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Abstract

Deep convolutional neural networks excel
at sentiment polarity classification, but tend
to require substantial amounts of training
data, which moreover differs quite signifi-
cantly between domains. In this work, we
present an approach to feed generic cues
into the training process of such networks,
leading to better generalization abilities
given limited training data. We propose
to induce sentiment embeddings via super-
vision on extrinsic data, which are then fed
into the model via a dedicated memory-
based component. We observe significant
gains in effectiveness on a range of differ-
ent datasets in seven different languages.

1 Introduction

Over the past decades, sentiment analysis has
grown from an academic endeavour to an essential
analytics tool. Across the globe, people are voicing
their opinion in online social media, product review
sites, booking platforms, blogs, etc. Hence, it is
important to keep abreast of ongoing developments
in all pertinent markets, accounting for different
domains as well as different languages. In recent
years, deep neural architectures based on convolu-
tional or recurrent layers have become established
as the preeminent models for supervised sentiment
polarity classification. At the same time, it is also
frequently observed that deep neural networks tend
to be particularly data-hungry. This is a problem
in many real-world settings, where large amounts
of training examples may be too costly to obtain
for every target domain. A model trained on movie
reviews, for instance, will fare very poorly on the
task of assessing restaurant or hotel reviews, let
alone tweets about politicians.

In this paper, we investigate how extrinsic sig-
nals can be incorporated into deep neural networks

for sentiment analysis. Numerous papers have
found the use of regular pre-trained word vector
representations to be beneficial for sentiment anal-
ysis (Socher et al., 2013; Kim, 2014; dos Santos
and de C. Gatti, 2014). In our paper, we instead
consider word embeddings specifically specialized
for the task of sentiment analysis, studying how
they can lead to stronger and more consistent gains,
despite the fact that the embeddings were obtained
using out-of-domain data.

An intuitive solution would be to concatenate
regular embeddings, which provide semantic re-
latedness cues, with sentiment polarity cues that
are captured in additional dimensions. We instead
propose a bespoke convolutional neural network
architecture with a separate memory module dedi-
cated to the sentiment embeddings. Our empirical
study shows that the sentiment embeddings can
lead to consistent gains across different datasets in
a diverse set of domains and languages if a suitable
neural network architecture is used.

2 Approach

2.1 Sentiment Embedding Computation

Our goal is to incorporate external cues into a deep
neural network such that the network is able to
generalize better even when training data is scarce.
While in computer vision, weights pre-trained on
ImageNet are often used for transfer learning, the
most popular way to incorporate external informa-
tion into deep neural networks for text is to draw on
word embeddings trained on vast amounts of word
context information (Mikolov et al., 2013; Penning-
ton et al., 2014; Peters et al., 2018). Indeed, the
semantic relatedness signals provided by such rep-
resentations often lead to slightly improved results
in polarity classification tasks (Socher et al., 2013;
Kim, 2014; dos Santos and de C. Gatti, 2014).

However, the co-occurrence-based objectives of
word2vec and GloVe do not consider sentiment
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specifically. We thus seek to examine how com-
plementary sentiment-specific information from an
external source can give rise to further gains.

Transfer Learning. To this end, our goal is to in-
duce sentiment embeddings that capture sentiment
polarity signals in multiple domains and hence may
be useful across a range of different sentiment anal-
ysis tasks. The multi-domain nature of these dis-
tinguish them from the kinds of generic polarity
scores captured in sentiment polarity lexicons. We
achieve this via transfer learning from trained mod-
els, benefiting from supervision on a series of senti-
ment polarity tasks from different domains. Given
a training collection consisting of n binary clas-
sification tasks (e.g., with documents in n differ-
ent domains), we learn n corresponding polarity
prediction models. From these, we then extract
token-level scores that are tied to specific predic-
tion outcomes. Specifically, we train n linear mod-
els fi(x) = wᵀ

i x+ bi for tasks i = 1, . . . , n. Then,
each vocabulary word index j is assigned a new n-
dimensional word vector xj = (w1,j , · · · , wn,j)
that incorporates the linear coefficients for that
word across the different linear models.

A minor challenge is that naı̈vely using bag-of-
word features can lead to counter-intuitive weights.
If a word such as “pleased” in one domain mainly
occurs after the word “not”, while the reviews in
another domain primarily used “pleased” in its un-
negated form, then “pleased” would be assessed as
possessing opposite polarities in different domains.
To avoid this, we assume that features are prepro-
cessed to better reflect whether words occur in a
negated context. In our experiments, we simply
treat occurrences of “not 〈word〉” as a single fea-
ture “not 〈word〉”. Of course, one can replace this
heuristic with much more sophisticated techniques
that fully account for the scope of a wider range of
negation constructions.

Graph-Based Extension. Most sentiment-related
resources are available for the English language.
To produce vectors for other languages in our
experiments, we rely on cross-lingual projec-
tion via graph-based propagation (de Melo, 2015;
de Melo, 2017; Dong and de Melo, 2018). At
this point, we have a set of initial sentiment em-
bedding vectors ṽx ∈ Rn for words x ∈ V0.
We assume that we have a lexical knowledge
graph GL = (V,AL) with a node set consist-
ing of an extended multilingual vocabulary V ⊇
V0 and a set of weighted directed arcs AL =

{(x1, x′1, w1), . . . , (xm, x′m, wm)}. Each such arc
reflects a weighted semantic connection between
two vocabulary items x, x′ ∈ V , where vocabulary
items are words labeled with their respective lan-
guage. Typically, many of the arcs in the GL would
reflect translational equivalence, but in our experi-
ments, we also include monolingual links between
semantically related words. Given this data, we
aim to minimize

−
∑
x∈V

vᵀ
x

 1∑
(x,x′,w)∈AL

w

∑
(x,x′,w)∈AL

wvx′


+C

∑
x∈V0

‖vx − ṽx‖2 (1)

The first component of this objective seeks to en-
sure that sentiment embeddings of words accord
with those of their connected words, in terms of the
dot product. The second part ensures that the devi-
ation from any available initial word vectors ṽx is
minimal (for some very high constant C). For opti-
mization, we preinitialize vx = ṽx for all x ∈ V0,
and then rely on stochastic gradient descent steps.

2.2 Dual-Module Memory based CNNs
To feed this sentiment information into our archi-
tecture, we propose a Dual-Module Memory based
Convolutional Neural Network (DM-MCNN) ap-
proach, which incorporates a dedicated memory
module to process the sentiment embeddings, as
illustrated in Fig. 1. While the module with regular
word embeddings enables the model to learn salient
patterns and harness the nearest neighbour and lin-
ear substructure properties of word embeddings,
we conjecture that a separate sentiment memory
module allows for better exploiting the information
brought to the table by the sentiment embeddings.

Convolutional Module Inputs and Filters. The
Convolutional Module input of the DM-MCNN is
a sentence matrix S ∈ Rs×d, the rows of which
represent the words of the input sentence after to-
kenization. In the case of S, i.e., in the regular
module, each word is represented by its conven-
tional word vector representation. Here, s refers
to the length of a sentence, and d represents the
dimensionality of the regular word vectors.

We perform convolutional operations on these
matrices via linear filters. Given rows representing
discrete words, we rely on weight matrices W ∈
Rh×d with region size h. We use the notation Si:j

to denote the sub-matrix of S from row i to row
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Figure 1: (a) Dual-Module Memory based Convolutional Neural Network architecture. (b) Single layer in
Memory Module

j. Supposing that the weight matrix has a filter
width of h, a wide convolution (Kalchbrenner et al.,
2014) is induced such that out-of-range submatrix
values Si,j with i < 1 or i > s are taken to be
zero. Thus, applying the filter on sub-matrices of
S yields the output sequence o ∈ Rs+h−1 as

oi = W� Si:i+h−1, (2)

where the � operator provides the sum of an
element-wise multiplication. Wide convolutions
ensure that filters can cover words at the margins
of the normal weight matrix.

Next, the ci in feature maps c ∈ Rs+h−1 are
computed as: ci = f(oi+ b), where i = 1, . . . , s+
h− 1, the parameter b ∈ R is a bias term, and f is
an activation function.

Multiple Layers in Memory Module. The mem-
ory module obtains as input a sequence of senti-
ment embedding vectors for the input, and attempts
to draw conclusions about the overall sentiment po-
larity of the entire input sequence. Given a set of
sentence words S = {w1, w2, w3, . . . , wn}, each
word is mapped to its sentiment embedding vector
of dimension ds and we denote this set of vectors
as Vs. The preliminary sentiment level vp is also
a vector of dimensionality ds. We take the mean
of all sentiment vectors vi for words wi ∈ S to

initialize vp. Next, we compute a vector s of sim-
ilarities si between vp and each sentiment word
vector vi, by taking the inner product, followed by
`2-normalization and a softmax:

si =
exp

vᵀ
pvi

‖vᵀ
pvi‖2∑

i
exp

vᵀ
pvi

‖vᵀ
pvi‖2

(3)

As the sentiment embeddings used in our paper are
generated from a linear model, the degree of cor-
respondence between vp and vi can adequately be
assessed by the inner product. The resulting vector
of scores s can be regarded as yielding sentiment
weights for each word in the sentence. We apply
`2-normalization to ensure a more balanced weight
distribution. The output sentiment level vector vo

is then a sum over the sentiment inputs vi weighted
by the `2-normalized vector of similarities:

vo =
∑
i

si
‖s‖2

vi (4)

This processing can be repeated in multiple
passes, akin to how end-to-end memory networks
for question answering often perform multiple hops
(Sukhbaatar et al., 2015). While in the first itera-
tion, vp was set to the mean sentiment vector, sub-
sequent passes may allow us to iteratively refine
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this vector. Assuming that vk
o has been produced

by the k-th pass, then the subsequent level vk+1
p in

the next pass is:

vk+1
p = vk

o + vk
p (5)

The intuition here is that multiple passes can enable
the model to adaptively retrieve iterative sentiment
level statistics beyond the initial average sentiment
information.

Merging Layer and Prediction. Subsequently,
for the convolutional module, 1d-max pooling is
applied to c, which ought to capture the most promi-
nent signals. In the memory module, the final
sentiment vector is modulated by a weight matrix
Ws ∈ Rl×ds to form a feature vector of dimension-
ality l. In general, we can use multiple filters to
obtain several features in the convolutional module,
while the memory module allows for adjusting the
number of passes over the memory.

Finally, the outputs of these two modules are
concatenated to form a fixed-length vector, which
is passed to a fully connected softmax layer to
obtain the final output probabilities.

Loss Function and Training. Our loss function is
the cross-entropy function

L = − 1

n

n∑
i=1

∑
c∈C

yi,c ln ŷi,c, (6)

where n is the number of training examples, C is
the set of (two) classes, yi,c are ground truth labels
for a given training example and class c, and ŷi,c
are corresponding label probabilities predicted by
the model, as emitted by the softmax layer. We
train our model using Adam optimization (Kingma
and Ba, 2014) for better robustness across different
datasets. Further details about our training regime
follow in the Experiments section.

3 Experiments

We now turn to our extensive empirical evaluation,
which assesses the effectiveness of our novel archi-
tecture with sentiment word vectors.

3.1 Experimental Setup
Datasets. For evaluation, we use real world
datasets for 7 different languages, taken from a
range of different sources that cover several do-
mains. These are summarized in Table 1, with ISO
639-3 language codes. In our experimental setup,
these are all cast as binary polarity classification

Table 1: Dataset Descriptions

Language Source Domain train test
en SST Movies 6,920 1,821

AFF Food 5,945 1,189
es SE16-T5 Restaurants 2,070 881
ru TA Hotels 2,387 682
de TA Restaurants 1,687 481
cs TA Restaurants 1,722 491
it TA Hotels 3,437 982
ja TA Restaurants 1,435 411

tasks, for which we use accuracy as our evaluation
metric.
• The Stanford Sentiment Treebank (SST)

dataset (Socher et al., 2013) consists of movie
reviews taken from the Rotten Tomatoes web-
site, including binary labels. We only used
sentence-level data in our experiment.
• The SemEval-2016 Task 5 (SE16-T5) dataset

(Pontiki et al., 2016) provides Spanish reviews
of restaurants. It targeted aspect-based senti-
ment analysis, so we converted the entity-level
annotations to sentence-level polarity labels
via voting. As the number of entities per sen-
tence is often one or very low, this process
is reasonably precise. In any case, it enables
us to compare the ability of different model
variants to learn to recognize pertinent words.
• From TripAdvisor (TA), we crawled German,

Russian, Italian, Czech, and Japanese reviews
of restaurants and hotels. We removed three-
star reviews, as these can be regarded as neu-
tral ones, so reviews with a rating < 3 are
considered negative, while those with a rating
> 3 were deemed positive.
• The Amazon Fine Food Reviews AFF

(McAuley and Leskovec, 2013) dataset pro-
vides food reviews left on Amazon. We chose
a random subset of it with preprocessing as
for TripAdvisor.

As there was no test set provided for TripAdvisor
or for the Amazon Fine Food Reviews data, we
randomly partitioned this data into training, val-
idation, and test splits with a 80%/10%/20% ra-
tio. Additionally, 10% of the training sets from
SE16-T5 were randomly extracted and reserved for
validation, while SST provides its own validation
set. The new datasets are available from http:
//gerard.demelo.org/sentiment/.

Embeddings. The standard pre-trained word vec-
tors used for English are the GloVe (Pennington
et al., 2014) ones trained on 840 billion tokens of

http://gerard.demelo.org/sentiment/
http://gerard.demelo.org/sentiment/
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Table 2: DM-MCNN Model Parameter Settings.

(a) General configuration.

Description Values

Convol. Module
filter region size (3,4,5)

feature maps 100
pooling 1d-max pooling

Memory Module # passes (k) 2
feature vector size 100

dropout rate 0.5
optimizer Adam

activation function ReLU
batch size 50

(b) Learning rate α used in DM-MCNN un-
der 7 languages.

en es de ru
α 0.0004 0.0008 0.003 0.003

cs it ja
α 0.003 0.003 0.003

Common Crawl data1, while for other languages,
we rely on the Facebook fastText Wikipedia em-
beddings (Bojanowski et al., 2016) as input repre-
sentations. All of these are 300-dimensional. The
vectors are either fed to the CNN, or to the convo-
lutional module of the DM-MCNN during initial-
ization, while unknown words are initialized with
zeros. All words, including the unknown ones, are
fine-tuned during the training process.

For our transfer learning approach, our experi-
ments rely on the multi-domain sentiment dataset
by Blitzer et al. (2007), collected from Amazon cus-
tomers reviews. This dataset includes 25 categories
of products and is used to generate our sentiment
embeddings using linear models. Specifically, we
train linear SVMs using scikit-learn to extract word
coefficients in each domain and also for the union
of all domains together, yielding a 26-dimensional
sentiment embedding.

For comparison and analysis, we also consider
several alternative forms of infusing external cues.
Firstly, lexicon-driven methods have often been
used for domain-independent sentiment analysis.
We consider a recent sentiment lexicon called
VADER (Hutto and Gilbert, 2014). The polar-
ity scores assigned to words by the lexicon are
taken as the components of a set of 1-dimensional
word vectors (dividing the original scores by the
difference between max and min polarity scores
for normalization). Secondly, as another particu-
larly strong alternative, we consider the SocialSent
Reddit community-specific lexicons mined by the

1https://nlp.stanford.edu/projects/glove/

Stanford NLP group (Hamilton et al., 2016). These
contain separate domain-specific scores for 250
different Reddit communities, and hence result in
250-dimensional embeddings.

For cross-lingual projection, we extract links
between words from a 2017 dump of the English
edition of Wiktionary. We restrict the vocabulary
link set to include the languages in Table 1, mining
corresponding translation, synonymy, derivation,
and etymological links from Wiktionary.

Neural Network Details. For CNNs, we make use
of the well-known CNN-non-static architecture and
hyperparameters proposed by Kim (2014), with a
learning rate of 0.0006, obtained by tuning on the
validation data. For our DM-MCNN models, the
configuration of the convolutional module is the
same as for CNNs, and the remaining hyperparam-
eter values were as well tuned on the validation
sets. An overview of the relevant network parame-
ter values is given in Table 2.

For greater efficiency and better convergence
properties, the training relies on mini-batches. Our
implementation considers the maximal sentence
length in each mini-batch and zero-pads all other
sentences to this length under convolutional mod-
ule, thus enabling uniform and fast processing of
each mini-batch. All neural network architectures
are implemented using the PyTorch framework2.

3.2 Results and Analysis

Baseline Results. Our main results are summa-
rized in Table 3. We compare both regular CNNs
and our dual-module alternative DM-MCNNs un-
der a variety of settings. A common approach is
to use a CNN with randomly initialized word vec-
tors. Comparing this to CNNs with GloVe/fastText
embeddings, where GloVe is used for English, and
fastText is used for all other languages, we observe
substantial improvements across all datasets. This
shows that word vectors do tend to convey perti-
nent word semantics signals that enable models to
generalize better. Note also that the accuracy us-
ing GloVe on the English movies review dataset is
consistent with numbers reported in previous work
(Zhang and Wallace, 2015).

Dual-Module Architecture. Next, we consider
our DM-MCNNs with their dual-module mecha-
nism to take advantage of transfer learning. We ob-
serve fairly consistent and sometimes quite substan-

2http://pytorch.org
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Table 3: Accuracy on several different English and non-English datasets from different domains, compar-
ing our architecture against CNNs. Rest.: restaurants domain.

Approach d
en es ru de cs it ja

Movies Food Rest. Hotels Rest. Rest. Hotels Rest.
CNN
— Random Init. 300 80.78 86.63 81.50 90.18 88.09 90.00 93.18 78.59
— Word Vec. Init. 300 85.72 87.97 85.13 92.82 92.10 92.46 96.20 77.62
Our Approach
— With fine-tuning 300/26 86.99 90.08 85.02 93.40 93.14 93.08 95.50 85.40
— No fine-tuning 300/26 86.38 88.81 85.70 94.87 94.59 93.48 96.20 77.62
CNN with Concatenated Sentiment Embeddings
— VADER 301 85.89 88.39 84.90 92.31 88.36 93.08 96.34 77.62
— SocialSent 550 84.90 88.48 82.63 92.23 91.48 86.56 94.51 76.64
— Our Embeddings 326 86.05 89.07 84.56 92.72 93.56 91.24 95.78 77.62
Our Model with Alternative Sentiment Embeddings
— Random 300/26 86.16 87.97 85.24 93.99 93.14 92.67 96.20 80.29
— VADER 300/1 86.33 88.39 84.45 94.18 92.31 92.87 96.48 75.43
— SocialSent 300/250 86.38 87.89 83.09 93.40 92.31 93.28 96.62 81.02

tial gains over CNNs with just the GloVe/fastText
vectors. We see that the sentiment embeddings
provide important complementary signals beyond
what is provided in regular word embeddings, and
that our dual-module approach succeeds at exploit-
ing these signals across a range of different do-
mains and languages. Our transfer learning ap-
proach leads to sentiment embeddings that capture
signals from multiple domains. The model suc-
cessfully picks the pertinent parts of this signal
for datasets from domains as different as movie
reviews and food reviews.

We report results for two different training con-
ditions. In the first condition (with fine-tuning), the
sentiment embedding matrix is preinitialized using
the data from our transfer learning procedure, but
the model is then able to modify these arbitrarily
via backpropagation. In the second condition (no
fine-tuning), we simply use our sentiment embed-
ding matrix as is, and do not update it. Instead, the
model is able to update its various other parame-
ters, particularly its various weight matrices and
bias vectors. While both training conditions outper-
form the CNN baseline, there is no obvious winner
among the two. When the training data set is very
small and hence there is a significant risk of overfit-
ting, one may be best advised to forgo fine-tuning.
In contrast, when it is somewhat larger (as for our
English datasets, which each have over 5,000 train-
ing instances) or when the language is particularly
idiosyncratic or not covered sufficiently well by our
cross-lingual projection procedure (such as perhaps
for Japanese), then fine-tuning is recommended. In
this case, fine-tuning may allow the model to adjust
the embeddings to cater to domain-specific mean-

ings and corpus-specific correlations, while also
overcoming possible sparsity of the cross-lingual
vectors resulting from a lack of coverage of the
translation dictionary.

It is important to note that many of the results
in Table 3 stem from embeddings that were cre-
ated automatically using cross-lingual projection.
Our transfer learning embeddings were induced
from entirely English data. Although the automati-
cally projected cross-lingual embeddings are very
noisy and limited in their coverage, particularly
with respect to inflected forms, our model succeeds
in exploiting them to obtain substantial gains in
several different languages and domains.

Alternative Embedding Methods. For a more de-
tailed analysis, we conducted additional experi-
ments with alternative embedding conditions. In
particular, as a simpler means of achieving gains
over standard CNNs, we propose to use CNNs
with word vectors augmented with sentiment cues.
Given that regular word embeddings appear to be
useful for capturing semantics, one may conjecture
that extending these word vectors with additional
dimensions to capture sentiment information can
lead to improved results. For this, we simply con-
catenate the regular word embeddings with differ-
ent forms of sentiment embeddings that we have
obtained, including those from the sentiment lexi-
con VADER, from the Stanford SocialSent project,
and from our transfer learning procedure via Ama-
zon reviews. To conduct these experiments, we also
produced cross-lingual projections of the VADER
and SocialSent embedding data.

The results of using these embeddings as op-
posed to regular ones are somewhat mixed. Con-
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catenating the VADER embeddings or our trans-
fer learning ones leads to minor improvements on
English, and our cross-lingual projection of them
leads to occasional gains, but the results are far
from consistent. Even on English, adding the 250-
dimensional SocialSent embedding seems to de-
grade the effectiveness of the CNN, although all
input information that was previously there contin-
ues to be provided to it. This suggests that a simple
concatenation may harm the model’s ability to har-
ness the semantic information carried by regular
word vectors. This risk seems more pronounced
for larger-dimensional sentiment embeddings.

In contrast, with our DM-MCNNs approach, the
sentiment information is provided to the model in
a separate memory module that makes multiple
passes over this data before combining it with the
regular CNN module’s signals. Thus, the model
can exploit the two kinds of information indepen-
dently, and learn a suitable way to aggregate them
to produce an overall output classification.

This hence demonstrates not only that the senti-
ment embeddings tend to provide important com-
plementary signals but also that a dual-module ap-
proach is best-suited to incorporate such signals
into deep neural models.

We also analysed our DM-MCNNs with alterna-
tive embeddings. When we feed random sentiment
embeddings into them, not unexpectedly, in many
cases the results do not improve much. This is be-
cause our memory module has been designed to
leverage informative prior information and to re-
weight its signals based on this assumption. Hence,
it is important to feed genuine sentiment cues into
the memory module. Yet, on some languages,
we nevertheless note improvements over the CNN
baseline. In these cases, even if similarities be-
tween pairs of sentiment vectors initially do not
carry any significance, backpropagation may have
succeeded in updating the sentiment embedding
matrix such that eventually the memory module
becomes able to discern salient patterns in the data.

We also considered our DM-MCNNs when feed-
ing the VADER or SocialSent embeddings into the
memory module. In this case, it also mostly suc-
ceeded in outperforming the CNN baseline. In fact,
on the Italian TripAdvisor dataset, the SocialSent
embeddings yielded the overall strongest results.
In all other cases, however, our transfer learning
embeddings proved more effective. We believe that
this is because they are obtained in a data-driven

manner based on an objective that directly seeks to
optimize for classification accuracy.

Influence of Training Set Size. To look into the
effect of our approach with restricted training data,
we first consider the SST dataset as an instructive
example. We set the training set size to 20%, 50%,
100% of its original size and compared our full dual
module model with sentiment embeddings against
state-of-the-art methods.

The results are given in Table 4. Our dual mod-
ule CNN has a sizeable lead over other methods
when only using 20% of SST training set. Given
that we study how to incorporate extrinsic cues
into a deep neural model, we consider CNN-Rule-
q (Hu et al., 2016) and Gumbel Tree-LSTM (Choi
et al., 2017) as the relevant baseline methods. The
CNN-Rule-q method used an iterative distillation
method that exploits structured information from
logical rules, which for SST is based on the word
but to determine the weights in the neural network.
The Gumbel Tree-LSTM approach incorporates
a Straight-Through Gumbel-Softmax into a tree-
structured LSTM architecture that learns how to
compose task-specific tree structures starting from
plain raw text. They all require a large amount of
data to pick up sufficient information during train-
ing, while our method is able to efficiently capture
sentiment information from our transfer learning
even though the data is scarce.

For further analysis, we also artificially reduce
the training set sizes to 50% of the original sizes
given in Table 1 for our multilingual datasets. The
results are plotted in Fig. 2. We compare: 1) the
CNN model baseline, 2) the CNN model but con-
catenating our sentiment embeddings from transfer
learning, and 3) our full dual module model with
these sentiment embeddings. We already saw in Ta-
ble 3 that we obtain reasonable gains over generic
embeddings when using the full training sets.

In Fig. 2, we additionally observe that the gains
are overall much more remarkable on smaller train-
ing sets. This shows that the sentiment embeddings
are most useful when they are of high quality and
domain-specific training data is scarce, although a
modest amount of training data is still needed for
the model to be able to adapt to the target domain.

Inspection of the DM-MCNN-learned Deep
Sentiment Information. To further investigate
what the model is learning, we examine the changes
of weights of words on the English SST dataset
when using the VADER sentiment embeddings
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Table 4: Accuracy on SST with increasing training sizes

Model 20% 50% 100%

CNN (Kim, 2014) 83.14 84.29 85.72
CNN-Rule-q (Hu et al., 2016) 83.75 85.45 86.49
Gumbel Tree-LSTM (Choi et al., 2017) 84.04 84.83 86.80
DC-MCNN (ours) 85.06 86.16 86.99
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Figure 2: Effectiveness of three embedding alternatives on 6 languages at a reduced training size (compar-
ing 50% and 100%).

with DM-MCNNs. Although these are not as
powerful as our transfer learning embeddings, the
VADER embeddings are the most easily inter-
pretable here, since they are one-dimensional, and
thus can be regarded as word-specific weights. The
result is visualized in Fig. 3. Here, the dark-shaded
segments (in blue) refer to the original weights,
while the light-shaded segments (in red) refer to
the adjusted weights after training. The medium-
shaded segments (in purple) reflect the overlap be-
tween the two. Hence, whenever we observe a dark
(blue) segment above a medium (purple) segment
in a bar, we can infer that the fine-tuned weight
for a word (e.g., for “plays” in Fig. 3) was lower
than the original weight of that word. Conversely,
whenever we observe a light (red) segment at the
top, the weight increased during training (e.g., for
hilarious). Generally, dark (blue) segments reflect
decreased weight magnitudes and light (red) ones
reflect increased weight magnitudes, both on the
positive and on the negative side.

We consider in Fig. 3 the top 50 weight changes
only of words that were already covered by the
original VADER sentiment embeddings. Here, it is

worth noting that the weight magnitudes of positive
words such as “laugh”, “appealing” and negative
words such as “lack”, “missing” increase further,
while words such as “damn”, “interest”, “war” see
decreases in magnitude, presumably due to their
ambiguity and context (e.g., “damn good”, “lost
the interest”, descriptions of war movies). Hence,
the figure confirms that our DM-MCNN approach
is able to exploit and customize the provided sen-
timent weights for the target domain. However,
unlike the VADER data, our transfer learning ap-
proach results in multi-dimensional sentiment em-
beddings that can more easily capture multiple do-
mains right from the start, thus making it possible
to use them even without further fine-tuning.

4 Related Work

Sentiment Mining and Embeddings. There is a
long history of work on collecting word polarity
scores manually (Hu and Liu, 2004) or via graph-
based propagation from seeds (Kim and Hovy,
2004; Baccianella et al., 2010). Maas et al. (2011)
present a probabilistic topic model that exploits sen-
timent supervision during training, leading to rep-
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Figure 3: Top 50 weight changes of words fine-tuned by the sentiment memory module of the DM-MCNN,
using the one-dimensional VADER embeddings, but considering only words with non-zero values in the
original VADER data. Here, the dark shade (blue) refers to the original value of word vectors, while the
light shade (red) refers to their fine-tuned values after training. The medium intensity (purple) corresponds
to the overlap between the original and fine-tuned word vectors.

resentations that include sentiment signals. How-
ever, in their experiments, the semantic-only mod-
els mostly outperform the corresponding full mod-
els with extra sentiment signals. Tang et al. (2014)
showed that one can acquire sentiment informa-
tion by learning from millions of training examples
via distant supervision. While prior work used
such signals for rule-based sentiment analysis or
for feature engineering in SVMs and other shallow
models, our study examines how they are best be
incorporated into deep neural models, as the base-
line of naı̈vely feeding them into the model does
not work sufficiently well.

Neural Architectures. In terms of architectures,
deep recursive neural networks (Socher et al., 2013)
were soon outperformed by deep convolutional
and recurrent neural networks (İrsoy and Cardie,
2014; Kim, 2014). Recent work has investigated
more involved models, with ingredients such as
Tree-LSTMs (Tai et al., 2015; Looks et al., 2017),
hierarchical attention (Yang et al., 2016), user
and product attention (Chen et al., 2016), aspect-
specific modeling (Wang et al., 2015), and part of
speech-specific transition functions (Huang et al.,
2017). Large ensemble models also tend to outper-
form individually trained sentiment analysis mod-
els (Looks et al., 2017). The goal of our study is not
necessarily to devise the most sophisticated state-
of-the-art neural architecture, but to demonstrate
how external sentiment cues can be incorporated
such architectures. Our initial explorations relied

on a simple dual-channel convolutional neural net-
work (Dong and de Melo, 2018). The present work
proposes a more sophisticated approach, drawing
on ideas from attention mechanisms in machine
translation (Bahdanau et al., 2014) as well as from
memory networks (Weston et al., 2014) and iter-
ative attention (Kumar et al., 2015), which have
proven useful for tasks such as question answer-
ing. We incorporate these ideas into a separate
memory module that operates alongside the regular
convolutional module.

5 Conclusions

Deep neural networks are widely used in senti-
ment polarity classification, but suffer from their
dependence on very large annotated training cor-
pora. In this paper, we study how to incorporate
extrinsic cues into the network, beyond just generic
word embeddings. We have found that this is best
achieved using a dual-module approach that en-
courages the learning of models with favourable
generalization abilities. Our experiments show that
this can lead to gains across a number of different
languages and domains. Our embeddings and mul-
tilingual datasets are freely available from http:
//gerard.demelo.org/sentiment/.
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