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Abstract

This paper examines the problem of gen-
erating natural language descriptions of
chess games. We introduce a new large-
scale chess commentary dataset and pro-
pose methods to generate commentary
for individual moves in a chess game.
The introduced dataset consists of more
than 298K chess move-commentary pairs
across 11K chess games. We highlight
how this task poses unique research chal-
lenges in natural language generation: the
data contain a large variety of styles of
commentary and frequently depend on
pragmatic context. We benchmark vari-
ous baselines and propose an end-to-end
trainable neural model which takes into
account multiple pragmatic aspects of the
game state that may be commented upon
to describe a given chess move. Through
a human study on predictions for a sub-
set of the data which deals with direct
move descriptions, we observe that out-
puts from our models are rated similar to
ground truth commentary texts in terms of
correctness and fluency.1

1 Introduction

A variety of work in NLP has sought to produce
fluent natural language descriptions conditioned
on a contextual grounding. For example, several
lines of work explore methods for describing im-
ages of scenes and videos (Karpathy and Fei-Fei,
2015), while others have conditioned on structured
sources like Wikipedia infoboxes (Lebret et al.,

∗ HJ and VG contributed equally for this paper
1We will make the code-base (including data collection

and processing) publicly available at https://github.
com/harsh19/ChessCommentaryGeneration

2016). In most cases, progress has been driven by
the availability of large training corpora that pair
natural language with examples from the ground-
ing (Lin et al., 2014). One line of work has in-
vestigated methods for producing and interpreting
language in the context of a game, a space that has
rich pragmatic structure, but where training data
has been hard to come by. In this paper, we in-
troduce a new large-scale resource for learning to
correlate natural language with individual moves
in the game of chess. We collect a dataset of more
than 298K chess move/commentary pairs across≈
11K chess games from online chess forums. To the
best of our knowledge, this is the first such dataset
of this scale for a game commentary generation
task. We provide an analysis of the dataset and
highlight the large variety in commentary texts by
categorizing them into six different aspects of the
game that they respectively discuss.

Figure 1: Move commentary generated from our method
(Game-aware neural commentary generation (GAC)) and
some baseline methods for a sample move.

Automated game commentary generation can
be a useful learning aid. Novices and experts alike
can learn more about the game by hearing expla-

https://github.com/harsh19/ChessCommentaryGeneration
https://github.com/harsh19/ChessCommentaryGeneration
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nations of the motivations behind moves, or their
quality. In fact, on sites for game aficionados,
these commentaries are standard features, speak-
ing to their interestingness and utility as comple-
ments to concrete descriptions of the game boards
themselves.

Game commentary generation poses a number
of interesting challenges for existing approaches
to language generation. First, modeling human
commentary is challenging because human com-
mentators rely both on their prior knowledge of
game rules as well as their knowledge of effec-
tive strategy when interpreting and referring to the
game state. Secondly, there are multiple aspects of
the game state that can be talked about for a given
move — the commentator’s choice depends on the
pragmatic context of the game. For example, for
the move shown in Figure 1, one can comment
simply that the pawn was moved, or one may com-
ment on how the check was blocked by that move.
Both descriptions are true, but the latter is most
salient given the player’s goal. However, some-
times, none of the aspects may stand out as being
most salient, and the most salient aspect may even
change from commentator to commentator. More-
over, a human commentator may introduce varia-
tions in the aspects he or she chooses to talk about,
in order to reduce monotony in the commentary.
This makes the dataset a useful testbed not only
for NLG but also for related work on modeling
pragmatics in language (Liu et al., 2016).

Prior work has explored game commentary gen-
eration. Liao and Chang (1990); Sadikov et al.
(2006) have explored chess commentary genera-
tion, but for lack of large-scale training data their
methods have been mainly rule-based. Kameko
et al. (2015) have explored commentary gener-
ation for the game of Shogi, proposing a two-
step process where salient terms are generated
from the game state and then composed in a
language model. In contrast, given the larger
amount of training data available to us, our pro-
posed model uses an end-to-end trainable neu-
ral architecture to predict commentaries given the
game state. Our model conditions on semantic
and pragmatic information about the current state
and explicitly learns to compose, conjoin, and se-
lect these features in a recurrent decoder module.
We perform an experimental evaluation compar-
ing against baselines and variants of our model
that ablate various aspects of our proposed archi-

Figure 2: A multi-move, single commentary example from
our data. Here, the sequence of moves Ba4 → b5 → Nd6 →
bxa4 → e5 is commented upon.

Statistic Value
Total Games 11,578
Total Moves 298,008
Average no. of recorded steps in a game 25.73
Frequent Word Types2 39,424
Rare Word Types 167,321
Word Tokens 6,125,921
Unigram Entropy 6.88
Average Comment Length (in #words) 20.55
Long Comments (#words > 5) 230745 (77%)

Table 1: Dataset and Vocabulary Statistics

tecture. Outputs on the ‘Move Description’ subset
of data from our final model were judged by hu-
mans to be as good as human written ground truth
commentaries on measures of fluency and correct-
ness.

2 Chess Commentary Dataset

In this section we introduce our new large-scale
Chess Commentary dataset, share some statistics
about the data, and discuss the variety in type
of commentaries. The data is collected from the
online chess discussion forum gameknot.com,
which features multiple games self-annotated with
move-by-move commentary.

The dataset consists of 298K aligned game
move/commentary pairs. Some commentaries are
written for a sequence of few moves (Figure 2)
while others correspond to a single move. For the
purpose of initial analysis and modeling, we limit
ourselves to only those data points where com-
mentary text corresponds to a single move. Addi-
tionally, we split the multi-sentence commentary
texts to create multiple data points with the same
chess board and move inputs.

What are commentaries about? We observe
that there is a large variety in the commentary

gameknot.com
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Category Example % in
data

Val
acc.

Direct Move
Description An attack on the queen 31.4% 71%

Move
Quality A rook blunder. 8.0% 90%

Comparative At this stage I figured
I better move my knight. 3.7% 77.7%

Planning /
Rationale

Trying to force a way to
eliminate d5 and
prevent Bb5.

31.2% 65%

Contextual
Game Info

Somehow, the game I
should have lost turned
around in my favor .

12.6% 87%

General
Comment Protect Calvin , Hobbs 29.9% 78%

Table 2: Commentary texts have a large variety making the
problem of content selection an important challenge in our
dataset. We classify the commentaries into 6 different cate-
gories using a classifier trained on some hand-labelled data,
a fraction of which is kept for validation. % data refers to
the percentage of commentary sentences in the tagged data
belonging to the respective category.

texts. To analyze this variety, we consider la-
belling the commentary texts in the data with a
predefined set of categories. The choice of these
categories is made based on a manual inspection
of a sub-sample of data. We consider the follow-
ing set of commentary categories (Also shown in
Table 2):

• Direct move description (MoveDesc3): Ex-
plicitly or implicitly describe the current
move.

• Quality of move (Quality4): Describe the
quality of the current move.

• Comparative: Compare multiple possible
moves.

• Move Rationale or Planning (Planning):
Describe the rationale for the current move,
in terms of the future gameplay, advantage
over other potential moves etc.

• Contextual game information: Describe
not the current move alone, but the overall
game state – such as possibility of win/loss,
overall aggression/defence, etc.

• General information: General idioms & ad-
vice about chess, information about play-
ers/tournament, emotional remarks, retorts,
etc.

The examples in Table 2 illustrate these classes.
Note that the commentary texts are not necessar-
ily limited to one tag, though that is true for most

3MoveDesc & ‘Move Description’ used interchangeably
4Quality and ‘Move Quality’ used interchangeably

of the data. A total of 1K comments are anno-
tated by two annotators. A SVM classifier (Pe-
dregosa et al., 2011a) is trained for each comment
class, considering the annotation as ground truth
and using word unigrams as features. This classi-
fier is then used to predict tags for the train, valida-
tion and test sets. For “Comparative” category, we
found that a classifier with manually defined rules
such as presence of word “better” performs better
than the classifier, perhaps due to the paucity of
data, and thus we use this instead . As can be ob-
served in Table 2, the classifiers used are able to
generalize well on the held out dataset

3 Game Aware Neural Commentary
Generations (GAC)

Our dataset D consists of data points of the
form (Si,Mi, Gi), i ∈ {1, 2, .., |D|}, where Si
is the commentary text for move Mi and Gi

is the corresponding chess game. Si is a se-
quence of m tokens Si1, Si2, ..., Sim We want
to model P (Si|Mi, Gi). For simplicity, we use
only current board (Ci) and previous board (Ri)
information from the game. P (Si|Mi, Gi) =
P (Si|Mi, Ci, Ri).

We model this using an end-to-end trainable
neural model, which models conjunctions of fea-
tures using feature encoders. Our model employs
a selection mechanism to select the salient fea-
tures for a given chess move. Finally a LSTM
recurrent neural network (Hochreiter and Schmid-
huber, 1997) is used to generate the commentary
text based on selected features from encoder.

3.1 Incorporating Domain Knowledge

Past work shows that acquiring domain knowledge
is critical for NLG systems (Reiter et al., 2003b;
Mahamood and Reiter, 2012). Commentary texts
cover a range of perspectives, including criticism
or goodness of current move, possible alternate
moves, quality of alternate moves, etc. To be able
to make such comments, the model must learn
about the quality of moves, as well as the set of
valid moves for a given chess board state. We con-
sider the following features to provide our model
with necessary information to generate commen-
tary texts (Figure 3):

Move features fmove(Mi, Ci, Ri) encode the
current move information such as which piece
moved, the position of the moved piece before and
after the move was made, the type and position
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Figure 3: The figure shows some features extracted using the chess board states before (left) and after
(right) a chess move. Our method uses various semantic and pragmatic features of the move, including
the location and type of piece being moved, which opposing team pieces attack the piece being moved
before as well as after the move, the change in score by Stockfish UCI engine, etc.

of the captured piece (if any), whether the current
move is castling or not, and whether there was a
check or not.

Threat features fthreat(Mi, Ci, Ri) encode in-
formation about pieces of opposite player attack-
ing the moved piece before and after the move, and
the pieces of opposite player being attacked by the
piece being moved. To extract this information,
we use the python-chess library 5

Score features fscore(Mi, Ci, Ri) capture the
quality of move and general progress of the game.
This is done using the game evaluation score be-
fore and after the move, and average rank of pawns
of both the players. We use Stockfish evaluation
engine to obtain the game evaluation scores. 6

3.2 Feature Representation

In our simplest conditioned language gen-
eration model GAC-sparse, we repre-
sent the above described features using
sparse representations through binary-
valued features. gsparse(Mi, Ci, Ri) =
SparseRep(fmove, fthreat, fscore)

For our full GAC model we consider repre-
senting features through embeddings. This has
the advantage of allowing for a shared embed-
ding space, which is pertinent for our problem
since attribute values can be shared, e.g. the
same piece type can occur as the moved piece as
well as the captured piece. For categorical fea-
tures, such as those indicating which piece was
moved, we directly look up the embedding us-
ing corresponding token. For real valued features

5https://pypi.org/project/
python-chess/

6https://stockfishchess.org/about/

such as game scores, we first bin them and then
use corresponding number for embedding lookup.
Let E represent the embedding matrix. Then
E[f jmove] represents embeddings of jth move fea-
ture, or in general E[fmove] represents the con-
catenated embeddings of all move features. Simi-
larly, E(fmove, fthreat, fscore) represents concate-
nated embeddings of all the features.

3.3 Feature Conjunctions

We conjecture that explicitly modeling feature
conjunctions might improve the performance. So
we need an encoder which can handle input sets
of features of variable length (features such as
pieces attacking the moved piece can be of vari-
able length). One way to handle this is by picking
up a canonical ordering of the features and con-
sider a bidirectional LSTM encoder over the fea-
ture embeddings. As shown in Figure 4, this gen-
erates conjunctions of features.
genc = BiLSTM∗({E(fmove, fthreat, fscore))})

Here E() represents the embedding matrix as
described earlier and BiLSTM∗ represents a se-
quential application of the BiLSTM function.
Thus, if there a total of m feature keys and em-
bedding dimension is d, E(fmove, fthreat, fscore)
is matrix of m ∗ d. If hidden size of BILSTM is
of size x, then genc is of dimensionality m ∗ x.
We observe that different orderings gave similar
performance. We also experimented with running
k encoders, each on different ordering of features,
and then letting the decoder access to each of the k
encodings. This did not yield any significant gain
in performance.

The GAC model, unlike GAC-sparse, has some
advantages as it uses a shared, continuous space

https://pypi.org/project/python-chess/
https://pypi.org/project/python-chess/
https://stockfishchess.org/about/
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Figure 4: The figure shows a model overview. We first extract various semantic and pragmatic features
from the previous and current chess board states. We represent features through embedding in a shared
space. We observe that feeding in feature conjunctions helps a lot. We consider a selection mechanism
for the model to choose salient attributes from the input at every decoder step.

to embed attribute values of different features, and
can perform arbitrary feature conjunctions before
passing a representation to the decoder, thereby
sharing the burden of learning the necessary fea-
ture conjunctions. Our experiments confirm this
intuition — GAC produces commentaries with
higher BLEU as well as more diversity compared
to GAC-sparse.

3.4 Decoder
We use a LSTM decoder to generate the sentence
given the chess move and the features g. At every
output step t, the LSTM decoder predicts a distri-
bution over vocabulary words taking into account
the current hidden state ht, the input token it, and
additional selection vector ct. For GAC-sparse,
the selection vector is simply an affine transfor-
mation of the features g. For GAC model selection
vector is derived via a selection mechanism.

ot, h
dec
t = LSTM(hdect−1, [concat(Edec(it), ct)])

pt = softmax(Wo[concat(ot, ct)] + bs)

where pt represents th probability distribution
over the vocabulary, Edec() represents the decoder
word embedding matrix and elements of Wo ma-
trix are trainable parameters.

Selection/Attention Mechanism: As there are
different salient attributes across the different
chess moves, we also equip the GAC model with a

mechanism to select and identify these attributes.
We first transform hdect by multiplying it with a
trainable matrix Wc, and then take dot product of
the result with each gi.

a
(i)
t = dot(Wc ∗ hdect , genci )

αt = softmax(at)

ct =

i=|g|∑
i=1

α
(i)
t genci

We use cross-entropy loss over the decoding
outputs to train the model.

4 Experiments

We split each of the data subsets in a 70:10:20 ra-
tio into train, validation and test. All our models
are implemented in Pytorch version 0.3.1 (Paszke
et al., 2017). We use the ADAM optimizer
(Kingma and Ba, 2014) with its default parame-
ters and a mini-batch size of 32. Validation set
perplexity is used for early-stopping. At test-time,
we use greedy search to generate the model output.
We observed that beam decoding does not lead to
any significant improvement in terms of validation
BLEU score.

We observe the BLEU (Papineni et al., 2002)
and BLEU-2 (Vedantam et al., 2015) scores to
measure the performance of the models. Addi-
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tionally, we consider a measure to quantify the di-
versity in the generated outputs. Finally, we also
conduct a human evaluation study. In the remain-
der of this section, we discuss baselines along with
various experiments and results.

4.1 Baselines
In this subsection we discuss the various baseline
methods.
Manually-defined template (TEMP) We devise
manually defined templates (Reiter, 1995) for
‘Move Description’ and ‘Move Quality’ cate-
gories. Note that template-based outputs tend to
be repetitive as they lack diversity - drawing from
a small, fixed vocabulary and using a largely static
sentence structure. We define templates for a
fixed set of cases which cover our data (For exact
template specifications, refer to Appendix B).

Nearest Neighbor (NN): We observe that the
same move on similar board states often leads to
similar commentary texts. To construct a simple
baseline, we find the most similar move NMCR

from among training data points for a given previ-
ous (R) and current (C) board states and moveM .
The commentary text corresponding to NMCR is
selected as the output. Thus, we need to consider
a scoring function to find the closest matching
data point in training set. We use the Move, Threat
and Score features to compute similarity to do
so. By using a sparse representation, we consider
total of 148 Move features, 18 Threat features, and
19 Score features. We use sklearn’s (Pedregosa
et al., 2011b) NearestNeighbor module to find the
closest matching game move.

Raw Board Information Only (RAW): The
RAW baseline ablates to assess the importance
of our pragmatic feature functions. This archi-
tecture is similar to GAC, except that instead of
our custom featuresA(f(Ri, Ci)), the encoder en-
codes raw board information of current and previ-
ous board states.
ARAW (Ri, Ci) = [Lin(Ri), Lin(Ci)]
Lin() for a board denotes it’s representation in a
row-linear fashion. Each element of Lin() is a
piece name (e.g pawn) denoting the piece at that
square with special symbols for empty squares.

4.2 Comment Category Models
As shown earlier, we categorize comments into six
different categories. Among these, in this paper

Dataset Features BLEU BLEU-2 Diversity

MoveDesc

TEMP 0.72 20.77 4.43
NN (M+T+S) 1.28 21.07 7.85

RAW 1.13 13.74 2.37
GAC-sparse 1.76 21.49 4.29
GAC (M+T) 1.85 23.35 4.72

Quality

TEMP 16.17 47.29 1.16
NN (M+T) 5.98 42.97 4.52

RAW 16.92 47.72 1.07
GAC-sparse 14.98 51.46 2.63

GAC(M+T+S) 16.94 47.65 1.01

Comparative

NN (M) 1.28 24.49 6.97
RAW 2.80 23.26 3.03

GAC-sparse 3.58 25.28 2.18
GAC(M+T) 3.51 29.48 3.64

Table 3: Performance of baselines and our model with differ-
ent subsets of features as per various quantitative measures.
( S = Score, M= Move, T = Threat features; ) On all data sub-
sets, our model outperforms the TEMP and NN baselines.
Among proposed models, GAC performs better than GAC-
sparse & RAW in general. For NN, GAC-sparse and GAC
methods, we experiment with multiple feature combinations
and report only the best as per BLEU scores.

we consider only the first three as the amount of
variance in the last three categories indicates that
it would be extremely difficult for a model to learn
to reproduce them accurately. The number of
data points, as tagged by the trained classifiers, in
the subsets ‘Move Description’, ‘Move Quality’
and ‘Comparative’ are 28,228, 793 and 5397
respectively. We consider separate commentary
generation models for each of the three categories.
Each model is tuned separately on the correspond-
ing validation sets. Table 3 shows the BLEU and
BLEU-2 scores for the proposed model under
different subsets of features. Overall BLEU
scores are low, likely due to the inherent variance
in the language generation task (Novikova et al.,
2017) , although a precursory examination of
the outputs for data points selected randomly
from test set indicated that they were reasonable.
Figure 5 illustrates commentaries generated by
our models through an example (a larger list of
qualitative examples can be found in Appendix C).

Which features are useful? In general, adding
Threat features improves the performance, though
the same is not always true for Score features.
Qual has higher BLEU scores than the other
datasets due to smaller vocabulary and lesser vari-
ation in commentary. As can be observed in Ta-
ble 4, Threat features are useful for both ‘Move
Quality’ and ‘Move Description’ subsets of data.
Adding Score features helps for ‘Move Quality’
subset. This intuitively makes sense since Score
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Figure 5: Outputs from various models on a test example from the MoveDesc subset.

Dataset Features BLEU BLEU-2 Diversity

MoveDesc
GAC (M) 1.41 19.06 4.32

GAC (M+T) 1.85 23.35 4.72
GAC (M+T+S) 1.64 22.82 4.29

Quality
GAC (M) 13.05 48.37 1.61

GAC (M+T) 14.22 49.57 1.54
GAC(M+T+S) 14.44 51.79 1.48

Comparative
GAC(M) 3.10 19.84 2.88

GAC(M+T) 3.51 29.48 3.64
GAC(M+T+S) 1.15 25.44 3.14

Table 4: Performance of the GAC model with different fea-
ture sets. ( S = Score, M= Move, T = Threat features; ) Dif-
ferent subset of features work best for different subsets. For
instance, Score features seem to help only in the Quality cat-
egory. Note that the results for Quality are from 5-fold cross-
validation, since the number of datapoints in the category is
much lesser than the other two.

features directly encode proxies for move quality
as per a chess evaluation engine.

4.3 A Single Model For All Categories

In this experiment, we merge the training and val-
idation data of the first three categories and tune a
single model for this merged data. We then com-
pare its performance on all test sentences in our
data. COMB denotes using the best GAC model
for a test example based on its original class (e.g
Desc) and computing the BLEU of the sentences
so generated with the ground truth. GAC-all rep-
resents the GAC model learnt on the merged train-
ing data.

As can be seen from Table 5, this does not lead
to any performance improvements. We investigate
this issue further by analyzing whether the board
states are predictive of the type of category or
not. To achieve this, we construct a multi-class
classifier using all the Move, Threat and Score
features to predict the three categories under
consideration. However, we observe accuracy
of around 33.4%, which is very close to the
performance of a random prediction model. This
partially explains why a single model did not fare
better even though it had the opportunity to learn

Dataset Features BLEU BLEU-2 Diversity

All
COMB (M) 2.07 20.13 4.50

COMB (M+T) 2.43 25.37 4.88
COMB (M+T+S) 1.83 28.86 4.33

All
GAC-all(M) 1.69 20.66 4.67

GAC-all(M+T) 1.94 24.11 5.16
GAC-all (M+T+S) 2.02 24.70 4.97

All CAT (M) 1.90 19.96 3.82

Table 5: The COMB approaches show the combined per-
formance of separately trained models on the respective test
subsets.

from a larger dataset.

Category-aware model (CAT) We observed
above that with the considered features, it is not
possible to predict the type of comment to be
made, and the GAC-all model results are better
than COMB results. Hence, we extend the GAC-
all model to explicitly provide with the informa-
tion about the comment category. We achieve this
by adding a one-hot representation of the category
of the comment to the input of the RNN decoder
at every time step. As can be seen in the Table
5, CAT(M) performs better than GAC-all(M) in
terms of BLEU-4, while performing slightly worse
on BLEU-2. This demonstrates that explicitly pro-
viding information about the comment category
can help the model.

4.4 Diversity In Generated Commentaries
Humans use some variety in the choice of words
and sentence structure. As such, outputs from rule
based templates, which demonstrate low variety,
may seem repetitive and boring. To capture this
quantitatively, and to demonstrate the variety in
texts from our method, we calculate the entropy
(Shannon, 1951) of the distribution of unigrams,
bigrams and trigrams of words in the predicted
outputs, and report the geometric mean of these
values. Using only a small set of words in similar
counts will lead to lower entropy and is undesir-
able. As can be observed from Table 3, template
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baseline performs worse on the said measure com-
pared to our methods for the ’MoveDesc’ subset of
the data.

4.5 Human Evaluation Study

As discussed in the qualitative examples above,
we often found the outputs to be good - though
BLEU scores are low. BLEU is known to cor-
relate poorly (Reiter and Belz, 2009; Wiseman
et al., 2017; Novikova et al., 2017) with human
relevance scores for NLG tasks. Hence, we
conduct a human evaluation study for the best 2
neural (GAC,GAC-sparse) and best 2 non-neural
methods (TEMP,NN).

Setup: Specifically, annotators are shown a chess
move through previous board and resulting board
snapshots, along with information on which piece
moved (a snapshot of a HIT7 is provided in the Ap-
pendix D). With this context, they were shown text
commentary based on this move and were asked to
judge the commentary via three questions, short-
ened versions of which can be seen in the first col-
umn of Table 6.

We randomly select 100 data points from the
test split of ‘Move Description’ category and
collect the predictions from each of the methods
under consideration. We hired two Anglophone
(Lifetime HIT acceptance % > 80) annotators for
every human-evaluated test example. We addi-
tionally assess chess proficiency of the annotators
using questions from the chess-QA dataset by
(Cirik et al., 2015). Within each HIT, we ask two
randomly selected questions from the chess-QA
dataset. Finally we consider only those HITs
wherein the annotator was able to answer the
proficiency questions correctly.

Results: We conducted a human evaluation study
for the MoveDesc subset of the data. As can be
observed from Table 6, outputs from our method
attain slightly more favorable scores compared
to the ground truth commentaries. This shows
that the predicted outputs from our model are not
worse than ground truth on the said measures.
This is in spite of the fact that the BLEU-4 score
for the predicted outputs is only ∼ 2 w.r.t. the
ground truth outputs. One reason for slightly
lower performance of the ground truth outputs on
the said measures is that some of the human writ-

7Human Intelligence Task

ten commentaries are either very ungrammatical
or too concise. A more surprising observation is
that around 30% of human written ground truth
outputs were also marked as not valid for given
board move. On inspection, it seems that com-
mentary often contains extraneous game informa-
tion beyond that of move alone, which indicates
that an ideal comparison should be over commen-
tary for an entire game, although this is beyond the
scope of the current work.

The inter-annotator agreement for our experi-
ments (Cohens κ (Cohen, 1968)) is 0.45 for Q1
and 0.32 for Q2. We notice some variation in
κ coefficients across different systems. While
TEMP and GAC responses had a 0.5-0.7 coeffi-
cient range, the responses for CLM had a much
lower coefficient. In our setup, each HIT consists
of 7 comments, one from each system. For Q3
(fluency), which is on an ordinal scale, we mea-
sure rank-order consistency between the responses
of the two annotators of a HIT. Mean Kendall τ
(Kendall, 1938) across all HITs was found to be
0.39.

To measures significance of results, we per-
form bootstrap tests on 1000 subsets of size 50
with a significance threshold of p = 0.05 for
each pair of systems. For Q1, we observe that
GAC(M), GAC(M+T) and GAC(M+T+S) meth-
ods are significantly better than baselines NN and
GAC-sparse. We find that neither of GAC(M+T)
and GT significantly outperform each other on Q1
as well as Q2. But we do find that GAC(M+T)
does better than GAC(M) on both Q1 and Q2.
For fluency scores, we find that GAC(M+T) is
more fluent than GT, NN , GAC-sparse, GAC(M).
Neither of GAC(M) and GAC(M+T+S) is signifi-
cantly more fluent than the other.

5 Related Work

NLG research has a long history, with systems
ranging from completely rule-based to learning-
based ones (Reiter et al., 2005, 2003a), which
have had both practical successes (Reiter et al.,
2005) and failures (Reiter et al., 2003a). Recently,
there have been numerous works which propose
text generation given structured records, biogra-
phies (Lebret et al., 2016), recipes (Yang et al.,
2016; Kiddon et al., 2016), etc. A key difference
between generation given a game state compared
to these inputs is that the game state is an evolv-
ing description at a point in a process, as opposed
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Question GT GAC
(M)

GAC
(MT)

GAC
(MTS)

GAC
-sparse TEMP NN

Is commentary correct for the
given move? (%Yes) 70.4 42.3 64.8 67.6 56.3 91.5 52.1

Can the move be inferred from
the commentary? (%Yes) 45.1 25.3 42.3 36.7 40.8 92.9 42.3

Fluency (scale of (least)1 - 5(most) )
Mean (Std. dev.)

4.03
(1.31)

4.15
(1.20)

4.44
(1.02)

4.54
(0.89)

4.15
(1.26)

4.69
(0.64)

3.72
(1.36)

Table 6: Human study results on MoveDesc data category. Outputs from GAC are in general better than ground truth, NN and
GAC-sparse. TEMP outperforms other methods, though as shown earlier, outputs from TEMP lack diversity.

to recipes (which are independent of each other),
records (which are static) and biographies (which
are one per person, and again independent). More-
over, our proposed method effectively uses vari-
ous types of semantic and pragmatic information
about the game state.

In this paper we have introduced a new large-
scale data for game commentary generation. The
commentaries cover a variety of aspects like
move description, quality of move, and alternative
moves. This leads to a content selection challenge,
similar to that noted in Wiseman et al. (2017). Un-
like Wiseman et al. (2017), our focus is on gener-
ating commentary for individual moves in a game,
as opposed to game summaries from aggregate
statistics as in their task.

One of the first NLG datasets was the
SUMTIME-METEO (Reiter et al., 2005) corpus
with ≈ 500 record-text pairs for technical weather
forecast generation. Liang et al (2009) worked
on common weather forecast generation using
the WEATHERGOV dataset, which has ≈ 10K
record-text pairs. A criticism of WEATHER-
GOV dataset (Reiter, 2017) is that weather records
themselves may have used templates and rules
with optional human post-editing. There have
been prior works on generating commentary for
ROBOCUP matches (Chen and Mooney, 2008;
Mei et al., 2015). The ROBOCUP dataset, how-
ever, is collected from 4 games and contains about
1K events in total. Our dataset is two orders of
magnitude larger than the ROBOCUP dataset, and
we hope that it provides a promising setting for
future NLG research.

6 Conclusions

In this paper, we curate a dataset for the task of
chess commentary generation and propose meth-
ods to perform generation on this dataset. Our
proposed method effectively utilizes information
related to the rules and pragmatics of the game. A
human evaluation study judges outputs from the

proposed methods to be as good as human written
commentary texts for ‘Move Description’ subset
of the data.

Our dataset also contains multi-move-single
commentary pairs in addition to single move-
single commentary pairs. Generating commentary
for such multi-moves is a potential direction for
future work. We anticipate this task to require
even deeper understanding of the game pragmat-
ics than the single move-single commentary case.

Recent work (Silver et al., 2016) has proposed
reinforcement learning based game-playing agents
which learn to play board games from scratch,
learning end-to-end from both recorded games
and self-play. An interesting point to explore
is whether such pragmatically trained game state
representations can be leveraged for the task of
game commentary generation.
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