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Abstract

While sophisticated neural-based tech-
niques have been developed in reading
comprehension, most approaches model
the answer in an independent manner, ig-
noring its relations with other answer can-
didates. This problem can be even worse
in open-domain scenarios, where candi-
dates from multiple passages should be
combined to answer a single question. In
this paper, we formulate reading com-
prehension as an extract-then-select two-
stage procedure. We first extract answer
candidates from passages, then select the
final answer by combining information
from all the candidates. Furthermore, we
regard candidate extraction as a latent vari-
able and train the two-stage process jointly
with reinforcement learning. As a result,
our approach has improved the state-of-
the-art performance significantly on two
challenging open-domain reading compre-
hension datasets. Further analysis demon-
strates the effectiveness of our model com-
ponents, especially the information fusion
of all the candidates and the joint training
of the extract-then-select procedure.

1 Introduction

Teaching machines to read and comprehend hu-
man languages is a long-standing objective in nat-
ural language processing. In order to evaluate this
ability, reading comprehension (RC) is designed
to answer questions through reading relevant pas-
sages. In recent years, RC has attracted intense in-
terest. Various advanced neural models have been
proposed along with newly released datasets (Her-
mann et al., 2015; Rajpurkar et al., 2016; Dunn
et al., 2017; Dhingra et al., 2017b; He et al., 2017).

Q Cocktails: Rum, lime, and cola
drink make a .

A Cuba Libre
P1 Daiquiri, the custom of mixing

lime with rum for a cooling drink
on a hot Cuban day, has been
around a long time.

P2 Cocktail recipe for a Daiquiri,
a classic rum and lime drink that
every bartender should know.

P3 Hemingway Special Daiquiri:
Daiquiris are a family of
cocktails whose main ingredients
are rum and lime juice.

P4 A homemade Cuba Libre Preparation
To make a Cuba Libre properly,
fill a highball glass with ice and
half fill with cola.

P5 The difference between the Cuba
Libre and Rum is a lime wedge at
the end.

Table 1: The answer candidates are in a bold font.
The key information is marked in italic, which
should be combined from different text pieces to
select the correct answer ”Cuba Libre”.

Most existing approaches mainly focus on mod-
eling the interactions between questions and pas-
sages (Dhingra et al., 2017a; Seo et al., 2017;
Wang et al., 2017), paying less attention to infor-
mation concerning answer candidates. However,
when human solve this problem, we often first
read each piece of text, collect some answer candi-
dates, then focus on these candidates and combine
their information to select the final answer. This
collect-then-select process can be more significant
in open-domain scenarios, which require the com-
bination of candidates from multiple passages to
answer one single question. This phenomenon is
illustrated by the example in Table 1.

With this motivation, we formulate an extract-
then-select two-stage architecture to simulate the
above procedure. The architecture contains two
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components: (1) an extraction model, which gen-
erates answer candidates, (2) a selection model,
which combines all these candidates and finds out
the final answer. However, answer candidates to
be focused on are often unobservable, as most RC
datasets only provide golden answers. Therefore,
we treat candidate extraction as a latent variable
and train these two stages jointly with reinforce-
ment learning (RL).

In conclusion, our work makes the following
contributions:

1. We formulate open-domain reading compre-
hension as a two-stage procedure, which first ex-
tracts answer candidates and then selects the final
answer. With joint training, we optimize these two
correlated stages as a whole.

2. We propose a novel answer selection model,
which combines the information from all the ex-
tracted candidates using an attention-based corre-
lation matrix. As shown in experiments, the infor-
mation fusion is greatly helpful for answer selec-
tion.

3. With the two-stage framework and the joint
training strategy, our method significantly sur-
passes the state-of-the-art performance on two
challenging public RC datasets Quasar-T (Dhingra
et al., 2017b) and SearchQA (Dunn et al., 2017).

2 Related Work

In recent years, reading comprehension has made
remarkable progress in methodology and dataset
construction. Most existing approaches mainly
focus on modeling sophisticated interactions be-
tween questions and passages, then use the pointer
networks (Vinyals et al., 2015) to directly model
the answers (Dhingra et al., 2017a; Wang and
Jiang, 2017; Seo et al., 2017; Wang et al., 2017).
These methods prove to be effective in existing
close-domain datasets (Hermann et al., 2015; Hill
et al., 2015; Rajpurkar et al., 2016).

More recently, open-domain RC has attracted
increasing attention (Nguyen et al., 2016; Dunn
et al., 2017; Dhingra et al., 2017b; He et al., 2017)
and raised new challenges for question answer-
ing techniques. In these scenarios, a question is
paired with multiple passages, which are often
collected by exploiting unstructured documents or
web data. Aforementioned approaches often rely
on recurrent neural networks and sophisticated at-
tentions, which are prohibitively time-consuming
if passages are concatenated altogether. There-

fore, some work tried to alleviate this problem in
a coarse-to-fine schema. Wang et al. (2018a) com-
bined a ranker for selecting the relevant passage
and a reader for producing the answer from it.
However, this approach only depended on one pas-
sage when producing the answer, hence put great
demands on the precisions of both components.
Worse still, this framework cannot handle the sit-
uation where multiple passages are needed to an-
swer correctly. In consideration of evidence aggre-
gation, Wang et al. (2018b) proposed a re-ranking
method to resolve the above issue. However, their
re-ranking stage was totally isolated from the can-
didate extraction procedure. Being different from
the re-ranking perspective, we propose a novel se-
lection model to combine the information from
all the extracted candidates. Moreover, with rein-
forcement learning, our candidate extraction and
answer selection models can be learned in a joint
manner. Trischler et al. (2016) also proposed a
two-step extractor-reasoner model, which first ex-
tracted K most probable single-token answer can-
didates and then compared the hypotheses with
all the sentences in the passage. However, in
their work, each candidate was considered isolat-
edly, and their objective only took into account the
ground truths compared with our RL treatment.

The training strategy employed in our paper
is reinforcement learning, which is inspired by
recent work exploiting it into question answer-
ing problem. The above mentioned coarse-to-fine
framework (Choi et al., 2017; Wang et al., 2018a)
treated sentence selection as a latent variable and
jointly trained the sentence selection module with
the answer generation module via RL. Shen et al.
(2017) modeled the multi-hop reasoning proce-
dure with a termination state to decide when it is
adequate to produce an answer. RL is suitable to
capture this stochastic behavior. Hu et al. (2018)
merely modeled the extraction process, using F1
as rewards in addition to maximum likelihood es-
timation. RL was utilized in their training process,
as the F1 measure is not differentiable.

3 Two-stage RC Framework

In this work, we mainly consider the open-domain
extractive reading comprehension. In this sce-
nario, a given question Q is paired with mul-
tiple passages P = {P1, P2, ..., PN}, based on
which we aim to find out the answer A. Moreover,
the golden answers are almost subspans shown in
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Figure 1: Two-stage RC Framework. The first part
extracts candidates (denoted with circles) from all
the passages. The second part establishes interac-
tions among all these candidates to select the final
answer. The different gray scales of dashed lines
between candidates represent different intensities
of interactions.

some passages in P. Our main framework con-
sists of two parts, which are: (1) extracting answer
candidates C = {C1, C2, ..., CM} from passages
P and (2) selecting the final answer A from candi-
dates C. This process is illustrated in Figure 1. We
design different models for each part and optimize
them as a whole with joint reinforcement learning.

3.1 Candidate Extraction

We build candidate set C by independently ex-
tracting K candidates from each passage Pi ac-
cording to the following distribution:

p(C|Q,P) =
N∏
i

p({Cij}Kj=1|Q,Pi)

C =

N⋃
i=1

{Cij}Kj=1

(1)

where Cij denotes the jth candidate extracted
from the ith passage. K is set as a constant num-
ber in our formulation. Taking K as 2 for an ex-
ample, we denote each probability shown on the
right side of Equation 1 through sampling without
replacement:

p({Ci1, Ci2}) = p(Ci1)p(Ci2)/(1− p(Ci1))

+ p(Ci1)p(Ci2)/(1− p(Ci2))
(2)

where we neglect Q, Pi to abbreviate the condi-
tional distributions in Equation 1.

Consequently, the basic block of our candidate
extraction stage turns out to be the distribution of
each candidate P (Cij |Q,Pi). In the rest of this
subsection, we will elaborate on the model archi-
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Figure 2: Candidate Extraction Model Architec-
ture.

tecture concerning candidate extraction, which is
displayed in Figure 2.

Question & Passage Representation Firstly,
we embed the questionQ = {xkQ}

lQ
k=1 and its rele-

vant passage P = {xtP }
lP
t=1 ∈ P with word vectors

to form Q ∈ Rdw×lQ and P ∈ Rdw×lP respec-
tively, where dw is the dimension of word embed-
dings, lQ and lP are the length of Q and P .

We then feed Q and P to a bidirectional LSTM
to form their contextual representations HQ ∈
Rdh×lQ and HP ∈ Rdh×lP :

HQ = BiLSTM(Q)

HP = BiLSTM(P)
(3)

Question & Passage Interaction Modeling the
interactions between questions and passages is a
critical step in reading comprehension. Here, we
adopt the attention mechanism similar to (Lee
et al., 2016) to generate question-dependent pas-
sage representation H̃P . Assume HQ = {hk

Q}
lQ
k=1,

HP = {ht
P }

lP
t=1 , we have:

αtk =
ehk

Q·h
t
P∑lQ

k=1 e
hk
Q·h

t
P

1 ≤ k ≤ lQ, 1 ≤ t ≤ lP

h̃
t

P =

lQ∑
k=1

αtkhk
Q 1 ≤ t ≤ lP

H̃P ={h̃t

P }
lP
t=1

(4)
After concatenating two kinds of passage rep-

resentations HP and H̃P , we use another bidirec-
tional LSTM to get the final representation of ev-
ery position in passage P as GP ∈ Rdg×lP :

GP = BiLSTM([HP ; H̃P ]) (5)
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Candidate Scoring Then we use two linear
transformations wb ∈ R1×dg and we ∈ R1×dg to
calculate the begin and the end scores for each po-
sition:

{btP }
lQ
t=1 = bP = wbGP

{etP }
lQ
t=1 = eP = weGP

(6)

At last, we model the probability of every sub-
span in passage P as a candidate C = {xtP }

Ce
t=Cb

according to its begin and end position:

p(C|Q,P ) =
exp(bCb

P + eCe
P )∑lP

k=1

∑lP
t=k exp(b

k
P + etP )

(7)

In this definition, the probabilities of all the valid
answer candidates are already normalized.

3.2 Answer Selection

As the second part of our framework, the answer
selection model finds out the most probable an-
swer by calculating p(C|Q,P,C) for each candi-
date C ∈ C. The model architecture is illustrated
in Figure 3.

Notably, selection model receives candidate set
C as additional information. This more focused
information allows the model to combine evi-
dences from all the candidates, which would be
useful for selecting the best answer.

For ease of understanding, we briefly describe
the selection stage as follows. After being ex-
tracted from a single passage, a candidate borrows
information from other candidates across different
passages. With this global information, the pas-
sage is reread to confirm the correctness of the
candidate further. The following are details about
the selection model.

Question Representation Questions are funda-
mental for finding out the correct answer. As did
for the extraction model, we embed the question
Q with word vectors to form Q ∈ Rdw×lQ . Then
we use a bidirectional LSTM to establish its con-
textual representation:

Sq = BiLSTM(Q) (8)

A max-pooling operation across all the positions
is followed to get the condensed vector represen-
tation:

rq = MaxPooling(Sq) (9)
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Figure 3: Answer Selection Model Architecture.

Passage Representation Assume the candidate
C is extracted from the passage P ∈ P. To be
informed of C, we first build the representation of
P . For every word in P , three kinds of features
are utilized:

• Word embedding: each word expresses its
basic feature with the word vector.

• Common word: the feature has value 1 when
the word occurs in the question, otherwise 0.

• Question independent representation: the
condensed representation rq.

With these features, information not only in Q but
also in P is considered. By concatenating them,
we get rtP corresponding to every position t in pas-
sage P . Then with another bidirectional LSTM,
we fuse these features to form the contextual rep-
resentation of P as SP ∈ Rds×lP :

RP = {rtP }
lP
t=1

SP = BiLSTM(RP )
(10)

Candidate Representation Candidates provide
more focused information for answer selection.
Therefore, for each candidate, we first build its in-
dependent representation according to its position
in the passage, then construct candidates fused
representation through combination of other cor-
related candidates.

Given the candidate C = {xtP }
Ce
t=Cb

in the pas-
sage P , we extract its corresponding span from
SP = {stP }

lP
t=1 to form SC = {stP }

Ce
t=Cb

as its
contextual encoding. Moreover, we calculate its
condensed vector representation through its begin
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and end positions:

rC = tanh(WbsCb
P + WesCe

P ) (11)

where Wb ∈ Rdc×ds , We ∈ Rdc×ds .
To model the interactions among all the answer

candidates, we calculate the correlations of the
candidate C, which is assumed to be indexed by
j in C, with others {Cm}Mm=1,m 6=j via attention
mechanism:

Vjm = wvtanh(WcrC + WorCm) (12)

where Wc ∈ Rdc×dc , Wo ∈ Rdc×dc and wv ∈
R1×dc are linear transformations to capture the in-
tensity of each interaction.

In this way, we form a correlation matrix V ∈
RM×M , where M is the total number of candi-
dates. With the correlation matrix, for the can-
didate C, we normalize its interactions via a
softmax operation, which emphasizes the influ-
ence of stronger interactions:

αm =
eVjm∑M

m=1,m 6=j e
Vjm

(13)

To take into account different influences of all
the other candidates, it is sensible to generate a
candidates fused representation according to the
above normalized interactions:

r̃C =
M∑

m=1,m 6=j

αmrCm (14)

In this formulation, all the other candidates con-
tribute their influences to the fused representation
by their interactions withC, thus information from
different passages is gathered altogether. In our
experiments, this kind of information fusion is the
key point for performance improvements.

Passage Advanced Representation As more
focused information of the candidate C is avail-
able, we are provided with a better way to confirm
its correctness by rereading its corresponding pas-
sage P . Specifically, we equip each position t in
P with following advanced features:

• Passage contextual representation: the for-
mer passage representation stP .

• Candidate-dependent passage representation:
replace HQ with SC and HP with SP in
Equation 4 to model the interactions between
candidates and passages to form s̃tP .

• Candidate related distance feature: the rela-
tive distance to the candidate C can be a ref-
erence of the importance of each position.

• Candidate independent representation: use
rC to consider the concerned candidate C.

• Candidates fused representation: use r̃C to
consider all the other candidates interacting
with the concerned candidate C.

With these features, we capture the information
from the question, the passages and all the candi-
dates. By concatenating them, we get ut

P in every
position in the passage P . Combining these fea-
tures with a bidirectional LSTM, we get:

UP = {ut
P }

lP
t=1

FP = BiLSTM(UP )
(15)

Answer Scoring At last, the max pooling of
each dimension of FP is performed, resulting in
a condensed vector representation, which contains
all the concerned information in a candidate:

zC = MaxPooling(FP ) (16)

The final score of this candidate as the answer
is calculated via a linear transformation, which is
then normalized across all the candidates:

s = wzzC

p(C|Q,P,C) = es∑M
k=1 e

sk

(17)

3.3 Joint Training with RL

In our formulation, the answer candidate set in-
fluences the result of answer selection to a large
extent. However, with only golden answers pro-
vided in the training data, it is not apparent which
candidates should be considered further.

To alleviate the above problem, we treat candi-
date extraction as a latent variable, jointly train the
extraction model and the selection model with re-
inforcement learning. Formally, in the extraction
and selection stages, two kinds of actions are mod-
eled. The action space for the extraction model
is to select from different candidate sets, which is
formulated by Equation 1. The action space for
the selection model is to select from all extracted
candidates, which is formulated by Equation 17.
Our goal is to select the final answer that leads to
a high reward. Inspired by Wang et al. (2018a),
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we define the reward of a candidate to reflect its
accordance with the golden answer:

r(C,A) =


2 if C == A

f1(C,A) else if C ∩A 6= ∅
−1 else

(18)
where f1(., .) ∈ [0, 1] is the function to measure
word-level F1 score between two sequences. In-
corporating this reward can alleviate the overstrict
requirements set by traditional maximum likeli-
hood estimation as well as keep consistent with
our evaluation methods in experiments.

The learning objective becomes to maximize
the expected reward modeled by our framework,
where θ stands for all the parameters involved:

L(θ) = −EC∼P (C|Q,P)[EC∼P (C|Q,P,C)r(C,A)]

= −EC∼P (C|Q,P)[
∑
C

P (C|Q,P,C)r(C,A)]

(19)
Following REINFORCE algorithm, we approx-

imate the gradient of the above objective with a
sampled candidate set, C ∼ P (C|Q,P), resulting
in the following form:

∇L(θ) ≈ −
∑
C

∇P (C|Q,P,C)r(C,A)

−∇logP (C|Q,P)[
∑
C

P (C|Q,P,C)r(C,A)]

(20)

4 Experiments

4.1 Datasets

We evaluate our models on two publicly available
open-domain RC datasets, which are commonly
adopted in related work.

Quasar-T (Dhingra et al., 2017b) consists
of 43,000 open-domain trivia questions and
corresponding answers obtained from various
internet sources. Each question is paired
with 100 sentence-level passages retrieved from
ClueWeb09 (Callan et al., 2009) based on Lucene.

SearchQA (Dunn et al., 2017) starts from exist-
ing question-answer pairs, which are crawled from
J!Archive, and is augmented with text snippets re-
trieved by Google, resulting in more than 140,000
question-answer pairs with each pair having 49.6
snippets on average.

The detailed statistics of these two datasets is
shown in Table 2.

#q(train) #q(dev) #q(test) #p
Quasar-T 28,496 3,000 3,000 100
SearchQA 99,811 13,893 27,247 50

Table 2: The statistics of our experimental
datasets. #q represents the number of questions
for each split of the datasets. #p is the number of
passages for each question.

4.2 Model Settings
We initialize word embeddings with the 300-
dimensional Glove vectors1. All the bidirectional
LSTMs hold 1 layer and 100 hidden units. All
the linear transformations take the size of 100 as
output dimension. The common word feature and
the candidate related distance feature are embed-
ded with vectors of dimension 4 and 50 respec-
tively. By default, we set K as 2 in Equation 1,
which means each passage generates two candi-
dates based on the extraction model.

For ease of training, we first initialize our mod-
els by maximum likelihood estimation and fine-
tune them with RL. The similar training strategy is
commonly employed when RL process is involved
(Ranzato et al., 2015; Li et al., 2016a; Hu et al.,
2018). To pre-train the extraction model, we only
use passages containing ground truths as training
data. The log likelihood of Equation 7 is taken as
the training objective for each question and pas-
sage pair. After pre-training the extraction model,
we use it to generate two top-scoring candidates
from each passage, forming the training data to
pre-train our selection model, and maximize the
log likelihood of the Equation 17 as our second
objective. In pre-training, we use the batch size
of 30 for the extraction model, 20 for the selection
model and RMSProp (Tieleman and Hinton, 2012)
with an initial learning rate of 2e-3. In fine-tuning
with RL, we use the batch size of 5 and RMSProp
with an initial learning rate of 1e-4. Also, we use
a dropout rate of 0.1 in each training procedure.

4.3 Experimental Results
In addition to results of previous work, we add
two baselines to demonstrate the effectiveness of
our framework. The first baseline only applies
the extraction model to score the answers, which
is aimed at explaining the importance of the se-
lection model. The second one only uses the
pre-trained extraction model and selection model

1http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
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Quasar-T SearchQA
EM F1 EM F1

GA (Dhingra et al., 2017a) 26.4 26.4 - -
BIDAF (Seo et al., 2017) 25.9 28.5 28.6 34.6
AQA (Buck et al., 2018) - - 38.7 45.6
R3 (Wang et al., 2018a) 35.3 41.7 49.0 55.3
Re-Ranker (Wang et al., 2018b)
Strength-Based Re-Ranker (Probability) 36.1 42.4 50.4 56.5
Strength-Based Re-Ranker (Counting) 37.1 46.7 54.2 61.6
Coverage-Based Re-Raner 40.6 49.1 53.6 60.6
Full Re-Ranker 42.3 49.6 57.0 63.2
Our Methods
Extraction Model 35.4 41.6 44.7 51.2
Extraction + Selection (Isolated Training) 41.6 49.5 49.7 56.6
Extraction + Selection (Joint Training) 45.9 53.9 58.3 64.2

Table 3: Experimental results on the test set of Quasar-T and SearchQA. Full re-ranker is the ensemble
of three different re-rankers in (Wang et al., 2018b).

to illustrate the benefits from our joint training
schema.

The often used evaluation metrics for extractive
RC are exact match (EM) and F1 (Rajpurkar et al.,
2016). The experimental results on Quasar-T and
SearchQA are shown in Table 3.

As seen from the results on Quasar-T, our quite
simple extraction model alone almost reaches the
state-of-the-art result compared with other meth-
ods without re-rankers. The combination of the
extraction and selection models exceeds our ex-
traction baseline by a great margin, and also re-
sults in performance surpassing the best single re-
ranker in (Wang et al., 2018b). This result illus-
trates the necessity of introducing the selection
model, which incorporates information from all
the candidates. In the end, by joint training with
RL, our method produces better performance even
compared with the ensemble of three different re-
rankers.

On SearchQA, we find that our extraction model
alone performs not that well compared with the
state-of-the-art model without re-rankers. How-
ever, the improvement brought by our selection
model isolatedly or jointly trained still demon-
strates the importance of our two-stage frame-
work. Not surprisingly, comparing the results, our
isolated training strategy still lags behind the sin-
gle re-ranker proposed in (Wang et al., 2018b),
partly because of the deficiency with our extrac-
tion model. However, uniting our extraction and
selection models with RL makes up the dispar-
ity, and the performance surpasses the ensemble
of three different re-rankers, let alone the result of

Quasar-T EM F1
Extraction + Selection (Joint Training) 45.9 53.9
-question representation 42.5 50.5
-question and passage common words 41.0 48.7
-candidate independent representation 44.5 53.3
-candidate related distance feature 44.7 53.0
-candidate dependent passage representation 44.4 52.3
-candidates fused representation 39.2 45.8

Table 4: Ablation results concerning the selec-
tion model on the test set of Quasar-T. Obviously,
candidates fused representation is the most evident
feature when modeling the answer selection pro-
cedure.

any single re-ranker.

4.4 Further Analysis

Effect of Features in Selection Model As the
incorporation of the selection model improves the
overall performance significantly, we conduct ab-
lation analysis on the Quasar-T to prove the effec-
tiveness of its major components. As shown in Ta-
ble 4, all these components modeling the selection
procedure play important roles in our final archi-
tecture.

Specifically, introducing the independent repre-
sentation of the question and its common words
with the passage seems an efficient way to con-
sider the information of questions, which is con-
sistent with previous work (Li et al., 2016b; Chen
et al., 2017).

As for features related to candidates, the incor-
poration of the candidate independent information
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Q Cocktails : Rum , lime , and cola drink make a .
A Cuba Libre
P1 In Nicaragua , when it is mixed using Flor de Ca a -LRB- the

national brand of rum -RRB- and cola , it is called a Nica Libre .
P2 The drink ... Daiquiri The custom of mixing lime with rum for a

cooling drink on a hot Cuban day has been around a long time .
P3 If you only learn to make two cocktails , the Manhattan should

be one of them .
P4 Daiquiri Cocktail recipe for a Daiquiri , a classic rum and lime

drink that every bartender should know .
P5 Hemingway Special Daiquiri : Daiquiris are a family of cocktails

whose main ingredients are rum and lime juice .
P6 In the Netherlands the drink is commonly called Baco , from the

two ingredients of Bacardi rum and cola .
P7 A homemade Cuba Libre Preparation To make a Cuba Libre prop-

erly , fill a highball glass with ice and half fill with cola .
P8 Bacardi Cocktail Cocktail recipe for a Bacardi Cocktail , a clas-

sic cocktail of Bacardi rum , lemon or lime juice and grenadine
Roy Rogers -LRB- non-alcoholic -RRB- Cocktail recipe for a Roy
Rogers ,

P9 Margarita Cocktail recipe for a Margarita , a popular refreshing
tequila and lime drink for summer .

P10 The difference between the Cuba Libre and Rum is a lime wedge
at the end .

Table 5: An example from Quasar-T to illustrate
the necessity of fused information. Candidates ex-
tracted from passages are in a bold font. To cor-
rectly answer the question, information in P7 and
P10 should be combined.

contributes to the final result more or less. These
features include candidate-dependent passage rep-
resentation, candidate independent representation
and candidate related distance feature.

Most importantly, the candidates fused repre-
sentation, which combines the information from
all the candidates, demonstrates its indispensable
role in candidate modeling, with a performance
drop of nearly 8% when discarded. This phe-
nomenon also verifies the necessity of our extract-
then-select procedure, showing the importance of
combining information scattered in different text
pieces when picking out the final answer.

Example for Candidates Fused Representation
We conduct a case study to demonstrate the im-
portance of candidates fused information further.
In Table 5, each candidate only partly matches the
description of the question in its independent con-
text. To correctly answer the question, informa-
tion in P7 and P10 should be combined. In exper-
iments, our selection model provides the correct
answer, while the wrong candidate ”Daiquiri”, a
different kind of cocktail, is selected if candidates
fused representation is discarded. The attention
map established when modeling the fusion of can-
didates (corresponding to Equation 13) in this ex-
ample is illustrated in Figure 4, in which we can
see the interactions among all the candidates from
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Figure 4: The attention map generated when mod-
eling candidates fused representations for the ex-
ample in Table 5.

Quasar-T EM F1
K=1 43.9 52.4
K=2 45.9 53.9
K=3 45.8 53.9

Table 6: Different number of extracted candidates
results in different final performance on the test set
of Quasar-T.

different passages. In this figure, it is obvious that
the interaction of ”Cuba Libre” in P7 and P10 is
the key point to answer the question correctly.

Effect of Candidate Number The candidate ex-
traction stage takes an important role to decide
what information should be focused on further.
Therefore, we also test the influence of different
K when extracting candidates from each passage.
The results are shown in Table 6. Taking K = 1
degrades the performance, which conforms to the
expectation, as the correct candidates become less
in this stricter situation. However, taking K = 3
can not improve the performance further. Al-
though a larger K means a higher possibility to
include good answers, it raises more challenges
for the selection model to pick out the correct one
from candidates with more varieties.

5 Conclusion

In this paper, we formulate the problem of RC as
a two-stage process, which first generates candi-
dates with an extraction model, then selects the
final answer by combining the information from
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all the candidates. Furthermore, we treat can-
didate extraction as a latent variable and jointly
train these two stages with RL. Experiments on
public open-domain RC datasets Quasar-T and
SearchQA show the necessity of introducing the
selection model and the effectiveness of fusing
candidates information when modeling. More-
over, our joint training strategy leads to significant
improvements in performance.
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