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Abstract

Treebank conversion is a straightfor-
ward and effective way to exploit vari-
ous heterogeneous treebanks for boost-
ing parsing accuracy. However, previ-
ous work mainly focuses on unsuper-
vised treebank conversion and makes
little progress due to the lack of man-
ually labeled data where each sentence
has two syntactic trees complying with
two different guidelines at the same
time, referred as bi-tree aligned data.
In this work, we for the first time
propose the task of supervised treebank
conversion. First, we manually con-
struct a bi-tree aligned dataset contain-
ing over ten thousand sentences. Then,
we propose two simple yet effective
treebank conversion approaches (pat-
tern embedding and treeLSTM) based
on the state-of-the-art deep biaffine
parser. Experimental results show that
1) the two approaches achieve com-
parable conversion accuracy, and 2)
treebank conversion is superior to the
widely used multi-task learning frame-
work in multiple treebank exploitation
and leads to significantly higher pars-
ing accuracy.

1 Introduction
During the past few years, neural network
based dependency parsing has achieved sig-
nificant progress and outperformed the tra-
ditional discrete-feature based parsing (Chen
and Manning, 2014; Dyer et al., 2015; Zhou

∗ The first two (student) authors make equal
contributions to this work. Zhenghua is the
correspondence author.

Treebanks #Tok Grammar
Sinica (Chen et al., 2003) 0.36M Case grammar
CTB (Xue et al., 2005) 1.62M Phrase structure

TCT (Zhou, 2004) 1.00M Phrase structure
PCT (Zhan, 2012) 0.90M Phrase structure

HIT-CDT (Che et al., 2012) 0.90M Dependency structure
PKU-CDT (Qiu et al., 2014) 1.40M Dependency structure

Table 1: Large-scale Chinese treebanks (token
number in million).

et al., 2015; Andor et al., 2016). Most re-
markably, Dozat and Manning (2017) propose
a simple yet effective deep biaffine parser that
further advances the state-of-the-art accuracy
by large margin. As reported, their parser out-
performs the state-of-the-art discrete-feature
based parser of Bohnet and Nivre (2012)
by 0.97 (93.76% − 92.79%) on the English
WSJ data and 6.87 (85.38% − 78.51%) on
the Chinese CoNLL-2009 data, respectively.
Kindly note that all these results are obtained
by training parsers on a single treebank.

Meanwhile, motivated by different syntactic
theories and practices, major languages in the
world often possess multiple large-scale hetero-
geneous treebanks, e.g., Tiger (Brants et al.,
2002) and TüBa-D/Z (Telljohann et al., 2004)
treebanks for German, Talbanken (Einarsson,
1976) and Syntag (Järborg, 1986) treebanks
for Swedish, ISST (Montemagni et al., 2003)
and TUT1 treebanks for Italian, etc. Ta-
ble 1 lists several large-scale Chinese tree-
banks. In this work, we take HIT-CDT
as a case study. Our next-step plan is to
annotate bi-tree aligned data for PKU-CDT
and then convert PKU-CDT to our guideline.
For non-dependency treebanks, the straight-

1http://www.di.unito.it/~tutreeb/

http://www.di.unito.it/~tutreeb/
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forward choice is to convert such treebanks
to dependency treebanks based on heuris-
tic head-finding rules. The second choice is
to directly extend our proposed approaches
by adapting the patterns and treeLSTMs for
non-dependency structures, which should be
straightforward as well.

Considering the high cost of treebank con-
struction, it has always been an interesting
and attractive research direction to exploit
various heterogeneous treebanks for boosting
parsing performance. Though under different
linguistic theories or annotation guidelines,
the treebanks are painstakingly developed to
capture the syntactic structures of the same
language, thereby having a great deal of com-
mon grounds.

Previous researchers have proposed two ap-
proaches for multi-treebank exploitation. On
the one hand, the guiding-feature method
projects the knowledge of the source-side tree-
bank into the target-side treebank, and uti-
lizes extra pattern-based features as guid-
ance for the target-side parsing, mainly for
the traditional discrete-feature based pars-
ing (Li et al., 2012). On the other hand,
the multi-task learning method simultaneously
trains two parsers on two treebanks and uses
shared neural network parameters for repre-
senting common-ground syntactic knowledge
(Guo et al., 2016).2 Regardless of their ef-
fectiveness, while the guiding-feature method
fails to directly use the source-side treebank
as extra training data, the multi-task learning
method is incapable of explicitly capturing
the structural correspondences between two
guidelines. In this sense, we consider both of
them as indirect exploitation approaches.

Compared with the indirect approaches,
treebank conversion aims to directly convert
a source-side treebank into the target-side
guideline, and uses the converted treebank
as extra labeled data for training the target-
side model. Taking the example in Figure 1,
the goal of this work is to convert the under
tree that follows the HIT-CDT guideline (Che
et al., 2012) into the upper one that follows
our new guideline. However, due to the lack

2 Johansson (2013) applies the feature-sharing
approach of Daumé III (2007) for multiple treebank
exploitation, which can be regarded as a simple
discrete-feature variant of multi-task learning.

$ 奶奶 叫 我 快 上学

Grandma asks me quickly go to school

subj
root

adv
obj

pred

HED
SBV ADV

VOB

DBL

Figure 1: Example of treebank conversion
from the source-side HIT-CDT tree (under) to
the target-side our-CDT tree (upper).

of bi-tree aligned data, in which each sentence
has two syntactic trees following the source-
side and target-side guidelines respectively,
most previous studies are based on unsuper-
vised treebank conversion (Niu et al., 2009) or
pseudo bi-tree aligned data (Zhu et al., 2011;
Li et al., 2013), making very limited progress.

In this work, we for the first time propose
the task of supervised treebank conversion.
The key motivation is to better utilize a large-
scale source-side treebank by constructing a
small-scale bi-tree aligned data. In summary,
we make the following contributions.

(1) We have manually annotated a high-
quality bi-tree aligned data containing
over ten thousand sentences, by re-
annotating the HIT-CDT treebank
according to a new guideline.

(2) We propose a pattern embedding conver-
sion approach by retrofitting the indirect
guiding-feature method of Li et al. (2012)
to the direct conversion scenario, with
several substantial extensions.

(3) We propose a treeLSTM conversion ap-
proach that encodes the source-side tree
at a deeper level than the shallow pattern
embedding approach.

Experimental results show that 1) the two
conversion approaches achieve nearly the same
conversion accuracy, and 2) direct treebank
conversion is superior to indirect multi-task
learning in exploiting multiple treebanks in
methodology simplicity and performance, yet
with the cost of manual annotation. We
release the annotation guideline and the newly
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annotated data in http://hlt.suda.edu.cn/
index.php/SUCDT.

2 Annotation of Bi-tree Aligned Data

The key issue for treebank conversion is that
sentences in the source-side and target-side
treebanks are non-overlapping. In other
words, there lacks a bi-tree aligned data in
which each sentence has two syntactic trees
complying with two guidelines as shown in
Figure 1. Consequently, we cannot train a
supervised conversion model to directly learn
the structural correspondences between the
two guidelines. To overcome this obstacle,
we construct a bi-tree aligned data of over
ten thousand sentences by re-annotating the
publicly available dependency-structure HIT-
CDT treebank according to a new annotation
guideline.

2.1 Data Annotation
Annotation guideline. Unlike phrase-
structure treebank construction with very
detailed and systematic guidelines (Xue
et al., 2005; Zhou, 2004), previous works on
Chinese dependency-structure annotation
only briefly describe each relation label with
a few concrete examples. For example, the
HIT-CDT guideline contains 14 relation labels
and illustrates them in a 14-page document.

The UD (universal dependencies) project3

releases a more detailed language-generic
guideline to facilitate cross-linguistically
consistent annotation, containing 37
relation labels. However, after in-depth
study, we find that the UD guideline is
very useful and comprehensive, but may
not be completely compact for realistic
annotation of Chinese-specific syntax. After
many months’ investigation and trial, we
have developed a systematic and detailed
annotation guideline for Chinese dependency
treebank construction. Our 60-page guideline
employs 20 relation labels and gives detailed
illustrations for annotation, in order to
improve consistency and quality.

Please refer to Guo et al. (2018) for the
details of our guideline, including detailed
discussions on the correspondences and differ-
ences between the UD guideline and ours.

3http://universaldependencies.org

Partial annotation. To save annotation
effort, we adopt the idea of Li et al. (2016) and
only annotate the most uncertain (difficult)
words in a sentence. For simplicity, we directly
use their released parser and produce the un-
certainty results of all HLT-CDT sentences via
two-fold jack-knifing. First, we select 2, 000
most difficult sentences of lengths [5, 10] for
full annotation4. Then, we select 3, 000 most
difficult sentences of lengths [10, 20] from the
remaining data for 50% annotation. Finally,
we select 6, 000 most difficult sentences of
lengths [5, 25] for 20% annotation from the
remaining data. The difficulty of a sentence
is computed as the averaged difficulty of its
selected words.

Annotation platform. To guarantee an-
notation consistency and data quality, we
build an online annotation platform to sup-
port strict double annotation and subsequent
inconsistency handling. Each sentence is dis-
tributed to two random annotators. If the
two submissions are not the same (inconsistent
dependency or relation label), a third expert
annotator will compare them and decide a
single answer.

Annotation process. We employ about
20 students in our university as part-time
annotators. Before real annotation, we first
give a detailed talk on the guideline for about
two hours. Then, the annotators spend several
days on systematically studying our guideline.
Finally, they are required to annotate 50 test-
ing sentences on the platform. If the submis-
sion is different from the correct answer, the
annotator receives an instant feedback for self-
improvement. Based on their performance,
about 10 capable annotators are chosen as
experts to deal with inconsistent submissions.

2.2 Statistics and Analysis
Consistency statistics. Compared with
the final answers, the overall accuracy of all
annotators is 87.6%. Although the overall
inter-annotator dependency-wise consistency
rate is 76.5%, the sentence-wise consistency
rate is only 43.7%. In other words, 56.3%
(100 − 43.7) sentences are further checked by
a third expert annotator. This shows how

4 Punctuation marks are ruled out and un-
annotated.

http://hlt.suda.edu.cn/index.php/SUCDT
http://hlt.suda.edu.cn/index.php/SUCDT
http://universaldependencies.org
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difficult it is to annotate syntactic structures
and how important it is to employ strict
double annotation to guarantee data quality.

Annotation time analysis. As shown in
Table 2, the averaged sentence length is 15.4
words in our annotated data, among which
4.7 words (30%) are partially annotated with
their heads. According to the records of our
annotation platform, each sentence requires
about 3 minutes in average, including the
annotation time spent by two annotators and
a possible expert. The total cost of our data
annotation is about 550 person-hours, which
can be completed by 20 full-time annotators
within 4 days. The most cost is spent on
quality control via two-independent annota-
tion and inconsistency handling by experts.
This is in order to obtain very high-quality
data. The cost is reduced to about 150 person-
hours without such strict quality control.

Heterogeneity analysis. In order to un-
derstand the heterogeneity between our guide-
line and the HIT-CDT guideline, we analyze
the 36, 348 words with both-side heads in the
train data, as shown in Table 2. The con-
sistency ratio of the two guidelines is 81.69%
(UAS), without considering relation labels.
By mapping each relation label in HIT-CDT
(14 in total) to a single label of our guideline
(20 in total), the maximum consistency ratio
is 73.79% (LAS). The statistics are similar for
the dev/test data.

3 Indirect Multi-task Learning

Basic parser. In this work, we build all the
approaches over the state-of-the-art deep bi-
affine parser proposed by Dozat and Manning
(2017). As a graph-based dependency parser,
it employs a deep biaffine neural network
to compute the scores of all dependencies,
and uses viterbi decoding to find the highest-
scoring tree. Figure 2 shows how to score a
dependency i← j.5

First, the biaffine parser applies multi-layer
bidirectional sequential LSTMs (biSeqLSTM)
to encode the input sentence. The word/tag
embeddings ewk and etk are concatenated as
the input vector at wk.

5 The score computation of the relation labels is
analogous, but due to space limitation, we refer readers
to Dozat and Manning (2017) for more details.

Then, the output vector of the top-layer
biSeqLSTM at wk, denoted as hseq

k , is fed
into two separate MLPs to get two lower-
dimensional representation vectors.

rH
k = MLPH (

hseq
k

)
rD
k = MLPD (

hseq
k

) (1)

where rH
k is the representation vector of wk as

a head word, and rD
k as a dependent.

Finally, the score of the dependency i ← j
is computed via a biaffine operation.

score(i← j) =

[
rD
i

1

]T

WbrH
j (2)

During training, the original biaffine
parser uses the local softmax loss. For each
wi and its head wj , its loss is defined as
− log escore(i←j)∑

k escore(i←k) . Since our training data is
partially annotated, we follow Li et al. (2016)
and employ the global CRF loss (Ma and
Hovy, 2017) for better utilization of the data,
leading to consistent accuracy gain.

Multi-task learning aims to incorporate
labeled data of multiple related tasks for im-
proving performance (Collobert and Weston,
2008). Guo et al. (2016) apply multi-task
learning to multi-treebank exploitation based
on the neural transition-based parser of Dyer
et al. (2015), and achieve higher improvement
than the guiding-feature approach of Li et al.
(2012).

Based on the state-of-the-art biaffine parser,
this work makes a straightforward extension
to realize multi-task learning. We treat the
source-side and target-side parsing as two
individual tasks. The two tasks use shared pa-
rameters for word/tag embeddings and multi-
layer biSeqLSTMs to learn common-ground
syntactic knowledge, use separate parameters
for the MLP and biaffine layers to learn task-
specific information.

4 Direct Treebank Conversion
Task definition. As shown in Figure 1, given
an input sentence x, treebank conversion aims
to convert the under source-side tree dsrc to
the upper target-side tree dtgt. Therefore,
the main challenge is how to make full use
of the given dsrc to guide the construction
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of dtgt. Specifically, under the biaffine parser
framework, the key is to utilize dsrc as guid-
ance for better scoring an arbitrary target-side
dependency i←− j.

In this paper, we try to encode the struc-
tural information of i and j in dsrc as a dense
vector from two representation levels, thus
leading to two approaches, i.e., the shallow
pattern embedding approach and the deep
treeLSTM approach. The dense vectors are
then used as extra inputs of the MLP layer to
obtain better word representations, as shown
in Figure 2.

4.1 The Pattern Embedding Approach
In this subsection, we propose the pattern em-
bedding conversion approach by retrofitting
the indirect guiding-feature method of Li et al.
(2012) to the direct conversion scenario, with
several substantial extensions.

The basic idea of Li et al. (2012) is to use
extra guiding features produced by the source-
side parser. First, they train the source parser
Parsersrc on the source-side treebank. Then,
they use Parsersrc to parse the target-side
treebank, leading to pseudo bi-tree aligned
data. Finally, they use the predictions of
Parsersrc as extra pattern-based guiding fea-
tures and build a better target-side parser
Parsertgt.

The original method of Li et al. (2012) is
proposed for traditional discrete-feature based
parsing, and does not consider the relation
labels in dsrc. In this work, we make a few
useful extensions for more effective utilization
of dsrc.

• We further subdivide their “else” pattern
into four cases according to the length of
the path from wi to wj in dsrc. The left
part of Figure 2 shows all 9 patterns.

• We use the labels of wi and wj in dsrc,
denoted as li and lj .

• Inspired by the treeLSTM approach, we
also consider the label of wa, the lowest
common ancestor (LCA) of wi and wj ,
denoted as la.

Our pattern embedding approach works as
follows. Given i ← j, we first decide its
pattern type according to the structural re-
lationship between wi and wj in dsrc, denoted

as pi←j . For example, if wi and wj are both
the children of a third word wk in dsrc, then
pi←j = “sibling”. Figure 2 shows all 9 patterns.

Then, we embed pi←j into a dense vector
epi←j through a lookup operation in order to
fit into the biaffine parser. Similarly, the
three labels are also embedded into three dense
vectors, i.e., eli , elj , ela .

The four embeddings are combined as rpati←j

to represent the structural information of wi

and wj in dsrc.

rpati←j = epi←j ⊕ eli ⊕ elj ⊕ ela (3)

Finally, the representation vector rpati←j and
the top-layer biSeqLSTM outputs are concate-
nated as the inputs of the MLP layer.

rD
i,i←j = MLPD(rseqi ⊕ rpati←j

)
rH
j,i←j = MLPH(rseqj ⊕ rpati←j

) (4)

Through rpati←j , the extended word representa-
tions, i.e., rD

i,i←j and rH
j,i←j , now contain the

structural information of wi and wj in dsrc.
The remaining parts of the biaffine parser is

unchanged. The extended rD
i,i←j and rH

j,i←j are
fed into the biaffine layer to compute a more
reliable score of the dependency i ← j, with
the help of the guidance of dsrc.

4.2 The TreeLSTM Approach
Compared with the pattern embedding ap-
proach, our second conversion approach em-
ploys treeLSTM to obtain a deeper represen-
tation of i ← j in the source-side tree dsrc.
Tai et al. (2015) first propose treeLSTM as a
generalization of seqLSTM for encoding tree-
structured inputs, and show that treeLSTM is
more effective than seqLSTM on the semantic
relatedness and sentiment classification tasks.
Miwa and Bansal (2016) compare three treeL-
STM variants on the relation extraction task
and show that the SP-tree (shortest path)
treeLSTM is superior to the full-tree and
subtree treeLSTMs.

In this work, we employ the SP-tree treeL-
STM of Miwa and Bansal (2016) for our
treebank conversion task. Our preliminary
experiments also show the SP-tree treeLSTM
outperforms the full-tree treeLSTM, which is
consistent with Miwa and Bansal. We did not
implement the in-between subtree treeLSTM.
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... ... ...

... ... ...
BiSeqLSTM
(two layers)

MLPD MLPH

hseq
jhseq

i

rD
i,i←j rH

j,i←j

Biaffine

score(i← j)
consistent: i← j

grand: i← k ← j

sibling: i← k → j

reverse: i→ j

reverse grand: i→ k → j

else: {3; 4− 5; 6;≥ 7}

epi←j

rpat
i←j

eli ⊕ elj ⊕ ela

wa

wi

wj

rtree
i←j

h↓i

h↓j

h↑a

Figure 2: Computation of score(i ← j) in our proposed conversion approaches. Without the
source-side tree dsrc, the baseline uses the basic rD

i and rH
j (instead of rD

i,i←j and rH
j,i←j).

Given wi and wj and their LCA wa, the SP-
tree is composed of two paths, i.e., the path
from wa to wi and the path from wa to wj , as
shown in the right part of Figure 2.

Different from the shallow pattern embed-
ding approach, the treeLSTM approach runs
a bidirectional treeLSTM through the SP-tree,
in order to encode the structural information
of wi and wj in dsrc at a deeper level. The top-
down treeLSTM starts from wa and accumu-
lates information until wi and wj , whereas the
bottom-up treeLSTM propagates information
in the opposite direction.

Following Miwa and Bansal (2016), we stack
our treeLSTM on top of the biSeqLSTM layer
of the basic biaffine parser, instead of directly
using word/tag embeddings as inputs. For
example, the input vector for wk in the treeL-
STM is xk = hseq

k ⊕ elk , where hseq
k is the top-

level biSeqLSTM output vector at wk, and lk
is the label between wk and its head word in
dsrc, and elk is the label embedding.

In the bottom-up treeLSTM, an LSTM node
computes a hidden vector based on the com-
bination of the input vector and the hidden
vectors of its children in the SP-tree. The
right part of Figure 2 and Eq. (5) illustrate

the computation at wa.

h̃a =
∑

k∈C(a)

hk

ia = σ
(

U(i)xa + V(i)h̃a + b(i)
)

fa,k = σ
(

U(f)xa + V(f)hk + b(f)
)

oa = σ
(

U(o)xa + V(o)h̃a + b(o)
)

ua = tanh
(

U(u)xa + V(u)h̃a + b(u)
)

ca = ia ⊙ ua +
∑

k∈C(a)

fa,k ⊙ ck

ha = oa ⊙ tanh
(
ca
)

(5)

where C(a) means the children of wa in the
SP-tree, and fa,k is the forget vector for wa’s
child wk.

The top-down treeLSTM sends information
from the root wa to the leaves wi and wj . An
LSTM node computes a hidden vector based
on the combination of its input vector and the
hidden vector of its single preceding (father)
node in the SP-tree.

After performing the biTreeLSTM, we fol-
low Miwa and Bansal (2016) and use the com-
bination of three output vectors to represent
the structural information of wi and wj in dsrc,
i.e., the output vectors of wi and wj in the top-
down treeLSTM, and the output vector of wa
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#Sent #Tok (HIT) #Tok (our)
train 7,768 119,707 36,348
dev 998 14,863 4,839
test 1,995 29,975 9,679

train-HIT 52,450 980,791 36,348

Table 2: Data statistics. Kindly note that
sentences in train are also in train-HIT.

in the bottom-up treeLSTM.

rtreei←j = h↓i ⊕ h↓j ⊕ h↑a (6)

Similar to Eq. (4) for the pattern embed-
ding approach, we concatenate rtreei←j with the
output vectors of the top-layer biSeqLSTM,
and feed them into MLPH/D.

5 Experiments
5.1 Experiment Settings
Data. We randomly select 1, 000/2, 000 sen-
tences from our newly annotated data as
the dev/test datasets, and the remaining as
train. Table 2 shows the data statistics after
removing some broken sentences (ungrammat-
ical or wrongly segmented) discovered during
annotation. The “#tok (our)” column shows
the number of tokens annotated according to
our guideline. Train-HIT contains all sen-
tences in HIT-CDT except those in dev/test,
among which most sentences only have the
HIT-CDT annotations.

Evaluation. We use the standard labeled
attachment score (LAS, UAS for unlabeled) to
measure the parsing and conversion accuracy.

Implementation. In order to more flexibly
realize our ideas, we re-implement the baseline
biaffine parser in C++ based on the lightweight
neural network library of Zhang et al. (2016).
On the Chinese CoNLL-2009 data, our parser
achieves 85.80% in LAS, whereas the origi-
nal tensorflow-based parser6 achieves 85.54%
(85.38% reported in their paper) under the
same parameter settings and external word
embedding.

Hyper-parameters. We follow most pa-
rameter settings of Dozat and Manning (2017).
The external word embedding dictionary is
trained on Chinese Gigaword (LDC2003T09)
with GloVe (Pennington et al., 2014). For

6https://github.com/tdozat/Parser-v1

Training data UAS LAS
Multi-task train & train-HIT 79.29 74.51

Pattern train 86.66 82.03
TreeLSTM train 86.69 82.09
Combined train 86.66 81.82

Table 3: Conversion accuracy on test data.

efficiency, we use two biSeqLSTM layers in-
stead of three, and reduce the biSeqLSTM
output dimension (300) and the MLP output
dimension (200).

For the conversion approaches, the source-
side pattern/label embedding dimensions are
50 (thus |rpati←j | = 200), and the treeLSTM
output dimension is 100 (thus |rtreei←j | = 300).

During training, we use 200 sentences as a
data batch, and evaluate the model on the dev
data every 50 batches (as an epoch). Training
stops after the peak LAS on dev does not
increase in 50 consecutive epochs.

For the multi-task learning approach, we
randomly sample 100 train sentences and 100
train-HIT sentences to compose a data batch,
for the purpose of corpus weighting.

To fully utilize train-HIT for the conversion
task, the conversion models are built upon
multi-task learning, and directly reuse the
embeddings and biSeqLSTMs of the multi-
task trained model without fine-tuning.

5.2 Results: Treebank Conversion
Table 3 shows the conversion accuracy on
the test data. As a strong baseline for
the conversion task, the multi-task trained
target-side parser (“multi-task”) does not use
dsrc during both training and evaluation. In
contrast, the conversion approaches use both
the sentence x and dsrc as inputs.

Compared with “multi-task”, the two pro-
posed conversion approaches achieve nearly
the same accuracy, and are able to dramat-
ically improve the accuracy with the extra
guidance of dsrc. The gain is 7.58 (82.09 −
74.51) in LAS for the treeLSTM approach.

It is straightforward to combine the two
conversion approaches. We simply concate-
nate hseq

i/j with both rpati←j and rtreei←j before feed-
ing into MLPH/D. However, the “combined”
model leads to no further improvement. This
indicates that although the two approaches try

https://github.com/tdozat/Parser-v1
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on dev on test
UAS LAS UAS LAS

Pattern (full) 86.73 81.93 86.66 82.03
w/o distance 86.73 81.75 86.57 81.94

w/o li 86.47 80.55 86.47 81.15
w/o lj 86.55 81.69 86.45 81.76
w/o la 86.24 81.66 86.17 81.51

w/o labels 86.05 79.78 85.93 80.08
TreeLSTM (full) 86.73 81.95 86.69 82.09

w/o labels 86.55 80.32 86.20 80.56

Table 4: Feature ablation for the conversion
approaches.

to encode the structural information of wi and
wj in dsrc from different perspectives, the re-
sulted representations are actually overlapping
instead of complementary, which is contrary
to our intuition that the treeLSTM approach
should give better and deeper representations
than the shallow pattern embedding approach.
We have also tried several straightforward
modifications to the standard treeLSTM in
Eq. (5), but found no further improvement.
We leave further exploration of better treeL-
STMs and model combination approaches as
future work.

Feature ablation results are presented in
Table 4 to gain more insights on the two
proposed conversion approaches. In each
experiment, we remove a single component
from the full model to learn its individual
contribution.

For the pattern embedding approach, all
proposed extensions to the basic pattern-based
approach of Li et al. (2012) are useful. Among
the three labels, the embedding of li is the
most useful and its removal leads to the
highest LAS drop of 0.88 (82.03 − 81.15).
This is reasonable considering that 81.69%
dependencies are consistent in the two guide-
lines, as discussed in the heterogeneity analysis
of Section 2.2. Removing all three labels
decreases UAS by 0.73 (86.66−85.93) and LAS
by 1.95 (82.03 − 80.08), demonstrating that
the source-side labels are highly correlative
with the target-side labels, and therefore very
helpful for improving LAS.

For the treeLSTM approach, the source-side
labels in dsrc are also very useful, improving
UAS by 0.49 (86.69− 86.20) and LAS by 1.53

(82.09− 80.56).

5.3 Results: Utilizing Converted Data
Another important question to be answered
is whether treebank conversion can lead to
higher parsing accuracy than multi-task learn-
ing. In terms of model simplicity, treebank
conversion is better because eventually the
target-side parser is trained directly on an
enlarged homogeneous treebank unlike the
multi-task learning approach that needs to
simultaneously train two parsers on two het-
erogeneous treebanks.

Table 5 shows the empirical results. Please
kindly note that the parsing accuracy looks
very low, because the test data is partially
annotated and only about 30% most uncertain
(difficult) words are manually labeled with
their heads according to our guideline, as
discussed in Section 2.1.

The first-row, “single” is the baseline target-
side parser trained on the train data.

The second-row “single (hetero)” refers to
the source-side heterogeneous parser trained
on train-HIT and evaluated on the target-side
test data. Since the similarity between the
two guidelines is high, as discussed in Section
2.2, the source-side parser achieves even higher
UAS by 0.21 (76.20− 75.99) than the baseline
target-side parser trained on the small-scale
train data. The LAS is obtained by mapping
the HIT-CDT labels to ours (Section 2.2).

In the third row, “multi-task” is the target-
side parser trained on train & train-HIT
with the multi-task learning approach. It
significantly outperforms the baseline parser
by 4.30 (74.51 − 70.21) in LAS. This shows
that the multi-task learning approach can
effectively utilize the large-scale train-HIT to
help the target-side parsing.

In the fourth row, “single (large)” is the ba-
sic parser trained on the large-scale converted
train-HIT (homogeneous). We employ the
treeLSTM approach to convert all sentences in
train-HIT into our guideline.7 We can see that

7 For each sentence in train, which is already
partially annotated, the conversion model actually
completes the partial target-side tree into a full tree
via constrained decoding. As shown by the results in Li
et al. (2016), since the most difficult dependencies are
known and given to the model, the parsing accuracy
will be much higher than the traditional parsing
without constraints.
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Training data UAS LAS
Single train 75.99 70.95

Single (hetero) train-HIT 76.20 68.43
Multi-task train & train-HIT 79.29 74.51

Single (large) converted train-HIT 80.45 75.83

Table 5: Parsing accuracy on test data.
LAS difference between any two systems is
statistically significant (p < 0.005) according
to Dan Bikel’s randomized parsing evaluation
comparer for significance test Noreen (1989).

Task Training data UAS LAS
Conversion train 93.42 90.49

Parsing (baseline) train 89.66 86.41
Parsing (ours) converted train-HIT 91.16 88.07

Table 6: Results on the fully annotated 372
sentences of the test data.

the single parser trained on the converted data
significantly outperforms the parser in the
multi-task learning approach by 1.32 (75.83−
74.51) in LAS.

In summary, we can conclude that treebank
conversion is superior to multi-task learning
in multi-treebank exploitation for its simplicity
and better performance.

5.4 Results on fully annotated data

We randomly divided the newly annotated
data into train/dev/test, so the test set has
a mix of 100%, 50% and 20% annotated
sentences. To gain a rough estimation of the
performance of different approaches on fully
annotated data, we give the results in Table
6. We can see that all the models achieve
much higher accuracy on the portion of fully
annotated data than on the whole test data as
shown in Table 3 and 5, since the dependencies
to be evaluated are the most difficult ones in a
sentence for the portion of partially annotated
data. Moreover, the conversion model can
achieve over 90% LAS thanks to the guidance
of the source-side HIT-CDT tree. Please also
note that there would still be a slight bias,
because those fully annotated sentences are
chosen as the most difficult ones according
to the parsing model but are also very short
([5, 10]).

6 Conclusions and Future Work
In this work, we for the first time propose
the task of supervised treebank conversion by
constructing a bi-tree aligned data of over ten
thousand sentences. We design two simple
yet effective conversion approaches based
on the state-of-the-art deep biaffine parser.
Results show that 1) the two approaches
achieves nearly the same conversion accuracy;
2) relation labels in the source-side tree are
very helpful for both approaches; 3) treebank
conversion is more effective in multi-treebank
exploitation than multi-task learning, and
achieves significantly higher parsing accuracy.

In future, we would like to advance this work
in two directions: 1) proposing more effective
conversion approaches, especially by exploring
the potential of treeLSTMs; 2) constructing
bi-tree aligned data for other treebanks and
exploiting all available single-tree and bi-tree
labeled data for better conversion.
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