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Abstract

Automatic pun generation is an inter-

esting and challenging text generation

task. Previous efforts rely on templates

or laboriously manually annotated pun

datasets, which heavily constrains the

quality and diversity of generated puns.

Since sequence-to-sequence models pro-

vide an effective technique for text gener-

ation, it is promising to investigate these

models on the pun generation task. In this

paper, we propose neural network mod-

els for homographic pun generation, and

they can generate puns without requiring

any pun data for training. We first train

a conditional neural language model from

a general text corpus, and then generate

puns from the language model with an

elaborately designed decoding algorithm.

Automatic and human evaluations show

that our models are able to generate homo-

graphic puns of good readability and qual-

ity.

1 Introduction

Punning is an ingenious way to make conversation

enjoyable and plays important role in entertain-

ment, advertising and literature. A pun is a means

of expression, the essence of which is in the given

context the word or phrase can be understood

in two meanings simultaneously (Mikhalkova and

Karyakin, 2017). Puns can be classified according

to various standards, and the most essential dis-

tinction for our research is between homographic

and homophonic puns. A homographic pun ex-

ploits distinct meanings of the same written word

while a homophonic pun exploits distinct mean-

ings of the same spoken word. Puns can be homo-

graphic, homophonic, both, or neither (Miller and

Gurevych, 2015).

Puns have the potential to combine novelty and

familiarity appropriately, which can induce pleas-

ing effect to advertisement (Valitutti et al., 2008).

Using puns also contributes to elegancy in liter-

ary writing, as laborious manual counts revealed

that puns are one of the most commonly used

rhetoric of Shakespeare, with the frequency in cer-

tain of his plays ranging from 17 to 85 instances

per thousand lines (Miller and Gurevych, 2015).

It is not an overstatement to say that pun genera-

tion has significance in human society. However,

as a special branch of humor, generating puns is

not easy for humans, let alone automatically gen-

erating puns with artificial intelligence techniques.

While text generation is a topic of interest in the

natural language processing community, pun gen-

eration has received little attention.

Recent sequence-to-sequence (seq2seq) frame-

work is proved effective on text generation tasks

including machine translation (Sutskever et al.,

2014), image captioning (Vinyals et al., 2015),

and text summarization (Tan et al., 2017). The

end-to-end framework has the potential to train

a language model which can generate fluent and

creative sentences from a large corpus. Great

progress has achieved on the tasks with sufficient

training data like machine translation, achieving

state-of-the-art performance. Unfortunately, due

to the limited puns which are deemed insuffi-

cient for training a language model, there has

not been any research concentrated on generating

puns based on the seq2seq framework as far as we

know.

The inherent property of humor makes the

pun generation task more challenging. Despite

decades devoted to theories and algorithms for hu-

mor, computerized humor still lacks of creativ-

ity, sophistication of language, world knowledge,
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empathy and cognitive mechanisms compared to

humans, which are extremely difficult to model

(Hossain et al., 2017).

In this paper, we study the challenging task of

generating puns with seq2seq models without us-

ing a pun corpus for training. We propose a brand-

new method to generate homographic puns us-

ing normal text corpus which can result in good

quality of language model and avoid considerable

expense of human annotators on the limited pun

resources. Our proposed method can generate

puns according to the given two senses of a tar-

get word. We achieve this by first proposing an

improved language model that is able to generate

a sentence containing a given word with a specific

sense. Based on the improved language model, we

are able to generate a pun sentence that is suit-

able for two specified senses of a homographic

word, using a novel joint beam search algorithm

we propose. Moreover, based on the observed

characteristics of human generated puns, we fur-

ther enhance the model to generate puns highlight-

ing intended word senses. The proposed method

demonstrates the ability to generate homographic

puns containing the assigned two senses of a target

word.

Our approach only requires a general text cor-

pus, and we use the Wikipedia corpus in our ex-

periment. We introduce both manual ways and

automatic metrics to evaluate the generated puns.

Experimental results demonstrate that our meth-

ods are powerful and inspiring in generating ho-

mographic puns.

The contributions of our work are as follows:

• To our knowledge, our work is the first at-

tempt to adopt neural language models on

pun generation. And we do not use any tem-

plates or pun data sets in training the model.

• We propose a brand-new algorithm to gen-

erate sentences containing assigned distinct

senses of a target word.

• We further ameliorate our model with asso-

ciative words and multinomial sampling to

produce better pun sentences.

• Our approach yields substantial results on

generating homographic puns with high ac-

curacy of assigned senses and low perplexity.

2 Related Work

2.1 Pun Generation

In recent decades, exploratory research into com-

putational humor has developed to some extent,

but seldom is research specifically concerned with

puns. Miller and Gurevych (2015) found that most

previous studies on puns tend to focus on phono-

logical or syntactic pattern rather than semantic

pattern. In this subsection we briefly review some

prior work on pun generation.

Lessard and Levison (1992) devised a pro-

gram to create Tom Swifty, a type of pun which

is present in a quoted utterance followed by a

punning adverb. Binsted and Ritchie (1994)

came up with an early prototype of pun-generator

Joke Analysis and Production Engine (JAPE). The

model generates question-answer punning with

two types of structures: schemata for determin-

ing relationships between key words in a joke, and

templates for producing the surface form of the

joke. Later its successor JAPE-2 (Binsted, 1996;

Binsted et al., 1997) and STANDUP (Ritchie et al.,

2007) introduced constructing descriptions. The

Homonym Common Phrase Pun generator (Ve-

nour, 1999) could create two-utterance texts: a

one-sentence set-up and a punch-line. Venour

(1999) used schemata to specify the required lexi-

cal items and their intern relations, and used tem-

plates to indicate where to fit the lexical items in

a skeleton text (Ritchie, 2004). McKay (2002)

proposed WISCRAIC program which can pro-

duce puns in three forms: question-answer form,

single sentence and a two-sentence sequence.

The Template-Based Pun Extractor and Genera-

tor (Hong and Ong, 2009) utilized phonetic and

semantic linguistic resources to extract word rela-

tionships in puns automatically. The system stores

the extracted knowledge in template form and re-

sults in computer-generated puns.

Most previous research on pun generation is

based on templates which is convenient but lacks

linguistic subtlety and can be inflexible. None of

the systems aimed to be creative as the skeletons of

the sentences are fixed and the generation process

based on lexical information rarely needs world

knowledge or reasoning (Ritchie, 2004). Recently

more and more work focuses on pun detection

and interpretation (Miller et al., 2017; Miller and

Gurevych, 2015; Doogan et al., 2017), rather than

pun generation.
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2.2 Natural Language Generation

Natural language generation is an important area

of NLP and it is an essential foundation for the

tasks like machine translation, dialogue response

generation, summarization and of course pun gen-

eration.

In the past, text generation is usually based

on the techniques like templates or rules, proba-

bilistic models like n-gram or log-linear models.

Those models are fairly interpretable and well-

behaved but require infeasible amounts of hand-

engineering to scale with the increasing training

data (Xie, 2017). In most cases larger corpus re-

veals better what matters, so it is natural to tackle

large scale modeling (Józefowicz et al., 2016).

Recently, neural network language models

(Bengio et al., 2003) have shown the good ability

to model language and fight the curse of dimen-

sionality. Cho et al. (2014) propose the encoder-

decoder structure which proves very efficient to

generate text. The encoder produces a fixed-length

vector representation of the input sequence and

the decoder uses the representation to generate an-

other sequence of symbols. Such model has a sim-

ple structure and maps the source to the target di-

rectly, which outperforms the prior models in text

generation tasks.

3 Our Models

The goal of our pun generation model is to gen-

erate a sentence containing a given target word as

homographic pun. Give two senses of the target

word (a polyseme) as input, our model generates

a sentence where both senses of the word are ap-

propriate in the sentence. We adopt the encoder-

decoder framework to train a conditional language

model which can generate sentences containing

each given sense of the target word. Then we pro-

pose a joint beam search algorithm to generate an

appropriate sentence to convey both senses of the

target word. We call this Joint Model whose ba-

sic structure is illustrated in Figure 1. We further

propose an improved model to highlight the dif-

ferent senses of the target word in one sentence,

by reminding people the specific senses of the tar-

get word, which may not easily come to mind. We

achieve this by using Pointwise Mutual Informa-

tion (PMI) to find the associative words of each

sense of the target word and increase their proba-

bility of appearance while decoding. To improve

the diversity of the generated sentence, we use

multinomial sampling to decode words in the de-

coding process. The improved model is named the

Highlight Model.

3.1 Joint Model

3.1.1 Conditional Language Model
For a given word as input, we would like to gen-

erate a natural sentence containing the target word

with the specified sense. We improve the neural

language model to achieve this goal, and name it

conditional language model.

The conditional language model for pun gener-

ation is similar to the seq2seq model with an in-

put of only one word. We use Long Short-Term

Memory (LSTM) as encoder to map the input se-

quence (target word) to a vector of a fixed dimen-

sionality, and then another LSTM network as de-

coder to decode the target sequence from the vec-

tor (Sutskever et al., 2014).

Our goal is to generate a sentence contain-

ing the target word. However, vanilla seq2seq

model cannot guarantee the target word to ap-

pear in the generated sequence all the time. To

solve this problem, we adopt the asynchronous

forward/backward generation model proposed by

Mou et al. (2015), which employs a mechanism

to guarantee some word to appear in the output

in seq2seq models. The model first generates the

backward sequence starting from the target word

wt at position t of the sentence (i.e., the words be-

fore wt), and ending up with “</s>” at the po-

sition 0 of the sentence. The probability of the

backward sequence is denoted as p(w1
t ). Then

we reverse the output of the backward sequence

as the input to the forward model. In this pro-

cess, the goal of the encoder is to map the gener-

ated half sentence to a vector representation and

the decoder will generate the latter part accord-

ingly. The probability of the forward sequence

is denoted as p(wn
t ). Then the input and output

of the forward model are concatenated to form

the generated sentence. In the asynchronous for-

ward/backward model, the probability of the out-

put sentence can be decomposed as:

p(
w1

t=
wn

t

)= p(wt)
t∏

i=0
p(bw)(wt−i|·)

m−t+1∏
i=0

p(fw)(wt+i|·),
(1)

where p(�) denotes the probability of a particu-

lar backward/forward sequence (Mou et al., 2015).

p(bw)(wt|·) or p(fw)(wt|·) denotes the probabil-
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Figure 1: Framework of the proposed Joint Model. (Top) Two senses of the target word input1 and

input2 (e.g. “countv01” and “countv08”) are firstly provided to the backward model, to generate the

backward sequence starting from the target senses and ending up with “</s>”. (Bottom) Then the

backward sequence are reversed and inputted to the forward model, to generate the forward sequence.

The inputs and outputs of the forward model are concatenated to form the final output sentence. Joint

beam search algorithm is used to generate each word that has the potential to make the generated sentence

suitable for both input senses.

ity of wt given previous sequence · in the back-

ward or forward model respectively. The above

model can only guarantee the target word to ap-

pear in the generated sentence. Since we hope to

generate a sentence containing the specified word

sense, we treat different senses of the same word

as independent new pseudo-words. We label the

senses of words with Word Sense Disambigua-

tion (WSD) tools, and then we train the language

model using the corpus with labeled senses so

that for each word sense we can generate a sen-

tence accordingly. We use the Python Implemen-

tations of WSD Technologies1 for WSD. This tool

can return the most possible sense for the target

word based on WordNet (Miller, 1995). We at-

tach the sense label to the word and form a new

pseudo-word accordingly. Taking “count” for ex-

ample, “countv01” means “determine the number

1https://github.com/alvations/pywsd

or amount of ”, while “countv08” means “have
faith or confidence in”.

3.1.2 Decoding with Joint Beam Search
Algorithm

Beam search is a frequently-used algorithm in the

decoding stage of seq2seq models to generate the

output sequence. It can be viewed as an adaptation

of branch-and-bound search that uses an inadmis-

sible pruning rule. In the beam search algorithm,

only the most promising nodes at each level of the

search graph are selected and the rest nodes are

permanently removed. This strategy makes beam

search able to find a solution within practical time

or memory limits and work well in practical tasks

(Zhou and Hansen, 2005; Freitag and Al-Onaizan,

2017).

We also use beam search in our pun genera-

tion model. According to the definition of homo-

graphic puns, at least two senses of the target word
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should be interpreted in one sentence. We hope to

generate a same sentence for distinct senses of the

same word, and in this way the target word in the

sentence can be interpreted as various senses. Pro-

vided with two senses of a target word as inputs

to the encoder in the backward generation pro-

cess, e.g. “countv01” as input1 and “countv08”

as input2, we decode two output sentences in par-

allel, and the two sentences should be the same

except for the input pseudo-words. Assume h
(s)
t,i

denotes the hidden state of the i-th beam at time

step t, when given the s-th pseudo-word as input

(s =1 or 2). In the traditional beam search algo-

rithm, softmax layer is applied on the hidden state

to get the probability distribution on the vocabu-

lary, and the log likelihood of the probability is

used to get a word score distribution d
(s)
t,i :

d
(s)
t,i = log(softmax layer(h

(s)
t,i )). (2)

The accumulated score distribution on the i-th
beam is:

p
(s)
t,i = u

(s)
t−1,i + d

(s)
t,i , (3)

|V | denotes the vocabulary size. u
(s)
t−1,i is a |V |-

dimensional vector whose values are all equal to

the accumulated score of the generated sequence

till time step t − 1. Assume the beam width is b,

p
(s)
t is the concatenation of p

(s)
t,i on all beams and

its dimension size is |V |∗b. The beam search algo-

rithm selects b candidate words at each time step

according to p
(s)
t (s =1 or 2). When decoding for

input1 and input2 in parallel, at each time step

there will be b candidates for each input according

to p
(1)
t and p

(2)
t respectively. Since input1 and

input2 are different, the candidates for two inputs

will hardly be the same. However, our goal is to

choose candidate words which have the potential

to result in candidate sentences suitable for both

senses. Our joint beam search algorithm selects

b candidates while decoding for the two inputs ac-

cording to the joint score distribution on all beams.

The joint score distribution on the i-th beam is:

ot,i=p
(1)
t,i + p

(2)
t,i . (4)

The summation of the log scores can be viewed

as the product of original probabilities, which rep-

resents the joint probability if the two probabil-

ity distributions are viewed independent. Given

the b candidates selected according to the joint

score distribution, our joint beam search algorithm

Algorithm 1 Joint Beam Search Algorithm

b denotes the beam width. l denotes the number of unfinished
beams. BeamId records which beams the candidates come
from. WordId records the indices of candidates in the vo-
cabulary where 1 is the index of “<s>”. BEAM t[i] denotes
the i-th beam history till time step t. |V | denotes the vocabu-
lary size. Copy(m,n) aims to make an n-dimensional vector
by replicating m for n times. The initial states of the decoder

(h
(1)
−1,i,h

(2)
−1,i) are equal to the final states of the encoder ac-

cordingly. m � n denotes appending n to m.
BEAM−1[i]= [], i=0, 1, ..., b− 1

u
(1)
−1,i = u

(2)
−1,i = Copy(0, |V |),i = 0, 1, ..., b− 1

BeamId = [0, 1, ..., b− 1]
WordId= [1, .., 1] ∈ R

b

Outputs= []; t = 0; l = b
while l > 0 do
o=[]
for i= 0 to b− 1 do

xt,i is the word embedding corresponding to
WordId[i]

h(1)
t,i=LSTM(xt,i,h

(1)
t−1,i)

h
(2)
t,i=LSTM(xt,i,h

(2)
t−1,i)

p(1)
t,i = u

(1)
t−1,i + log(softmax layer(h

(1)
t,i ))

p(2)
t,i = u

(2)
t−1,i + log(softmax layer(h

(2)
t,i ))

ot,i = p
(1)
t,i + p

(2)
t,i

o � ot,i

end for
WordId = the indices of words with the top b scores in o
BeamId = the indices of source beams w.r.t. WordId
for i= 0 to b− 1 do
BEAMt[i] = BEAMt−1[BeamId[i]] � WordId[i]

u
(1)
t,i = u

(2)
t,i = Copy(ot,BeamId[i][WordId[i]], |V |)

if WordId[i] represents “</s>”
l = l − 1
Outputs = Outputs �BEAMt[i]

end if
end for
t = t+ 1

return top b items in Outputs

is similar to the vanilla beam search algorithm,

which generates the candidate sequences step by

step. If any beam selects “</s>” as the candi-

date, we regard this branch has finished decod-

ing. The decoding process will be finished after all

the beams have selected “</s>”. The joint beam

search algorithm is described in Algorithm 1.

3.2 Highlight Model
3.2.1 Word Association
The joint model we described above is able to

generate sentences suitable for both given senses

of the target word. But we found this model is

prone to generate monotonous sentences, making

it difficult to discover that the target word in the

sentence can be understood in two ways. For ex-

ample, in the sentence “He couldn’t count on his
friends”, people can easily realize that the com-

mon meaning “have faith or confidence in” of the
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word “count”, but may ignore other senses of the

word. If we add some words and modify the sen-

tence as “The inept mathematician couldn’t count
on his friends”, people can also come up with

the meaning “determine the number or amount
of ” due to the word “mathematician”. Comparing

the examples above, the two senses are proper in

both sentences, but people may interpret “count”
in the two sentences differently. Based on such ob-

servations, we improve the pun generation model

by adding some keywords to the sentence which

could remind people some special sense of the

target word. We call those keywords associative

words, and the improved model is named as High-

light Model.

To extract associative words of each sense of the

target word, we first build word association norms

in our corpus by using pointwise mutual informa-

tion (PMI). As mutual information compares the

probability of observing w1 and w2 together (the

joint probability) with the probabilities of observ-

ing w1 and w2 independently (chance) (Church

and Hanks, 1990), positive PMI scores indicate

that the words occur together more than would be

expected under an independence assumption, and

negative scores indicate that one word tends to ap-

pear solely when the other does not (Islam and

Inkpen, 2006). In this case we take top k asso-

ciative words for each sense with relatively high

positive PMI scores, which are calculated as fol-

lows:

PMI(w1, w2) = log2
p(w1, w2)

p(w1) · p(w2)
. (5)

During decoding we increase the probability of

the associative words to be chosen according to

their PMI scores. For each sense of the target

word, we normalize the PMI scores of the asso-

ciative words as follows:

Asso(w
(s)
t , cp) = σ(

PMI(w
(s)
t , cp)

maxcjPMI(w
(s)
t , cj)

),

(6)

where w
(s)
t represents the s-th sense of the tar-

get word wt, and cp is the p-th associative word

for w
(s)
t . To smooth the PMI scores we use sig-

moid function σ which is differentiable and widely

used in the neural network models. The final

PMI score for each associative word is denoted as

Asso(w
(s)
t , cp). As we choose candidates accord-

ing to a score distribution on the whole vocabulary,

we need a PMI score distribution (S(w
(s)
t )) rather

than single scores, and the value at position q is

supposed to be:

S
(
w

(s)
t

)
[q]=

{
Asso

(
w

(s)
t ,vq

)
, vq∈AssoTK(w

(s)
t );

0, else,
(7)

where vq denotes the q-th word in the vocabulary,

and AssoTK(w
(s)
t ) denotes the top k associative

words of w
(s)
t .

3.2.2 Multinomial Sampling
In our highlight model, we add S(w

(1)
t ) and

S(w
(2)
t ) to ot,i , as:

õt,i=ot,i+α1 ·S(w(1)
t )+α2 ·S(w(2)

t ), (8)

where we use α1 and α2 as coefficient weights to

balance the PMI scores of the two assigned senses

and the joint score. In the Highlight Model, we

first select 2b candidates according to the scores of

words from Eq. 8. Then we use multinomial sam-

pling to select the final b candidates. Sampling is

useful in cases where we may want to get a variety

of outputs for a particular input. One example of a

situation where sampling is meaningful would be

in a seq2seq model for a dialog system (Neubig,

2017). In our pun generation model we hope to

produce relatively more creative sentences, so we

use multinomial sampling to increase the uncer-

tainty when generating the sentence. The multi-

nomial distribution can be seen as a multivariate

generalization of the binomial distribution and it

is prone to choose the words with relatively high

probabilities. If an associative word of one sense

has been selected, we decay the scores for all as-

sociative words of this sense. In this way we can

prevent the sentence obviously being prone to re-

flect one sense of the target word.

4 Experiments

4.1 Data Preprocessing
Most text generation tasks using seq2seq model

require large amount of training data. However,

for many tasks, like pun generation, it is difficult

to get adequate data to train a seq2seq model. In

this study, our pun generation model does not rely

on training data of puns. We only require a text

corpus to train the conditional language model,
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which is very cheap to get. In this paper, we use

the English Wikipedia corpus to train the language

model. The corpus texts are firstly lowercased and

tokenized, and all numeric characters are replaced

with “#”. We split the texts into sentences and

discard the sentences whose length is less than 5

words or more than 50 words. We then select pol-

ysemes appearing in the homographic pun data set

(Miller et al., 2017) and pun websites. Those pol-

ysemes in the corpus are replaced by the labeled

sense. We restrict that each sentence can be la-

beled with at most two polysemes in order to train

a reliable language model. If there are more pol-

ysemes in one sentence, we keep the last two be-

cause in our observation we found pun words tend

to occur near the end of a sentence. After label-

ing, we keep the 105,000 most frequently occur-

ring words and other words are replaced with the

“<unk>” token. We discard the sentences with

two or more “<unk>” tokens. There are totally

3,974 distinct labeled senses corresponding to a

total of 772 distinct polysemes. We assume those

reserved senses are more likely to generate puns

of good quality.

While training the language model we use

2,595,435 sentences as the training set, and

741,551 sentences as the development set to de-

cide when to stop training.

4.2 Training Details
The number of LSTM layers we use in the seq2seq

model is 2 and each layer has 128 units. To avoid

overfitting, we set the dropout rate to 0.2. We

use Stochastic Gradient Descent (SGD) with a de-

creasing learning rate schedule as optimizer. The

initial learning rate is 1.0 and is halved every 1k

steps after training for 8k steps, which is the same

as Luong et al. (2017). We set beam size b = 5
while decoding. For each sense we select at most

30 associative words (k=30). To increase the prob-

ability of choosing the associative words, we set

α1 = 6.0 and α2 = 6.0. If an associative word

of some sense of a target word has been chosen,

its corresponding α will be set to zero for all the

associative words of this sense.

4.3 Baselines
Since there is no existing neural model applied on

this special task, we implement two baseline mod-

els for comparison. We select 100 target words

and two senses for each word to test the quality of

those models.

Normal Language Model: It is trained with

an encoder-decoder model and uses beam search

while decoding. In the training process, inputs are

unlabeled target words and outputs are sentences

containing the target words.

Pun Language Model: We use the data set of

homographic puns from Miller et al. (2017). The

model is trained on the data set in asynchronous

forward/backward way. As the pun data set is

limited, the pun language model has no creativity,

which means if we input a word appearing in the

training data, then the output will usually be an ex-

isting sentence from the training data. Therefore,

we remove the sentences which contain words in

the 100 target words from the pun data set, and

then train the model for test.

4.4 Automatic Evaluation

We select 100 target words and two senses for

each word for test. We use the language mod-

eling toolkit SRILM2 to train a trigram model

with another 7,746,703 sentences extracted from

Wikipedia, which are different from the data set

used before. The perplexity scores (PPL) of our

models and baseline models are estimated based

on the trained language model, as shown in Ta-

ble 1. Normal Language Model has no constraint

of generating sentences suitable for both senses.

This means at each time step the beam search algo-

rithm can select the candidates with highest prob-

abilities. And thus it is natural that it obtains the

lowest perplexity. Taking the constraint of senses

into consideration, the perplexity scores of Joint

Model and Highlight Model are still comparable

to that of Normal Language Model. However, Pun

Language Model could not be trained well con-

sidering the limit of the pun training data, so it

gets the highest perplexity score. This result re-

veals that it is not feasible to build a homographic

pun generation system based on the pun data set

since pun data is far from enough. In the table, We

further compare the diversity of the generated sen-

tences of four models following Li et al. (2016).

Distinct-1 (d.-1) and distinct-2 (d.-2) are the ra-

tios of the distinct unigrams and bigrams in gen-

erated sentences, i.e., the number of distinct uni-

grams or bigrams divided by the total number of

unigrams or bigrams. The results show our mod-

els are more creative than Normal Language and

2http://www.speech.sri.com/projects/srilm/
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Model PPL d.-1(%) d.-2(%)

Highlight 91.80 27.13 62.85

Joint 63.48 22.13 50.59

Normal Language 62.66 19.60 41.62

Pun Language 889.07 14.78 23.11

Table 1: Results of automatic evaluation.

Figure 2: Results of human evaluation.

Pun Language models, and Highlight Model can

generate sentences with the best diversity.

4.5 Human Evaluation

Because of the subtle and delicate structure of

puns, automatic evaluation is not enough. So we

sample one sentence for each word from four mod-

els mentioned above and then get 100 sentences of

each model generated from the target words, to-

gether with 100 puns containing the same target

words from homographic pun data set in Miller

et al. (2017). We ask judges on Amazon Mechan-

ical Turk to evaluate all the sentences and the rat-

ing score ranges from 1 to 5. Five native English

speakers are asked to give a score on each sen-

tence in three aspects with the following informa-

tion: Readability indicates whether the sentence

is easy to understand semantically; Accuracy in-

dicates whether the given senses are suitable in a

sentence; Fluency indicates whether the sentence

is fluent and consistent with the rules of grammar.

The results in Figure 2 show that pun data is

not enough to train an ideal language model, while

Normal Language Model has enough corpus to

train a good language model. But Normal Lan-

guage Model is unable to make the given two

senses appear in one sentence and in a few cases

even can not assure the appearance of the target

words. Joint Model and Highlight Model can gen-

erate fluent sentences for the assigned two senses.

Although Highlight Model could remind people

Model # sentences avg. score

Highlight 15 0.98

Joint 12 0.87

Gold Puns 28 1.38

Table 2: Results of Soft Turing Test.

specific senses of the target words in most cases, in

few cases sampled words make the whole sentence

unsatisfactory and get a relatively lower score of

accuracy. As to the Readability, the Joint Model

performs better than other three models. Both

Joint model and Highlight model outperform Nor-

mal Language Model and Pun Language Model.

To test the potential of the sentences generated

by our models to be homographic puns, we fur-

ther design a Soft Turing Test. We select 30 sen-

tences generated by Joint Model and 30 sentences

generated by Highlight Model independently, to-

gether with 30 gold puns from the homographic

pun data set. We mix them up, and give the def-

inition of homographic pun and ask 10 people on

Amazon Mechanical Turk to judge each sentence.

People can judge each sentence as one of three cat-

egories: definitely by human, might by human and

definitely by machine. The three categories cor-

respond to the scores of 2, 1 and 0, respectively.

If the average score of one sentence is equal or

greater than 1, we regard it as judged to be gener-

ated by human. The number of sentences judged

as by human for each model and the average score

for each model are shown in Table 2.

Due to the flexible language structure of High-

light Model, the generated homographic puns out-

perform those generated by Joint Model in the Soft

Turing Test, however still far from gold-standard

puns. Our models are adept at generating homo-

graphic puns containing assigned senses but weak

in making homographic puns humorous.

4.6 Examples

We show some examples generated by differ-

ent models in Table 3. For the two senses of

“pitch”, Highlight Model generates a sentence

which uses “high” to remind readers the sense re-

lated to sound and uses “player” to highlight the

sense related to throwing a baseball. Joint Model

returns a sentence that can be understood in both

way roughly only if we give the two senses in ad-

vance, otherwise readers may only think of the
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Model Sample

pitch: 1) the property of sound that arise with variation in the frequency of vibration;

2) the act of throwing a baseball by a pitcher to a batter.

Highlight in one that denotes player may have had a high pitch in the world

Joint the object of the game is based on the pitch of the player

Normal Language this is a list of high pitch plot

Pun Language our bikinis are exciting they are simply the tops on the mouth

Gold Puns if you sing while playing baseball you won’t get a good pitch

square: 1) a plane rectangle with four equal sides and four right angles, a four-sided regular polygon;

2) someone who doesn’t understand what is going on.

Highlight little is known when he goes back to the square of the football club

Joint there is a square of the family

Normal Language the population density was # people per square mile

Pun Language when the pirate captain’s ship ran aground he couldn’t fathom why

Gold Puns my advanced geometry class is full of squares

problem: 1) a source of difficulty;

2) a question raised for consideration or solution.

Highlight you do not know how to find a way to solve the problem which in the state

Joint he is said to be able to solve the problem as he was a professor

Normal Language in # he was appointed a member of the new york stock exchange

Pun Language those who iron clothes have a lot of pressing veteran

Gold Puns math teachers have lots of problems

Table 3: Examples of outputs by different models.

sense related to baseball. For Normal Language

Model, it is difficult to be interpreted in two senses

we assigned. Pun Language Model has no ability

to return a sentence containing the assigned word

at all. Observing the gold pun, the context de-

scribes a more vivid scene which we need to pay

attention to. For “square”, sentences generated

by Highlight Model and Joint Model can be inter-

preted in two senses and Highlight Model results

in a sentence with dexterity. Normal Language

Model give a sentence where “square” means nei-

ther of the two given senses. Pun Language Model

cannot return a sentence we need with no sur-

prise. For “problem”, both Highlight Model and

Joint Model can generate sentences containing as-

signed two senses while Normal Language Model

and Pun Language Model can not return sentences

with the target word. Compare to our generated

sentences, we find gold puns are more concise and

accurate, which takes us into consideration on the

delicate structure of puns and the conclusion is

still in exploration.

5 Conclusion and Future Work

In this paper, we proposed two models for pun

generation without using training data of puns.

Joint Model makes use of conditional language

model and the joint beam search algorithm, which

can assure the assigned senses of target words suit-

able in one sentence. Highlight Model takes asso-

ciative words into consideration, which makes the

distinct senses more obvious in one sentence. The

produced puns are evaluated using automatic eval-

uation and human evaluation, and they outperform

the sentences generated by our baseline models.

For future work, we hope to improve the results

by using the pun data and design a more proper

way to select candidates from associative words.
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