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Abstract

In this paper, we study the problem of
geometric reasoning in the context of
question-answering. We introduce Dy-
namic Spatial Memory Network (DSMN),
a new deep network architecture designed
for answering questions that admit latent
visual representations. DSMN learns to
generate and reason over such representa-
tions. Further, we propose two synthetic
benchmarks, FloorPlanQA and ShapeIn-
tersection, to evaluate the geometric rea-
soning capability of QA systems. Experi-
mental results validate the effectiveness of
our proposed DSMN for visual thinking
tasks1.

1 Introduction

The ability to reason is a hallmark of intelligence
and a requirement for building question-answering
(QA) systems. In AI research, reasoning has been
strongly associated with logic and symbol manip-
ulation, as epitomized by work in automated theo-
rem proving (Fitting, 2012). But for humans, rea-
soning involves not only symbols and logic, but
also images and shapes. Einstein famously wrote:
“The psychical entities which seem to serve as el-
ements in thought are certain signs and more or
less clear images which can be ‘voluntarily’ re-
produced and combined... Conventional words or
other signs have to be sought for laboriously only
in a secondary state...” And the history of sci-
ence abounds with discoveries from visual think-
ing, from the Benzene ring to the structure of
DNA (Pinker, 2003).

There are also plenty of ordinary examples of
human visual thinking. Consider a square room

1 Code and datasets: https://github.com/
umich-vl/think_visually

with a door in the middle of its southern wall. Sup-
pose you are standing in the room such that the
eastern wall of the room is behind you. Where is
the door with respect to you? The answer is ‘to
your left.’ Note that in this case both the question
and answer are just text. But in order to answer the
question, it is natural to construct a mental picture
of the room and use it in the process of reasoning.
Similar to humans, the ability to ‘think visually’ is
desirable for AI agents like household robots. An
example could be to construct a rough map and
navigation plan for an unknown environment from
verbal descriptions and instructions.

In this paper, we investigate how to model geo-
metric reasoning (a form of visual reasoning) us-
ing deep neural networks (DNN). Specifically, we
address the task of answering questions through
geometric reasoning—both the question and an-
swer are expressed in symbols or words, but a ge-
ometric representation is created and used as part
of the reasoning process.

In order to focus on geometric reasoning, we do
away with natural language by designing two syn-
thetic QA datasets, FloorPlanQA and ShapeInter-
section. In FloorPlanQA, we provide the blueprint
of a house in words and ask questions about loca-
tion and orientation of objects in it. For ShapeIn-
tersection, we give a symbolic representation of
various shapes and ask how many places they in-
tersect. In both datasets, a reference visual repre-
sentation is provided for each sample.

Further, we propose Dynamic Spatial Memory
Network (DSMN), a novel DNN that uses vir-
tual imagery for QA. DSMN is similar to existing
memory networks (Kumar et al., 2016; Sukhbaatar
et al., 2015; Henaff et al., 2016) in that it uses vec-
tor embeddings of questions and memory modules
to perform reasoning. The main novelty of DSMN
is that it creates virtual images for the input ques-
tion and uses a spatial memory to aid the reasoning

https://github.com/umich-vl/think_visually
https://github.com/umich-vl/think_visually
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process.
We show through experiments that with the aid

of an internal visual representation and a spa-
tial memory, DSMN outperforms strong baselines
on both FloorPlanQA and ShapeIntersection. We
also demonstrate that explicitly learning to cre-
ate visual representations further improves perfor-
mance. Finally, we show that DSMN is substan-
tially better than the baselines even when visual
supervision is provided for only a small propor-
tion of the samples.

It’s important to note that our proposed datasets
consist of synthetic questions as opposed to natu-
ral texts. Such a setup allows us to sidestep diffi-
culties in parsing natural language and instead fo-
cus on geometric reasoning. However, synthetic
data lacks the complexity and diversity of natu-
ral text. For example, spatial terms used in nat-
ural language have various ambiguities that need
to resolved by context (e.g. how far is ”far” and
whether ”to the left” is relative to the speaker or
the listener) (Shariff, 1998; Landau and Jackend-
off, 1993), but our synthetic data lacks such com-
plexities. Therefore, our method and results do
not automatically generalize to real-life tasks in-
volving natural language. Additional research is
needed to extend and validate our approach on nat-
ural data.

Our contributions are three-fold: First, we
present Dynamic Spatial Memory Network
(DSMN), a novel DNN that performs geometric
reasoning for QA. Second, we introduce two
synthetic datasets that evaluate a system’s visual
thinking ability. Third, we demonstrate that on
synthetic data, DSMN achieves superior perfor-
mance for answering questions that require visual
thinking.

2 Related Work

Natural language datasets for QA: Several nat-
ural language QA datasets have been proposed
to test AI systems on various reasoning abili-
ties (Levesque et al., 2011; Richardson et al.,
2013). Our work differs from them in two key as-
pects: first, we use synthetic data instead of natural
data; and second, we specialize in geometrical rea-
soning instead of general language understanding.
Using synthetic data helps us simplify language
parsing and thereby focus on geometric reasoning.
However, additional research is necessary to gen-
eralize our work to natural data.

Synthetic datasets for QA: Recently, synthetic
datasets for QA are also becoming crucial in AI.
In particular, bAbI (Weston et al., 2015) has driven
the development of several recent DNN-based QA
systems (Kumar et al., 2016; Sukhbaatar et al.,
2015; Henaff et al., 2016). bAbI consists of 20
tasks to evaluate different reasoning abilities. Two
tasks, Positional Reasoning (PR) and Path Finding
(PF), are related to geometric reasoning. However,
each Positional Reasoning question contains only
two sentences, and can be solved through simple
logical deduction such as ‘A is left of B implies
B is right of A’. Similarly, Path Finding involves
a search problem that requires simple spatial de-
ductions such as ‘A is east of B implies B is west
of A’. In contrast, the questions in our datasets in-
volve longer descriptions, more entities, and more
relations; they are thus harder to answer with sim-
ple deductions. We also provide reference visual
representation for each sample, which is not avail-
able in bAbI.

Mental Imagery and Visual Reasoning: The im-
portance of visual reasoning has been long rec-
ognized in AI (Forbus et al., 1991; Lathrop and
Laird, 2007). Prior works in NLP (Seo et al., 2015;
Lin and Parikh, 2015) have also studied visual rea-
soning. Our work is different from them as we
use synthetic language instead of natural language.
Our synthetic language is easier to parse, allowing
our evaluation to mainly reflect the performance
of geometric reasoning. On the other hand, while
our method and conclusions can potentially ap-
ply to natural text, this remains to be validated
and involves nontrivial future work. There are
other differences to prior works as well. Specif-
ically, (Seo et al., 2015) combined information
from textual questions and diagrams to build a
model for solving SAT geometry questions. How-
ever, our task is different as diagrams are not pro-
vided as part of the input, but are generated from
the words/symbols themselves. Also, (Lin and
Parikh, 2015) take advantage of synthetic images
to gather semantic common sense knowledge (vi-
sual common sense) and use it to perform fill-in-
the-blank (FITB) and visual paraphrasing tasks.
Similar to us, they also form ‘mental images’.
However, there are two differences (apart from
natural vs synthetic language): first, their bench-
mark tests higher level semantic knowledge (like
“Mike is having lunch when he sees a bear.” =⇒
“Mike tries to hide.”), while ours is more focused
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on geometric reasoning. Second, their model is
based on hand-crafted features while we use a
DNN.

Spatial language for Human-Robot Interac-
tion: Our work is also related to prior work on
making robots understand spatial commands (e.g.
“put that box here”, “move closer to the box”)
and complete tasks such as navigation and as-
sembly. Earlier work (Müller et al., 2000; Grib-
ble et al., 1998; Zelek, 1997) in this domain used
template-based commands, whereas more recent
work (Skubic et al., 2004) tried to make the com-
mands more natural. This line of work differs from
ours in that the robot has visual perception of its
environment that allows grounding of the textual
commands, whereas in our case the agent has no
visual perception, and an environment needs to be
imagined.

Image Generation: Our work is related to image
generation using DNNs which has a large body
of literature, with diverse approaches (Reed et al.,
2016; Gregor et al., 2015). We also generate an
image from the input. But in our task, image gen-
eration is in the service of reasoning rather than
an end goal in itself—as a result, photorealism or
artistic style of generated images is irrelevant and
not considered.

Visual Question Answering: Our work is also re-
lated to visual QA (VQA) (Johnson et al., 2016;
Antol et al., 2015; Lu et al., 2016). Our task
is different from VQA because our questions are
in terms of words/symbols whereas in VQA the
questions are visual, consisting of both text de-
scriptions and images. The images involved in our
task are internal and virtual, and are not part of the
input or output.

Memory and Attention: Memory and attention
have been increasingly incorporated into DNNs,
especially for tasks involving algorithmic infer-
ence and/or natural language (Graves et al., 2014;
Vaswani et al., 2017). For QA tasks, memory
and attention play an important role in state-of-
the-art (SOTA) approaches. (Sukhbaatar et al.,
2015) introduced End-To-End Memory Network
(MemN2N), a DNN with memory and recurrent
attention mechanism, which can be trained end-to-
end for diverse tasks like textual QA and language
modeling. Concurrently, (Kumar et al., 2016)
introduced Dynamic Memory Network (DMN),
which also uses attention and memory. (Xiong
et al., 2016) proposed DMN+, with several im-

[3, 8.00, 7.46,
 1.80, 1.83]

[3, 0.61, 5.40,
 8.94, 2.79]

[1, 0.66, 9.70,
 8.14, 3.59]

[2, 3.67, 5.51,
 0.80, 0.00]

Description and visual representation

1: line
2: circle
3: rectangle

Question: How many 
places do the shapes 
intersect? 

Figure 1: An example in the ShapeIntersection
dataset.

provements over the previous version of DMN
and achieved SOTA results on VQA (Antol et al.,
2015) and bAbI (Weston et al., 2015). Our pro-
posed DSMN is a strict generalization of DMN+
(see Sec. 4.1). On removing the images and spatial
memory from DSMN, it reduces to DMN+. Re-
cently (Gupta et al., 2017) also used spatial mem-
ory in their deep learning system, but for visual
navigation. We are using spatial memory for QA.

3 Datasets

We introduce two synthetically-generated QA
datasets to evaluate a system’s goemetrical rea-
soning ability: FloorPlanQA and ShapeIntersec-
tion. These datasets are not meant to test natural
language understanding, but instead focus on ge-
ometrical reasoning. Owing to their synthetic na-
ture, they are easy to parse, but nevertheless they
are still challenging for DNNs like DMN+ (Xiong
et al., 2016) and MemN2N (Sukhbaatar et al.,
2015) that achieved SOTA results on existing QA
datasets (see Table 2a).

The proposed datasets are similar in spirit to
bAbI (Weston et al., 2015), which is also synthetic.
In spite of its synthetic nature, bAbI has proved
to be a crucial benchmark for the development
of new models like MemN2N, DMN+, variants
of which have proved successful in various nat-
ural domains (Kumar et al., 2016; Perez and Liu,
2016). Our proposed dataset is first to explicitly
test ‘visual thinking’, and its synthetic nature helps
us avoid the expensive and tedious task of collect-
ing human annotations. Meanwhile, it is important
to note that conclusions drawn from synthetic data
do not automatically translate to natural data, and
methods developed on synthetic benchmarks need
additional validation on natural domains.

The proposed datasets also contain visual rep-
resentations of the questions. Each of them has
38,400 questions, evenly split into a training set, a
validation set and a test set (12,800 each).
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Component Template
House
door

The house door is in the middle of the {nr, sr, er, wr} wall of the house.
The house door is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side of the house, such that it
opens towards {n, s, e, w}.

Room
door

The door for this room is in the middle of its {nr, sr, er, wr} wall.
This room’s door is in the middle of its {nr, sr, er, wr} wall.
The door for this room is located in its {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side, such that it opens
towards {n, s, e, w}.
This room’s door is located in its {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side, such that it opens towards
{n, s, e, w}.

Small
room

Room {1, 2, 3} is small in size and it is located in the {n, s, e, w, c, n-e, s-e, n-w, s-w} of the house.
Room {1, 2, 3} is located in the {n, s, e, w, c, n-e, s-e, n-w, s-w} of the house and is small in size.

Medium
room

Room {1, 2, 3} is medium in size and it extends from the {n, s, e, w, c, n-e, s-e, n-w, s-w} to the {n, s, e, w,
c, n-e, s-e, n-w, s-w} of the house.
Room {1, 2, 3} extends from the {n, s, e, w, c, n-e, s-e, n-w, s-w} to the {n, s, e, w, c, n-e, s-e, n-w, s-w} of
the house and is medium in size.

Large
room

Room {1, 2, 3} is large in size and it stretches along the {n-s, e-w}direction in the {n, s, e, w, c} of the house.
Room {1, 2, 3} stretches along the {n-s, e-w} direction in the {n, s, e, w, c} of the house and is large in size.

Object

A {cu, cd, sp, co} is located in the middle of the {nr, sr, er, wr} part of the house.
A {cu, cd, sp, co} is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr, cr} part of the house.
A {cu, cd, sp, co} is located in the middle of the {nr, sr, er, wr} part of this room.
A {cu, cd, sp, co} is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr, cr} part of this room.

Table 1: Templates used by the description generator for FloorPlanQA. For compactness we used the
following notations, n - north, s - south, e - east, w - west, c - center, nr - northern, sr - southern, er -
eastern, wr - western, cr - central, cu - cube, cd - cuboid, sp - sphere and co - cone.

FloorPlanQA: Each sample in FloorPlanQA in-
volves the layout of a house that has multiple
rooms (max 3). The rooms are either small,
medium or large. All the rooms and the house have
a door. Additionally, each room and empty-space
in the house (i.e. the space in the house that is
not part of any room) might also contain an object
(either a cube, cuboid, sphere, or cone).

Each sample has four components, a descrip-
tion, a question, an answer, and a visual represen-
tation. Each sentence in the description describes
either a room, a door or an object. A question is
of the following template: Suppose you are enter-
ing the {house, room 1, room 2, room 3}, where is
the {house door, room 1 door, room 2 door, room
3 door, cube, cuboid, sphere, cone} with respect
to you?. The answer is either of left, right, front,
or back. Other characteristics of FloorPlanQA are
summarized in Fig. 2.

The visual representation of a sample consists
of an ordered set of image channels, one per sen-
tence in the description. An image channel picto-
rially represents the location and/or orientation of
the described item (room, door, object) w.r.t. the
house. An example is shown in Fig. 2.

To generate samples for FloorPlanQA, we
define a probabilistic generative process which
produces tree structures representing layouts of
houses, similar to scene graphs used in computer
graphics. The root node of a tree represents an en-

tire house, and the leaf nodes represent rooms. We
use a description and visual generator to produce
respectively the description and visual representa-
tion from the tree structure. The templates used by
the description generator are described in Table 1.
Furthermore, the order of sentences in a descrip-
tion is randomized while making sure that the de-
scription still makes sense. For example, in some
sample, the description of room 1 can appear be-
fore that of the house-door, while in another sam-
ple, it could be reversed. Similarly, for a room, the
sentence describing the room’s door could appear
before or after the sentence describing the object
in the room (if the room contains one). We per-
form rejection sampling to ensure that all the an-
swers are equally likely, and thus removing bias.

ShapeIntersection: As the name suggests,
ShapeIntersection is concerned with counting the
number of intersection points between shapes. In
this dataset, the description consists of symbols
representing various shapes, and the question is al-
ways “how many points of intersection are there
among these shapes?”

There are three types of shapes in ShapeInter-
section: rectangles, circles, and lines. The de-
scription of shapes is provided in the form of a
sequence of 1D vectors, each vector represent-
ing one shape. A vector in ShapeIntersection is
analogous to a sentence in FloorPlanQA. Hence,
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A cube is located in 
the south-eastern 
part of the house.

Room 1 is located in the 
north-west of the house 
and is small in size. 

The door for this room 
is in the middle of its 
southern wall.

The house door is located in the 
north-eastern side of the house, 
such that it opens towards east. 

Question: If you 
are entering the 
house through its 
door, where is the 
cube with respect 
to you?  
Answer: Left 

Description and visual representation
vocabulary size 66
# unique sentences 264
# unique descriptions 38093
# unique questions 32
# unique question-description pairs 38228
Avg. # words per sentence 15
Avg. # sentences per description 6.61

Figure 2: An example and characteristics of FloorPlanQA (when considering all the 38,400 samples i.e.
training, validation and test sets combined).

for ShapeIntersection, the term ‘sentence’ actu-
ally refers to a vector. Each sentence describing a
shape consists of 5 real numbers. The first number
stands for the type of shape: 1 - line, 2 - circle, and
3 - rectangle. The subsequent four numbers spec-
ify the size and location of the shape. For example,
in case of a rectangle, they represent its height, its
width, and coordinates of its bottom-left corner.
Note that one can also describe the shapes using a
sentence, e.g. “there is a rectangle at (5, 5), with
a height of 2 cm and width of 8 cm.” However, as
our focus is to evaluate ‘visual thinking’, we work
directly with the symbolic encoding.

In a given description, there are 6.5 shapes on
average, and at most 6 lines, 3 rectangles and 3
circles. All the shapes in the dataset are unique
and lie on a 10 × 10 canvas. While generating
the dataset, we do rejection sampling to ensure
that the number of intersections is uniformly dis-
tributed from 0 to the maximum possible number
of intersections, regardless of the number of lines,
rectangles, and circles. This ensures that the num-
ber of intersections cannot be estimated from the
number of lines, circles or rectangles.

Similar to FloorPlanQA, the visual representa-
tion for a sample in this dataset is an ordered set of
image channels. Each channel is associated with
a sentence, and it plots the described shape. An
example is shown in Figure 1.

4 Dynamic Spatial Memory Network

We propose Dynamic Spatial Memory Network
(DSMN), a novel DNN designed for QA with geo-
metric reasoning. What differentiates DSMN from
other QA DNNs is that it forms an internal visual
representation of the input. It then uses a spatial
memory to reason over this visual representation.

A DSMN can be divided into five modules: the
input module, visual representation module, ques-
tion module, spatial memory module, and answer
module. The input module generates an embed-
ding for each sentence in the description. The vi-

sual representation module uses these embeddings
to produce an intermediate visual representation
for each sentence. In parallel, the question mod-
ule produces an embedding for the question. The
spatial memory module then goes over the ques-
tion embedding, the sentence embeddings, and the
visual representation multiple times to update the
spatial memory. Finally, the answer module uses
the spatial memory to output the answer. Fig. 3
illustrates the overall architecture of DSMN.
Input Module: This module produces an embed-
ding for each sentence in the description. It is
therefore customized based on how the descrip-
tions are provided in a dataset. Since the descrip-
tions are in words for FloorPlanQA, a position en-
coding (PE) layer is used to produce the initial sen-
tence embeddings. This is done to ensure a fair
comparison with DMN+ (Xiong et al., 2016) and
MemN2N (Sukhbaatar et al., 2015), which also
use a PE layer. A PE layer combines the word-
embeddings to encode the position of words in a
sentence (Please see (Sukhbaatar et al., 2015) for
more information). For ShapeIntersection, the de-
scription is given as a sequence of vectors. There-
fore, two FC layers (with ReLU in between) are
used to obtain the initial sentence embeddings.

These initial sentence embeddings are then
fed into a bidirectional Gated Recurrent Unit
(GRU) (Cho et al., 2014) to propagate the infor-
mation across sentences. Let −→si and←−si be the re-
spective output of the forward and backward GRU
at ith step. Then, the final sentence embedding for
the ith sentence is given by si = −→si +←−si .
Question Module: This module produces an em-
bedding for the question. It is also customized to
the dataset. For FloorPlanQA, the embeddings of
the words in the question are fed to a GRU, and the
final hidden state of the GRU is used as the ques-
tion embedding. For ShapeIntersection, the ques-
tion is always fixed, so we use an all-zero vector
as the question embedding.
Visual Representation Module: This module



2603

generates a visual representation for each sen-
tence in the description. It consists of two sub-
components: an attention network and an encoder-
decoder network. The attention network gathers
information from previous sentences that is impor-
tant to produce the visual representation for the
current sentence. For example, suppose the cur-
rent sentence describes the location of an object
with respect to a room. Then in order to infer the
location of the object with respect to the house,
one needs the location of the room with respect
to the house, which is described in some previous
sentence.

The encoder-decoder network encodes the vi-
sual information gathered by the attention net-
work, combines it with the current sentence em-
bedding, and decodes the visual representation of
the current sentence. An encoder (En(.)) takes an
image as input and produces an embedding, while
a decoder (De(.)) takes an embedding as input and
produces an image. An encoder is composed of
series of convolution layers and a decoder is com-
posed of series of deconvolution layers.

Suppose we are currently processing the sen-
tence st. This means we have already pro-
cessed the sentences s1, s2, . . . , st−1 and pro-
duced the corresponding visual representations
S1,S2, . . . ,St−1. We also add s0 and S0, which
are all-zero vectors to represent the null sentence.
The attention network produces a scalar attention
weight ai for the ith sentence which is given by
ai = Softmax(ws

tzi + bs) where zi = [|si −
st|; si ◦ st]. Here, ws is a vector, bs is a scalar,
◦ represents element-wise multiplication, |.| rep-
resents element-wise absolute value, and [v1;v2]
represents the concatenation of vectors v1 and v2.

The gathered visual information is S̄t =∑t−1
i=0 aiSi. It is fed into the encoder-decoder net-

work. The visual representation for st is given by
St = Des

([
st;Ens(S̄t)

])
. The parameters of

Ens(.), Des(), ws, and bs are shared across mul-
tiple iterations.

In the proposed model, we make the simplify-
ing assumption that the visual representation of the
current sentence does not depend on future sen-
tences. In other words, it can be completely de-
termined from the previous sentences in the de-
scription. Both FloorPlanQA and ShapeIntersec-
tion satisfy this assumption.
Spatial Memory Module: This module gathers
relevant information from the description and up-

dates memory accordingly. Similar to DMN+
and MemN2N, it collects information and updates
memory multiple times to perform transitive rea-
soning. One iteration of information collection
and memory update is referred as a ‘hop’.

The memory consists of two components: a 2D
spatial memory and a tag vector. The 2D spatial
memory can be thought of as a visual scratch pad
on which the network ‘sketches’ out the visual in-
formation. The tag vector is meant to represent
what is ‘sketched’ on the 2D spatial memory. For
example, the network can sketch the location of
room 1 on its 2D spatial memory, and store the
fact that it has sketched room 1 in the tag vector.

As mentioned earlier, each step of the spatial
memory module involves gathering of relevant in-
formation and updating of memory. Suppose we
are in step t. Let M (t−1) represent the 2D spa-
tial memory and m(t−1) represent the tag vector
after step t − 1. The network gathers the relevant
information by calculating the attention value for
each sentence based on the question and the cur-
rent memory. For sentence si, the scalar attention
value g(t)i equal to Softmax(wt

yp
(t)
i + by), where

p
(t)
i is given as

p
(t)
i =

[
|m(t−1) − si|; m(t−1) ◦ si; |q − si|;

q ◦ si; En(t)p1 (|M (t−1) − Si|);

En(t)p2 (M (t−1) ◦ Si)
]

(1)

M (0) and m(0) represent initial blank memory,
and their elements are all zero. Then, gathered in-
formation is represented as a context tag vector,
c(t) = AttGRU(gi

(t)si) and 2D context, C(t) =∑n
i=0 gi

(t)Si. Please refer to (Xiong et al., 2016)
for information about AttGRU(.). Finally, we use
the 2D context and context tag vector to update the
memory as follows:

m(t) = ReLU
(
Wm

(t)
[
m(t−1); q; c(t);

Enc(C
(t))
]

+ bm
(t)
)

(2)

M (t) = De(t)m

([
m(t); En(t)m (M (t−1))

])
(3)

Answer Module: This module uses the final
memory and question embedding to generate the
output. The feature vector used for predicting the
answer is given by f , where M (T ) and m(T ) rep-
resent the final memory.

f =
[
Enf (M (T )); m(T ); q

]
(4)
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Figure 3: The architecture of the proposed Dynamic Spatial Memory Network (DSMN).

To obtain the output, an FC layer is applied to f
in case of regression, while the FC layer is fol-
lowed by softmax in case of classification. To
keep DSMN similar to DMN+, we apply a dropout
layer on sentence encodings (si) and f .

4.1 DSMN as a strict generalization of DMN

DSMN is a strict generalization of a DMN+. If we
remove the visual representation of the input along
with the 2D spatial memory, and just use vector
representations with memory tags, then a DSMN
reduces to DMN+. This ensures that comparison
with DMN+ is fair.

4.2 DSMN with or without intermediate
visual supervision

As described in previous sections, a DSMN forms
an intermediate visual representation of the input.
Therefore, if we have a ‘ground-truth’ visual rep-
resentation for the training data, we could use it to
train our network better. This leads to two differ-
ent ways for training a DSMN, one with interme-
diate visual supervision and one without it. With-
out intermediate visual supervision, we train the
network in an end-to-end fashion by using a loss
(Lw/o vi) that compares the predicted answer with
the ground truth. With intermediate visual super-
vision, we train our network using an additional
visual representation loss (Lvi) that measures how
close the generated visual representation is to the
ground-truth representation. Thus, the loss used
for training with intermediate supervision is given
by Lw vi = λviLvi + (1− λvi)Lw/o vi, where λvi
is a hyperparameter which can be tuned for each
dataset. Note that in neither case do we need any
visual input once the network is trained. During
testing, the only input to the network is the de-
scription and question.

Also note that we can provide intermediate vi-

sual supervision to DSMN even when the visual
representations for only a portion of samples in
the training data are available. This can be useful
when obtaining visual representation is expensive
and time-consuming.

5 Experiments

Baselines: LSTM (Hochreiter and Schmidhu-
ber, 1997) is a popular neural network for se-
quence processing tasks. We use two versions
of LSTM-based baselines. LSTM-1 is a com-
mon version that is used as a baseline for tex-
tual QA (Sukhbaatar et al., 2015; Graves et al.,
2016). In LSTM-1, we concatenate all the sen-
tences and the question to a single string. For
FloorPlanQA, we do word embedding look-up,
while for ShapeIntersection, we project each real
number into higher dimension via a series of FC
layers. The sequence of vectors is fed into an
LSTM. The final output vector of the LSTM is
then used for prediction.

We develop another version of LSTM that we
call LSTM-2, in which the question is concate-
nated to the description. We use a two-level hier-
archy to embed the description. We first extract an
embedding for each sentence. For FloorPlanQA,
we use an LSTM to get the sentence embeddings,
and for ShapeIntersection, we use a series of FC
layers. We then feed the sentence embeddings into
an LSTM, whose output is used for prediction.

Further, we compare our model
to DMN+ (Xiong et al., 2016) and
MemN2N (Sukhbaatar et al., 2015), which
achieved state-of-the-art results on bAbI (Weston
et al., 2015). In particular, we compare the 3-hop
versions of DSMN, DMN+, and MemN2N.
Training Details: We used ADAM (Kingma and
Ba, 2014) to train all models, and the learning rate
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FloorPlanQA ShapeIntersection
MODEL (accuracy in %) (rmse)
LSTM-1 41.36 3.28
LSTM-2 50.69 2.99
MemN2N 45.92 3.51
DMN+ 60.29 2.98
DSMN 68.01 2.84
DSMN* 97.73 2.14

(a) The test set performance of different models on Floor-
PlanQA and ShapeIntersection. DSMN* refers to the model
with intermediate supervision.

FloorPlanQA
MODEL f in Eqn. 4 (accuracy in %)

DSMN
[
m(T ); q

]
67.65

DSMN
[
Enf (M

(T )); q
]

43.90
DSMN

[
Enf (M

(T )); m(T ); q
]

68.12
DSMN*

[
m(T ); q

]
97.24

DSMN*
[
Enf (M

(T )); q
]

95.17
DSMN*

[
Enf (M

(T )); m(T ); q
]

98.08

(b) The validation set performances for the ablation study on
the usefulness of tag (m(T )) and 2D spatial memory (M (T ))
in the answer feature vector for f .

FloorPlanQA
MODEL (accuracy in %)
1-Hop DSMN 63.32
2-Hop DSMN 65.59
3-Hop DSMN 68.12
1-Hop DSMN* 90.09
2-Hop DSMN* 97.45
3-Hop DSMN* 98.08

(c) The validation set performance for the ablation study on
variation in performance with hops.

Table 2: Experimental results showing compari-
son with baselines, and ablation study of DSMN

for each model is tuned for each dataset. We tune
the embedding size and l2 regularization weight
for each model and dataset pair separately. For re-
producibility, the value of the best-tuned hyperpa-
rameters is mentioned in the supplementary ma-
terial. As reported by (Sukhbaatar et al., 2015;
Kumar et al., 2016; Henaff et al., 2016), we also
observe that the results of memory networks are
unstable across multiple runs. Therefore for each
hyperparameter choice, we run all the models 10
times and select the run with the best performance
on the validation set. For FloorPlanQA, all models
are trained up to a maximum of 1600 epochs, with
early stopping after 80 epochs if the validation ac-
curacy did not increase. The maximum number of
epochs for ShapeIntersection is 800 epochs, with
early stopping after 80 epochs. Additionally, we
modify the input module and question module of
DMN+ and MemN2N to be same as ours for the
ShapeIntersection dataset.

For MemN2N, we use the publicly available im-

(a) Test set rmse on ShapeIntersection.

(b) Test set accuracy on FloorPlanQA.

Figure 4: Performance of DSMN* with varying
percentage of intermediate visual supervision.

plementation2 and train it exactly as all other mod-
els (same optimizer, total epochs, and early stop-
ping criteria) for fairness. While the reported best
result for MemN2N is on the version with posi-
tion encoding, linear start training, and random-
injection of time index noise (Sukhbaatar et al.,
2015), the version we use has only position encod-
ing. Note that the comparison is still meaningful
because linear start training and time index noise
are not used in DMN+ (and as a result, neither in
our proposed DSMN).
Results: The results for FloorPlanQA and
ShapeIntersection are summarized in Table 2a.
For brevity, we will refer to the DSMN model
trained without intermediate visual supervision as
DSMN, and the one with intermediate visual su-
pervision as DSMN*. We see that DSMN (i.e
the one without intermediate supervision) outper-
forms DMN+, MemN2N and the LSTM baselines
on both datasets. However, we consider DSMN to
be only slightly better than DMN+ because both
are observed to be unstable across multiple runs
and so the gap between the two has a large vari-
ance. Finally, DSMN* outperforms all other ap-
proaches by a large margin on both datasets, which
demonstrates the utility of visual supervision in
proposed tasks. While the variation can be signif-
icant across runs, if we run each model 10 times
and choose the best run, we observe consistent re-
sults. We visualized the intermediate visual repre-
sentations, but when no visual supervision is pro-

2https://github.com/domluna/memn2n

https://github.com/domluna/memn2n
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Figure 5: Attention values on each sentence during different memory ‘hops’ for a sample from Floor-
PlanQA. Darker color indicates more attention. To answer, one needs the location of room 1’s door and
the house door. To infer the location of room 1’s door, DSMN* directly jumps to sent. 3. Since DMN+
does not form a visual representation, it tries to infer the location of room 1’s door w.r.t the house by
finding the location of the room’s door w.r.t the room (sent. 3) and the location of the room w.r.t the
house (sent. 2). Both DSMN* and DMN+ use one hop to infer the location of the house door (sent. 1).

vided, they were not interpretable (sometimes they
looked like random noise, sometimes blank). In
the case when visual supervision is provided, the
intermediate visual representation is well-formed
and similar to the ground-truth.

We further investigate how DSMN* performs
when intermediate visual supervision is available
for only a portion of training samples. As shown
in Fig. 4, DSMN* outperforms DMN+ by a large
margin, even when intermediate visual supervi-
sion is provided for only 1% of the training sam-
ples. This can be useful when obtaining visual
representations is expensive and time-consuming.
One possible justification for why visual supervi-
sion (even in a small amount) helps a lot is that
it constrains the high-dimensional space of possi-
ble intermediate visual representations. With lim-
ited data and no explicit supervision, automati-
cally learning these high-dimensional representa-
tions can be difficult.

Additonally, we performed ablation study (see
Table 2b) on the usefulness of final memory tag
vector (m(T )) and 2D spatial memory (M (T ))
in the answer feature vector f (see Eqn. 4). We
removed each of them one at a time, and re-
trained (with hyperparameter tuning) the DSMN
and DSMN* models. Note that they are re-
moved only from the final feature vector f , and
both of them are still coupled. The model
with both tag and 2D spatial memory (f =[
Enf (M (T ));m(T ); q

]
) performs slightly better

than the only tag vector model (f =
[
m(T ); q

]
).

Also, as expected the only 2D spatial memory
model (f =

[
Enf (M (T )); q

]
) performs much

better for DSMN* than DSMN becuase of the in-
termdiate supervision.

Further, Table 2c shows the effect of varying the
number of memory ‘hops’ for DSMN and DSMN*

on FloorPlanQA. The performance of both DSMN
and DSMN* increases with the number of ‘hops’.
Note that even the 1-hop DSMN* performs well
(better than baselines). Also, note that the differ-
ence in performance between 2-hop DSMN* and
3-hop DSMN* is not much. A possible justifi-
cation for why DSMN* performs well even with
fewer memory ‘hops’ is that DSMN* completes
some ‘hops of reasoning’ in the visual representa-
tion module itself. Suppose one needs to find the
location of an object placed in a room, w.r.t. the
house. To do so, one first needs to find the location
of the room w.r.t. the house, and then the location
of the object w.r.t. the room. However, if one has
already ‘sketched’ out the location of the object in
the house, one can directly fetch it. It is during
sketching the object’s location that one has com-
pleted a ‘hop of reasoning’. For a sample from
FloorPlanQA, we visualize the attention maps in
the memory module of 3-hop DMN+ and 3-hop
DSMN* in Fig. 5. To infer the location of room 1’s
door, DSMN* directly fetches sentence 3, while
DMN+ tries to do so by fetching two sentences
(one for the room’s door location w.r.t the room
and one for the room’s location w.r.t the house).
Conclusion: We have investigated how to use
DNNs for modeling visual thinking. We have in-
troduced two synthetic QA datasets, FloorPlanQA
and ShapeIntersection, that test a system’s ability
to think visually. We have developed DSMN, a
novel DNN that reasons in the visual space for
answering questions. Experimental results have
demonstrated the effectiveness of DSMN for ge-
ometric reasoning on synthetic data.
Acknowledgements: This work is partially sup-
ported by the National Science Foundation under
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and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and
textual question answering. In ICML, pages 2397–
2406.

John S Zelek. 1997. Human-robot interaction with
minimal spanning natural language template for au-
tonomous and tele-operated control. In IROS, pages
299–305.


