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Abstract

We propose a simple yet robust stochastic
answer network (SAN) that simulates
multi-step reasoning in machine reading
comprehension. Compared to previous
work such as ReasoNet which used rein-
forcement learning to determine the num-
ber of steps, the unique feature is the use of
a kind of stochastic prediction dropout on
the answer module (final layer) of the neu-
ral network during the training. We show
that this simple trick improves robustness
and achieves results competitive to the
state-of-the-art on the Stanford Question
Answering Dataset (SQuAD), the Adver-
sarial SQuAD, and the Microsoft MA-
chine Reading COmprehension Dataset
(MS MARCO).

1 Introduction

Machine reading comprehension (MRC) is a chal-
lenging task: the goal is to have machines read a
text passage and then answer any question about
the passage. This task is an useful benchmark to
demonstrate natural language understanding, and
also has important applications in e.g. conversa-
tional agents and customer service support. It has
been hypothesized that difficult MRC problems re-
quire some form of multi-step synthesis and rea-
soning. For instance, the following example from
the MRC dataset SQuAD (Rajpurkar et al., 2016)
illustrates the need for synthesis of information
across sentences and multiple steps of reasoning:

Q: What collection does the V&A Theator &
Performance galleries hold?

P : The V&A Theator & Performance gal-
leries opened in March 2009. ... They
hold the UK’s biggest national collection of

material about live performance.

To infer the answer (the underlined portion of the
passage P ), the model needs to first perform coref-
erence resolution so that it knows “They” refers
“V&A Theator”, then extract the subspan in the
direct object corresponding to the answer.

This kind of iterative process can be viewed as
a form of multi-step reasoning. Several recent
MRC models have embraced this kind of multi-
step strategy, where predictions are generated after
making multiple passes through the same text and
integrating intermediate information in the pro-
cess. The first models employed a predetermined
fixed number of steps (Hill et al., 2016; Dhingra
et al., 2016; Sordoni et al., 2016; Kumar et al.,
2015). Later, Shen et al. (2016) proposed using
reinforcement learning to dynamically determine
the number of steps based on the complexity of
the question. Further, Shen et al. (2017) empir-
ically showed that dynamic multi-step reasoning
outperforms fixed multi-step reasoning, which in
turn outperforms single-step reasoning on two dis-
tinct MRC datasets (SQuAD and MS MARCO).

In this work, we derive an alternative multi-step
reasoning neural network for MRC. During train-
ing, we fix the number of reasoning steps, but per-
form stochastic dropout on the answer module (fi-
nal layer predictions). During decoding, we gener-
ate answers based on the average of predictions in
all steps, rather than the final step. We call this
a stochastic answer network (SAN) because the
stochastic dropout is applied to the answer mod-
ule; albeit simple, this technique significantly im-
proves the robustness and overall accuracy of the
model. Intuitively this works because while the
model successively refines its prediction over mul-
tiple steps, each step is still trained to generate the
same answer; we are performing a kind of stochas-
tic ensemble over the model’s successive predic-
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Figure 1: Illustration of “stochastic prediction
dropout” in the answer module during training. At
each reasoning step t, the model combines mem-
ory (bottom row) with hidden states st−1 to gener-
ate a prediction (multinomial distribution). Here,
there are three steps and three predictions, but one
prediction is dropped and the final result is an av-
erage of the remaining distributions.

tion refinements. Stochastic prediction dropout is
illustrated in Figure 1.

2 Proposed model: SAN

The machine reading comprehension (MRC)
task as defined here involves a question
Q = {q0, q1, ..., qm−1} and a passage
P = {p0, p1, ..., pn−1} and aims to find an
answer span A = {astart, aend} in P . We assume
that the answer exists in the passage P as a
contiguous text string. Here, m and n denote the
number of tokens in Q and P , respectively. The
learning algorithm for reading comprehension is
to learn a function f(Q,P ) → A. The training
data is a set of the query, passage and answer
tuples < Q,P,A >.

We now describe our model from the ground up.
The main contribution of this work is the answer
module, but in order to understand what goes into
this module, we will start by describing how Q
and P are processed by the lower layers. Note the
lower layers also have some novel variations that
are not used in previous work. As shown in Fig-
ure 2, our model contains four different layers to
capture different concept of representations. The
detailed description of our model is provided as
follows.

Lexicon Encoding Layer. The purpose of the
first layer is to extract information from Q and P
at the word level and normalize for lexical vari-

ants. A typical technique to obtain lexicon embed-
ding is concatenation of its word embedding with
other linguistic embedding such as those derived
from Part-Of-Speech (POS) tags. For word em-
beddings, we use the pre-trained 300-dimensional
GloVe vectors (Pennington et al., 2014) for the
both Q and P . Following Chen et al. (2017), we
use three additional types of linguistic features for
each token pi in the passage P :

• 9-dimensional POS tagging embedding for
total 56 different types of the POS tags.

• 8-dimensional named-entity recognizer
(NER) embedding for total 18 different
types of the NER tags. We utilized small
embedding sizes for POS and NER to reduce
model size. They mainly serve the role of
coarse-grained word clusters.

• A 3-dimensional binary exact match fea-
ture defined as fexact match(pi) = I(pi ∈
Q). This checks whether a passage token
pi matches the original, lowercase or lemma
form of any question token.

• Question enhanced passages word embed-
dings: falign(pi) =

∑
j γi,jg(GloV e(qj)),

where g(·) is a 280-dimensional single
layer neural network ReLU(W0x) and
γi,j =

exp(g(GloV e(pj))·g(GloV e(qi)))∑
j′ exp(g(GloV e(pi))·g(GloV e(qj′ )))

mea-
sures the similarity in word embedding space
between a token pi in the passage and a to-
ken qj in the question. Compared to the ex-
act matching features, these embeddings en-
code soft alignments between similar but not-
identical words.

In summary, each token pi in the passage is repre-
sented as a 600-dimensional vector and each token
qj is represented as a 300-dimensional vector.

Due to different dimensions for the passages
and questions, in the next layer two different
bidirectional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997) may be required to encode
the contextual information. This, however, in-
troduces a large number of parameters. To pre-
vent this, we employ an idea inspired by (Vaswani
et al., 2017): use two separate two-layer position-
wise Feed-Forward Networks (FFN), FFN(x) =
W2ReLU(W1x+b1)+b2, to map both the passage
and question lexical encodings into the same num-
ber of dimensions. Note that this FFN has fewer
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Figure 2: Architecture of the SAN for Reading Comprehension: The first layer is a lexicon encoding
layer that maps words to their embeddings independently for the question (left) and the passage (right):
this is a concatenation of word embeddings, POS embeddings, etc. followed by a position-wise FFN. The
next layer is a context encoding layer, where a BiLSTM is used on the top of the lexicon embedding layer
to obtain the context representation for both question and passage. In order to reduce the parameters, a
maxout layer is applied on the output of BiLSTM. The third layer is the working memory: First we
compute an alignment matrix between the question and passage using an attention mechanism, and
use this to derive a question-aware passage representation. Then we concatenate this with the context
representation of passage and the word embedding, and employ a self attention layer to re-arrange the
information gathered. Finally, we use another LSTM to generate a working memory for the passage. At
last, the fourth layer is the answer module, which is a GRU that outputs predictions at each state st.

parameters compared to a BiLSTM. Thus, we ob-
tain the final lexicon embeddings for the tokens in
Q as a matrix Eq ∈ Rd×m and tokens in P as
Ep ∈ Rd×n.

Contextual Encoding Layer. Both passage
and question use a shared two-layers BiLSTM
as the contextual encoding layer, which projects
the lexicon embeddings to contextual embeddings.
We concatenate a pre-trained 600-dimensional
CoVe vectors1 (McCann et al., 2017) trained on
German-English machine translation dataset, with

1https://github.com/salesforce/cove

the aforementioned lexicon embeddings as the fi-
nal input of the contextual encoding layer, and also
with the output of the first contextual encoding
layer as the input of its second encoding layer.
To reduce the parameter size, we use a maxout
layer (Goodfellow et al., 2013) at each BiLSTM
layer to shrink its dimension. By a concatena-
tion of the outputs of two BiLSTM layers, we
obtain Hq ∈ R2d×m as representation of Q and
Hp ∈ R2d×n as representation of P , where d is
the hidden size of the BiLSTM.

Memory Generation Layer. In the memory
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generation layer, We construct the working mem-
ory, a summary of information from both Q and
P . First, a dot-product attention is adopted like
in (Vaswani et al., 2017) to measure the similarity
between the tokens in Q and P . Instead of using a
scalar to normalize the scores as in (Vaswani et al.,
2017), we use one layer network to transform the
contextual information of both Q and P :

C = dropout(fattention(Ĥ
q, Ĥp)) ∈ Rm×n (1)

C is an attention matrix. Note that Ĥq and Ĥp is
transformed from Hq and Hp by one layer neu-
ral network ReLU(W3x), respectively. Next, we
gather all the information on passages by a sim-
ple concatenation of its contextual informationHp

and its question-aware representation Hq · C:

Up = concat(Hp, HqC) ∈ R4d×n (2)

Typically, a passage may contain hundred of to-
kens, making it hard to learn the long dependen-
cies within it. Inspired by (Lin et al., 2017), we
apply a self-attended layer to rearrange the infor-
mation Up as:

Ûp = Updropdiag(fattention(U
p, Up)). (3)

In other words, we first obtain an n × n attention
matrix with Up onto itself, apply dropout, then
multiply this matrix with Up to obtain an updated
Ûp. Instead of using a penalization term as in (Lin
et al., 2017), we dropout the diagonal of the sim-
ilarity matrix forcing each token in the passage to
align to other tokens rather than itself.

At last, the working memory is generated by us-
ing another BiLSTM based on all the information
gathered:

M = BiLSTM([Up; Ûp]) (4)

where the semicolon mark ; indicates the vec-
tor/matrix concatenation operator.

Answer module. There is a Chinese proverb
that says: “wisdom of masses exceeds that of
any individual.” Unlike other multi-step reasoning
models, which only uses a single output either at
the last step or some dynamically determined final
step, our answer module employs all the outputs of
multiple step reasoning. Intuitively, by applying
dropout, it avoids a “step bias problem” (where
models places too much emphasis one particular
step’s predictions) and forces the model to produce
good predictions at every individual step. Further,

during decoding, we reuse wisdom of masses in-
stead of individual to achieve a better result. We
call this method “stochastic prediction dropout”
because dropout is being applied to the final pre-
dictive distributions.

Formally, our answer module will compute over
T memory steps and output the answer span. This
module is a memory network and has some sim-
ilarities to other multi-step reasoning networks:
namely, it maintains a state vector, one state per
step. At the beginning, the initial state s0 is
the summary of the Q: s0 =

∑
j αjH

q
j , where

αj =
exp(w4·Hq

j )∑
j′ exp(w4·Hq

j′ )
. At time step t in the

range of {1, 2, ..., T − 1}, the state is defined by
st = GRU(st−1, xt). Here, xt is computed from
the previous state st−1 and memory M : xt =∑

j βjMj and βj = softmax(st−1W5M). Fi-
nally, a bilinear function is used to find the begin
and end point of answer spans at each reasoning
step t ∈ {0, 1, . . . , T − 1}.

P begin
t = softmax(stW6M) (5)

P end
t = softmax([st;

∑
j

P begin
t,j Mj ]W7M).

(6)
From a pair of begin and end points, the an-

swer string can be extracted from the passage.
However, rather than output the results (start/end
points) from the final step (which is fixed at T − 1
as in Memory Networks or dynamically deter-
mined as in ReasoNet), we utilize all of the T out-
puts by averaging the scores:

P begin = avg([P begin
0 , P begin

1 , ..., P begin
T−1 ]) (7)

P end = avg([P end
0 , P end

1 , ..., P end
T−1]) (8)

Each P begin
t or P end

t is a multinomial distribu-
tion over {1, . . . , n}, so the average distribution
is straightforward to compute.

During training, we apply stochastic dropout to
before the above averaging operation. For exam-
ple, as illustrated in Figure 1, we randomly delete
several steps’ predictions in Equations 7 and 8
so that P begin might be avg([P begin

1 , P begin
3 ]) and

P end might be avg([P end
0 , P end

3 , P end
4 ]). The use

of averaged predictions and dropout during train-
ing improves robustness.

Our stochastic prediction dropout is similar in
motivation to the dropout introduced by (Srivas-
tava et al., 2014). The difference is that theirs
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is dropout at the intermediate node-level, whereas
ours is dropout at the final layer-level. Dropout
at the node-level prevents correlation between fea-
tures. Dropout at the final layer level, where ran-
domness is introduced to the averaging of predic-
tions, prevents our model from relying exclusively
on a particular step to generate correct output. We
used a dropout rate of 0.4 in experiments.

3 Experiment Setup
Dataset: We evaluate on the Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016). This contains about 23K passages and
100K questions. The passages come from approx-
imately 500 Wikipedia articles and the questions
and answers are obtained by crowdsourcing. The
crowdsourced workers are asked to read a passage
(a paragraph), come up with questions, then mark
the answer span. All results are on the official de-
velopment set, unless otherwise noted.

Two evaluation metrics are used: Exact Match
(EM), which measures the percentage of span pre-
dictions that matched any one of the ground truth
answer exactly, and Macro-averaged F1 score,
which measures the average overlap between the
prediction and the ground truth answer.

Implementation details: The spaCy tool2 is
used to tokenize the both passages and questions,
and generate lemma, part-of-speech and named
entity tags. We use 2-layer BiLSTM with d = 128
hidden units for both passage and question encod-
ing. The mini-batch size is set to 32 and Adamax
(Kingma and Ba, 2014) is used as our optimizer.
The learning rate is set to 0.002 at first and de-
creased by half after every 10 epochs. We set the
dropout rate for all the hidden units of LSTM, and
the answer module output layer to 0.4. To prevent
degenerate output, we ensure that at least one step
in the answer module is active during training.

4 Results

The main experimental question we would like to
answer is whether the stochastic dropout and av-
eraging in the answer module is an effective tech-
nique for multi-step reasoning. To do so, we fixed
all lower layers and compared different architec-
tures for the answer module:

1. Standard 1-step: generate prediction from s0,
the first initial state.

2https://spacy.io

2. 5-step memory network: this is a memory
network fixed at 5 steps. We try two variants:
the standard variant outputs result from the fi-
nal step sT−1. The averaged variant outputs
results by averaging across all 5 steps, and is
like SAN without the stochastic dropout.

3. ReasoNet3: this answer module dynamically
decides the number of steps and outputs re-
sults conditioned on the final step.

4. SAN: proposed answer module that uses
stochastic dropout and prediction averaging.

The main results in terms of EM and F1 are
shown in Table 1. We observe that SAN achieves
76.235 EM and 84.056 F1, outperforming all other
models. Standard 1-step model only achieves
75.139 EM and dynamic steps (via ReasoNet)
achieves only 75.355 EM. SAN also outperforms a
5-step memory net with averaging, which implies
averaging predictions is not the only thing that led
to SAN’s superior results; indeed, stochastic pre-
diction dropout is an effective technique.

The K-best oracle results is shown in Figure 3.
The K-best spans are computed by ordering the
spans according the their probabilities P begin ×
P end. We limit K in the range 1 to 4 and then
pick the span with the best EM or F1 as oracle.
SAN also outperforms the other models in terms
of K-best oracle scores. Impressively, these mod-
els achieve human performance at K = 2 for EM
and K = 3 for F1.

Finally, we compare our results with other top
models in Table 2. Note that all the results in Ta-
ble 2 are taken from the published papers. We see
that SAN is very competitive in both single and
ensemble settings (ranked in second) despite its
simplicity. Note that the best-performing model
(Peters et al., 2018) used a large-scale language
model as an extra contextual embedding, which
gave a significant improvement (+4.3% dev F1).
We expect significant improvements if we add this
to SAN in future work.

3The ReasoNet here is not an exact re-implementation of
(Shen et al., 2017). The answer module is the same as (Shen
et al., 2017) but the lower layers are set to be the same as
SAN, 5-step memory network, and standard 1-step as de-
scribed in Figure 2. We only vary the answer module in our
experiments for a fair comparison.
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Answer Module EM F1
Standard 1-step 75.139 83.367
Fixed 5-step with Memory Network (prediction from final step) 75.033 83.327
Fixed 5-step with Memory Network (prediction averaged from all steps) 75.256 83.215
Dynamic steps (max 5) with ReasoNet 75.355 83.360
Stochastic Answer Network (SAN ), Fixed 5-step 76.235 84.056

Table 1: Main results—Comparison of different answer module architectures. Note that SAN performs
best in both Exact Match and F1 metrics.

Ensemble model results: Dev Set (EM/F1) Test Set (EM/F1)
BiDAF + Self Attention + ELMo (Peters et al., 2018) -/- 81.003/87.432
SAN (Ensemble model) 78.619/85.866 79.608/86.496
AIR-FusionNet (Huang et al., 2017) -/- 78.978/86.016
DCN+ (Xiong et al., 2017) -/- 78.852/85.996
M-Reader (Hu et al., 2017) -/- 77.678/84.888
Conductor-net (Liu et al., 2017b) 74.8 / 83.3 76.996/84.630
r-net (Wang et al., 2017) 77.7/83.7 76.9/84.0
ReasoNet++ (Shen et al., 2017) 75.4/82.9 75.0/82.6
Individual model results:
BiDAF + Self Attention + ELMo(Peters et al., 2018) -/- 78.580/85.833
SAN (single model) 76.235/84.056 76.828/84.396
AIR-FusionNet(Huang et al., 2017) 75.3/83.6 75.968/83.900
RaSoR + TR (Salant and Berant, 2017) -/- 75.789/83.261
DCN+(Xiong et al., 2017) 74.5/83.1 75.087/83.081
r-net(Wang et al., 2017) 72.3/80.6 72.3/80.7
ReasoNet++(Shen et al., 2017) 70.8/79.4 70.6/79.36
BiDAF (Seo et al., 2016) 67.7/77.3 68.0/77.3
Human Performance 80.3/90.5 82.3/91.2

Table 2: Test performance on SQuAD. Results are sorted by Test F1.

5 Analysis

5.1 How robust are the results?

We are interested in whether the proposed model
is sensitive to different random initial conditions.
Table 3 shows the development set scores of SAN
trained from initialization with different random
seeds. We observe that the SAN results are con-
sistently strong regardless of the 10 different ini-
tializations. For example, the mean EM score is
76.131 and the lowest EM score is 75.922, both of
which still outperform the 75.355 EM of the Dy-
namic step ReasoNet in Table 1.4

We are also interested in how sensitive are the
results to the number of reasoning steps, which

4Note the Dev EM/F1 scores of ReasoNet in Table 1 do
not match those of ReasoNet++ in Table 2. While the answer
module is the same architecture, the lower encoding layers
are different.

is a fixed hyper-parameter. Since we are using
dropout, a natural question is whether we can ex-
tend the number of steps to an extremely large
number. Table 4 shows the development set scores
for T = 1 to T = 10. We observe that there is
a gradual improvement as we increase T = 1 to
T = 5, but after 5 steps the improvements have
saturated. In fact, the EM/F1 scores drop slightly,
but considering that the random initialization re-
sults in Table 3 show a standard deviation of 0.142
and a spread of 0.426 (for EM), we believe that the
T = 10 result does not statistically differ from the
T = 5 result. In summary, we think it is useful to
perform some approximate hyper-parameter tun-
ing for the number of steps, but it is not necessary
to find the exact optimal value.

Finally, we test SAN on two Adversarial
SQuAD datasets, AddSent and AddOneSent (Jia
and Liang, 2017), where the passages contain
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(a) EM comparison on different systems.

(b) F1 score comparison on different systems.

Figure 3: K-Best Oracle results

auto-generated adversarial distracting sentences to
fool computer systems that are developed to an-
swer questions about the passages. For example,
AddSent is constructed by adding sentences that
look similar to the question, but do not actually
contradict the correct answer. AddOneSent is con-
structed by appending a random human-approved
sentence to the passage.

We evaluate the single SAN model (i.e., the one
presented in Table 2) on both AddSent and Ad-
dOneSent. The results in Table 5 show that SAN
achieves the new state-of-the-art performance and
SAN’s superior result is mainly attributed to the
multi-step answer module, which leads to signif-
icant improvement in F1 score over the Standard
1-step answer module, i.e., +1.2 on AddSent and
+0.7 on AddOneSent.

5.2 Is it possible to use different numbers of
steps in test vs. train?

For practical deployment scenarios, prediction
speed at test time is an important criterion. There-
fore, one question is whether SAN can train with,
e.g. T = 5 steps but test with T = 1 steps. Table 6
shows the results of a SAN trained on T = 5 steps,
but tested with different number of steps. As ex-

Seed# EM F1 Seed# EM F1
Seed 1 76.24 84.06 Seed 6 76.23 83.99
Seed 2 76.30 84.13 Seed 7 76.35 84.09
Seed 3 75.92 83.90 Seed 8 76.07 83.71
Seed 4 76.00 83.95 Seed 9 75.93 83.85
Seed 5 76.12 83.99 Seed 10 76.15 84.11

Mean: 76.131, Std. deviation: 0.142 (EM)
Mean: 83.977, Std. deviation: 0.126 (F1)

Table 3: Robustness of SAN (5-step) on differ-
ent random seeds for initialization: best and
worst scores are boldfaced. Note that our official
submit is trained on seed 1.

SAN EM F1 SAN EM F1
1 step 75.38 83.29 6 step 75.99 83.72
2 step 75.43 83.41 7 step 76.04 83.92
3 step 75.89 83.57 8 step 76.03 83.82
4 step 75.92 83.85 9 step 75.95 83.75
5 step 76.24 84.06 10 step 76.04 83.89

Table 4: Effect of number of steps: best and
worst results are boldfaced.

pected, the results are best when T matches during
training and test; however, it is important to note
that small numbers of steps T = 1 and T = 2
nevertheless achieve strong results. For example,
prediction at T = 1 achieves 75.58, which out-
performs a standard 1-step model (75.14 EM) as
in Table 1 that has approximate equivalent predic-
tion time.

5.3 How does the training time compare?

The average training time per epoch is compara-
ble: our implementation running on a GTX Titan
X is 22 minutes for 5-step memory net, 30 minutes
for ReasoNet, and 24 minutes for SAN. The learn-
ing curve is shown in Figure 4. We observe that all
systems improve at approximately the same rate
up to 10 or 15 epochs. However, SAN continues
to improve afterwards as other models start to sat-
urate. This observation is consistent with previous
works using dropout (Srivastava et al., 2014). We
believe that while training time per epoch is sim-
ilar between SAN and other models, it is recom-
mended to train SAN for more epochs in order to
achieve gains in EM/F1.
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Single model: AddSent AddOneSent
LR (Rajpurkar et al., 2016) 23.2 30.3
SEDT (Liu et al., 2017a) 33.9 44.8
BiDAF (Seo et al., 2016) 34.3 45.7
jNet (Zhang et al., 2017) 37.9 47.0
ReasoNet(Shen et al., 2017) 39.4 50.3
RaSoR(Lee et al., 2016) 39.5 49.5
Mnemonic(Hu et al., 2017) 46.6 56.0
QANet(Yu et al., 2018) 45.2 55.7

Standard 1-step in Table 1 45.4 55.8
SAN 46.6 56.5

Table 5: Test performance on the adversarial
SQuAD dataset in F1 score.

T = EM F1 T = EM F1
1 75.58 83.86 4 76.12 83.98
2 75.85 83.90 5 76.24 84.06
3 75.98 83.95 10 75.89 83.88

Table 6: Prediction on different steps T . Note
that the SAN model is trained using 5 steps.

(a) EM

(b) F1

Figure 4: Learning curve measured on Dev set.

Figure 5: Score breakdown by question type.

5.4 How does SAN perform by question
type?

To see whether SAN performs well on a particular
type of question, we divided the development set
by questions type based on their respective Wh-
word, such as “who” and “where”. The score
breakdown by F1 is shown in Figure 5. We ob-
serve that SAN seems to outperform other models
uniformly across all types. The only exception is
the Why questions, but there is too little data to
derive strong conclusions.

5.5 Experiments results on MS MARCO

MS MARCO (Nguyen et al., 2016) is a large scale
real-word RC dataset which contains 100,100
(100K) queries collected from anonymized user
logs from the Bing search engine. The character-
istic of MS MARCO is that all the questions are
real user queries and passages are extracted from
real web documents. For each query, approximate
10 passages are extracted from public web docu-
ments. The answers are generated by humans. The
data is partitioned into a 82,430 training, a 10,047
development and 9,650 test tuples. The evalua-
tion metrics are BLEU(Papineni et al., 2002) and
ROUGE-L (Lin, 2004) due to its free-form text
answer style. To apply the same RC model, we
search for a span in MS MARCO’s passages that
maximizes the ROUGE-L score with the raw free-
form answer. It has an upper bound of 93.45
BLEU and 93.82 ROUGE-L on the development
set.

The MS MARCO dataset contains multiple pas-
sages per query. Our model as shown in Figure 2
is developed to generate answer from a single pas-
sage. Thus, we need to extend it to handle multiple
passages. Following (Shen et al., 2017), we take
two steps to generate an answer to a query Q from
J passages, P 1, ..., P J . First, we run SAN on ev-
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SingleModel ROUGE BLEU
ReasoNet++(Shen et al., 2017) 38.01 38.62
V-Net(Wang et al., 2018) 45.65 -
Standard 1-step in Table 1 42.30 42.39
SAN 46.14 43.85

Table 7: MS MARCO devset results.

ery (P j , Q) pair, generating J candidate answer
spans, one from each passage. Then, we multiply
the SAN score of each candidate answer span with
its relevance score r(P j , Q) assigned by a passage
ranker, and output the span with the maximum
score as the answer. In our experiments, we use
the passage ranker described in (Liu et al., 2018)5.
The ranker is trained on the same MS MARCO
training data, and achieves 37.1 p@1 on the devel-
opment set.

The results in Table 7 show that SAN outper-
forms V-Net (Wang et al., 2018) and becomes the
new state of the art6.

6 Related Work

The recent big progress on MRC is largely due
to the availability of the large-scale datasets (Ra-
jpurkar et al., 2016; Nguyen et al., 2016; Richard-
son et al., 2013; Hill et al., 2016), since it is possi-
ble to train large end-to-end neural network mod-
els. In spite of the variety of model structures and
attenion types (Bahdanau et al., 2015; Chen et al.,
2016; Xiong et al., 2016; Seo et al., 2016; Shen
et al., 2017; Wang et al., 2017), a typical neural
network MRC model first maps the symbolic rep-
resentation of the documents and questions into
a neural space, then search answers on top of it.
We categorize these models into two groups based
on the difference of the answer module: single-
step and multi-step reasoning. The key difference
between the two is what strategies are applied to
search the final answers in the neural space.

A single-step model matches the question and
document only once and produce the final an-
swers. It is simple yet efficient and can be trained
using the classical back-propagation algorithm,
thus it is adopted by most systems (Chen et al.,
2016; Seo et al., 2016; Wang et al., 2017; Liu et al.,
2017b; Chen et al., 2017; Weissenborn et al., 2017;

5It is the same model structure as (Liu et al., 2018) by
using softmax over all candidate passages. A simple baseline,
TF-IDF, obtains 20.1 p@1 on MS MARCO development.

6The official evaluation on MS MARCO on test is closed,
thus here we only report the results on the development set.

Hu et al., 2017). However, since humans often
solve question answering tasks by re-reading and
re-digesting the document multiple times before
reaching the final answers (this may be based on
the complexity of the questions/documents), it is
natural to devise an iterative way to find answers
as multi-step reasoning.

Pioneered by (Hill et al., 2016; Dhingra et al.,
2016; Sordoni et al., 2016; Kumar et al., 2015),
who used a predetermined fixed number of rea-
soning steps, Shen et al (2016; 2017) showed
that multi-step reasoning outperforms single-step
ones and dynamic multi-step reasoning further
outperforms the fixed multi-step ones on two dis-
tinct MRC datasets (SQuAD and MS MARCO).
But these models have to be trained using rein-
forcement learning methods, e.g., policy gradient,
which are tricky to implement due to the instabil-
ity issue. Our model is different in that we fix the
number of reasoning steps, but perform stochastic
dropout to prevent step bias. Further, our model
can also be trained by using the back-propagation
algorithm, which is simple and yet efficient.

7 Conclusion

We introduce Stochastic Answer Networks
(SAN), a simple yet robust model for machine
reading comprehension. The use of stochastic
dropout in training and averaging in test at the
answer module leads to robust improvements on
SQuAD, outperforming both fixed step memory
networks and dynamic step ReasoNet. We further
empirically analyze the properties of SAN in
detail. The model achieves results competitive
with the state-of-the-art on the SQuAD leader-
board, as well as on the Adversarial SQuAD
and MS MARCO datasets. Due to the strong
connection between the proposed model with
memory networks and ReasoNet, we would like
to delve into the theoretical link between these
models and its training algorithms. Further, we
also would like to explore SAN on other tasks,
such as text classification and natural language
inference for its generalization in the future.
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