
transcription of the test set. Our e-WER
framework uses a comprehensive set of
features: ASR recognised text, character
recognition results to complement recog-
nition output, and internal decoder fea-
tures. We report results for the two fea-
tures; black-box and glass-box using un-
seen 24 Arabic broadcast programs. Our
system achieves 16.9% WER root mean
squared error (RMSE) across 1,400 sen-
tences. The estimated overall WER e-
WER was 25.3% for the three hours test
set, while the actual WER was 28.5%.

1 Introduction

Automatic Speech Recognition (ASR) has made
rapid progress in recent years, primarily due to
advances in deep learning and powerful comput-
ing platforms. As a result, the quality of ASR has
improved dramatically, leading to various appli-
cations, such as speech-to-speech translation, per-
sonal assistants, and broadcast media monitoring.
Despite this progress, ASR performance is still
closely tied to how well the acoustic model (AM)
and language model (LM) training data matches
the test conditions. Thus, it is important to be able
to estimate the accuracy of an ASR system in a
particular target environment.

Word Error Rate (WER) is the standard ap-
proach to evaluate the performance of a large vo-

cabulary continuous speech recognition (LVCSR)
system. The word sequence hypothesised by the
ASR system is aligned with a reference transcrip-
tion, and the number of errors is computed as the
sum of substitutions (S), insertions (I), and dele-
tions (D). If there are N total words in the refer-
ence transcription, then the word error rate WER
is computed as follows:

WER =
I +D + S

N
× 100. (1)

To obtain a reliable estimate of the WER, at
least two hours of test data are required for a
typical LVCSR system. In order to perform the
alignment, the test data needs to be manually tran-
scribed at the word level – a time-consuming and
expensive process. It is, thus, of interest to de-
velop techniques which can estimate the quality
of an automatically generated transcription with-
out requiring a gold-standard reference.

Such quality estimation techniques have been
extensively investigated for machine translation
(Specia et al., 2013), with extensions to spoken
language translation (Ng et al., 2015, 2016). Al-
though there is a long history of exploring word-
level confidence measures for speech recognition
(Evermann and Woodland, 2000; Cox and Das-
mahapatra, 2002; Jiang, 2005; Seigel et al., 2011;
Huang et al., 2013), there has been less work on
the direct estimation of speech recognition errors.

Seigel and Woodland (2014) studied the detec-
tion of deletions in ASR output using a condi-
tional random field (CRF) sequence model to de-
tect one or more deleted word regions in ASR
output. Ghannay et al. (2015) used word embed-
dings to build a confidence classifier which labeled
each word in the recognised word sequence with
an error or a correct label. Tam et al. (2014) in-
vestigated the use of a recurrent neural network
(RNN) language model (LM) with complementary
deep neural network (DNN) and Gaussian Mix-
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ture Model (GMM) acoustic models in order to
identify ASR errors, based on the assumption that
when two ASR systems disagree on an utterance
region, then it is most likely an error.

Ogawa and Hori (2015) investigated using
deep bidirectional recurrent neural networks
(DBRNNs) to detect errors in ASR results. They
explored four tasks for ASR error detection and
recognition rate estimation: confidence estima-
tion, out-of-vocabulary (OOV) word detection, er-
ror type classification, and recognition rate esti-
mation. In an extension to this work, Ogawa et al.
(2016); Ogawa and Hori (2017) investigated the
estimation of speech recognition accuracy based
on the classification of error types, in which se-
quence classification was performed by a CRF.
Each word in a hypothesised word sequence was
classified into one of three categories: correct,
substitution error, or insertion error. Their study
did not estimate the presence of deletions, and
consequently cannot estimate the WER.

Jalalvand et al. (2016) developed a tool for ASR
quality estimation, TranscRater, which is capable
of predicting WER per utterance. This approach
is based on a large set of extracted features (which
do not require internal access to the ASR sys-
tem) used to train a regression model (e.g., ex-
tremely randomised trees), and can also rank dif-
ferent transcriptions from multiple sources (Negri
et al., 2014; de Souza et al., 2015; Jalalvand and
Falavigna, 2015; Jalalvand et al., 2015a,b). Tran-
scRater provides a WER per utterance, reporting
the results as the MAE with respect to a refer-
ence transcription. This work did not report WER
estimates for complete recordings or test sets, al-
though it is possible that this could be done using
utterance length estimates.

In this paper, we build on these contributions to
develop a system to directly estimate the WER of
an ASR output hypothesis. Our contributions are:
(i) a novel approach to estimate WER per sentence
and to aggregate them to provide WER estimation
per recording or for a whole test set; (ii) an eval-
uation of our approach which compares the use of
“black-box” features (without ASR decoder infor-
mation) and “glass-box” features which use inter-
nal information from the decoder; and (iii) a re-
lease of the code and the data used for this paper
for further research1.

1https://github.com/qcri/e-wer

2 e-WER Framework

Estimating the probability of error of each word
in a recognised word sequence has been success-
fully used to detect insertions, substitutions, and
interword deletions (Ogawa et al., 2016; Ogawa
and Hori, 2015; Ghannay et al., 2015; Jalalvand
and Falavigna, 2015; Seigel and Woodland, 2014).
However, these local estimates do not provide an
estimate of the overall pattern of error, such as the
total number of deletions in an utterance.

In our framework, we use two speech recogni-
tion systems; a word-based LVCSR system and
a grapheme-sequence based system. Following
Tam et al. (2014), we assume that when two cor-
responding ASR systems disagree on a sentence
or part of a sentence, there is a pattern of error
to be learned. Our architecture also benefits from
utterance-based LVCSR decoder features includ-
ing the total number of frames, the average log
likelihood and the duration. Intuitively, we corre-
late short sentences with less context and assume
that LM scoring will not be able to capture long
context. Therefore, e-WER is defined as follows:

e-WER =
ERR

N̂
× 100% (2)

Our model is required to predict two values for
each utterance: ERR and N̂ . Given that each is
integer-valued, we decided to frame their estima-
tion as a classification task rather than a regression
problem as shown in equations 3 and 4. Each class
represents a specific word count. We limit the to-
tal number of classes to a maximum of C in ERR,
with range from 0 to C. However, the total num-
ber of classes for N̂ is C −K to avoid estimating
an utterance length of zero, with a range from K
to C. If an utterance has more than C words or
less than K words, it will thus be penalised by the
loss function,

ERR = argmax
cj∈C

P (cj |x1, x2, ..., xn) (3)

N̂ = argmax
kj∈C−K

P (kj |x1, x2, ..., xn) (4)

Table 1 shows that fewer than 5% of the sentences
have more than 20 words, and it is very unlikely
to have an utterance with fewer than 2 words. We
trained our system with C = 20 and K = 2. Since
our approach predicts ERR and N̂ for each sen-
tence, it is possible to aggregate each of the two

https://github.com/qcri/e-wer
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values across the entire test set in order to estimate
the overall WER, as shown in section 3.

2.1 e-WER features

To estimate e-WER, we combine features from the
word-based LVCSR system with features from the
grapheme-based system. By running both word-
based and character-based ASR systems, we are
able to align their outputs against each other.
We split the studied features into four groups
• L: lexical features – the word sequence ex-

tracted from the LVCSR.
• G: grapheme features – character sequence

extracted from the grapheme recognition.
• N: numerical features – basic features about

the speech signal, as well as grapheme align-
ment error details.
• D: decoder features – total frame count, aver-

age log-likelihood, total acoustic model like-
lihood and total language model likelihood.

Similar to previous research in ASR quality esti-
mation, we refer to {L,G,N} as the black-box fea-
tures, and {L,G,N,D} as the glass-box features,
which are used to estimate the total number of
words N̂ , and the total number of errors ERR in
a given sentence.

2.2 Classification Back-end

We deployed a feed-forward neural network as a
backend classifier for e-WER. The deployed net-
work in this work has two fully-connected hidden
layers (ReLU activation function), with 128 neu-
rons in the first layer and 64 neurons in the second
layer followed by a softmax layer. A minibatch
size of 32 was used, and the number of epochs was
up to 50 with an early stopping criterion.

2.3 Data

The e-WER training and development data sets are
the same as the Arabic MGB-2 development and
evaluation sets (Ali et al., 2016; Khurana and Ali,
2016), which is comprised of audio extracted from
Al-Jazeera Arabic TV programs recorded in the
last months of 2015. To test whether our approach
generalises to test sets from a different source, and
not tuned to the MGB-2 data set, we validated our
results on three hours test set collected by BBC
Monitoring during November 2016, as part of the
SUMMA project2.

2http://summa-project.eu

Train Dev Test
Number of programs in corpus 17 17 24
Utterances 58K 56K 1.4K
Duration (in hours) 9.9 10.2 3.2
2-20 words sentences 96% 95% 96%
Word count (N ) 75K 69K 20K
ASR word count (hyp) 58K 60K 18K
WER 42.6% 33.1% 28.5%
Total INS 1.9K 1.8K 130
Total DEL 19.1K 10.2K 2.6K
Total SUB 11.1K 10.8K 2.9K
ERR count (ERR) 32.1K 22.8K 5.7K

Table 1: Analysis of the train, dev and test data.

MAE/Dev MAE/Test
ERR N̂ e-WER ERR N̂ e-WER

glass-box 1.6 1.8 13.8 1.7 1.7 12.3
black-box 1.8 2.2 28.4 1.9 2.3 24.7

Table 2: MAE per sentence reported for the glass-
box and black-box features.

3 Experiments and discussions

We trained two DNN systems to estimate N̂ and
ERR separately. We explored training both a
black-box based DNN system (without the de-
coder features) and a glass-box system using the
decoder features. Overall, four systems were
trained: two glass-box systems and two black-
box systems. We used the same hyper-parameters
across the four systems. Tables 2 and 3 present the
e-WER performance in terms of the mean absolute
error (MAE) and root mean squared error (RMSE)
per sentence for ERR, N̂ and the estimated WER
for the dev and test sets with reference to the errors
computed using a gold-standard reference. As ex-
pected, the glass-box features help to reduce MAE
and RMSE for both ERR and N̂ . Although the dif-
ference between the black-box estimation and the
glass-box results is not big for ERR and N , we can
see that the impact becomes substantial on the esti-
mated WER per sentence, which is almost double
the error in both MAE and RMSE per sentence.

Table 4 reports the overall performance on the
dev and on the test set. Across the 17 programs in
the MGB-2 dev data, the actual WER is 33.1%,
and the glass-box e-WER is 29.3%, while the
black-box e-WER is 30.9%. Evaluating the same
models on the 24 programs in the test data set re-
sults in an actual WER of 28.5%, while the glass-
box e-WER is 25.3%, and the black-box e-WER
is 30.3%.

Tables 2 and 3 show the glass-box features
outperformed the black-box features in predicting
both ERR and N̂ . Furthermore, the performance

http://summa-project.eu
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RMSE/Dev RMSE/Test
ERR N̂ e-WER ERR N̂ e-WER

glass-box 2.2 2.1 18.3 2.3 2.2 16.9
black-box 2.4 2.7 36.1 2.6 2.9 35.0

Table 3: RMSE per sentence reported for the
glass-box and the black-box features.

Actual/estimated WER
Data Reference glass-box black-box
Dev 33.1% 29.3% 30.9%
Test 28.5% 25.3% 30.3%

Table 4: Overall WER across the dev and the test
data set.

of the estimated WER per sentence in the glass-
box is substantially better than the black-box for
both development and test sets. Table 4 indicates
that the glass-box estimate is systematically lower
than the black-box estimate. To further visualise
these results, figure 1 plots the cumulative WER
and e-WER across the three hours test set. This
plot indicates that the glass-box estimate is con-
tinually lower than the black-box estimate. The
large difference during the first 30 minutes arises
owing the glass-box system is capable of better es-
timation with less data compared to the black-box
system.

We estimate N̂ and ERR separately. There-
fore, our system is capable of estimating the WER
at different levels of granularity. We visualise
the prediction per program. In scenarios such as
media-monitoring, where the main objective is to
have a robust monitoring system for specific pro-
grams, we plot the WER across the 24 programs
in the test set, and we can see in figure 2 that
both the glass-box and black-box estimation are
following the gold-standard WER per program.
However, unlike predicting word count N̂ or error
count ERR, we can see that the black-box, in gen-
eral, over-estimates the WER, while the glass-box
system under-estimates WER similar to figure 1.
One can argue from figure 2 that the decoder fea-
tures are not helping in programs with high WER.
We found both systems to be useful for reporting
WER per program.

4 Conclusions

This paper presents our efforts in predicting
speech recognition word error rate without requir-
ing a gold-standard reference transcription. We
presented a DNN based classifier to predict the
total number of errors per utterance and the to-
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Figure 1: Test set cumulative WER over all sen-
tences (X-axis is duration in hours and Y-axis is
WER in %).
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Figure 2: WER estimated over 24 programs on the
test data.

tal word count separately. Our approach benefits
from combining word-based and grapheme-based
ASR results for the same sentence, along with ex-
tracted decoder features. We evaluated our ap-
proach per sentences and per program. Our ex-
periments have shown that this approach is highly
promising to estimate WER per sentence and we
have aggregated the estimated results to predict
WER for complete recordings, programs or test
sets without the need for a reference transcription.
For our future work, we shall continue our investi-
gation into approaches that can estimate the word
error rate using convolutional neural networks. In
particular, we would like to explore combining the
DNN numerical features with the CNN word em-
bedding features.
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