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Abstract

The problem of AMR-to-text generation
is to recover a text representing the
same meaning as an input AMR graph.
The current state-of-the-art method uses
a sequence-to-sequence model, leverag-
ing LSTM for encoding a linearized AMR
structure. Although it is able to model
non-local semantic information, a se-
quence LSTM can lose information from
the AMR graph structure, and thus faces
challenges with large graphs, which re-
sult in long sequences. We introduce a
neural graph-to-sequence model, using a
novel LSTM structure for directly encod-
ing graph-level semantics. On a standard
benchmark, our model shows superior re-
sults to existing methods in the literature.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism that
encodes the meaning of a sentence as a rooted,
directed graph. Figure 1 shows an AMR graph
in which the nodes (such as “describe-01” and
“person”) represent the concepts, and edges (such
as “:ARG0” and “:name”) represent the relations
between concepts they connect. AMR has been
proven helpful on other NLP tasks, such as ma-
chine translation (Jones et al., 2012; Tamchyna
et al., 2015), question answering (Mitra and Baral,
2015), summarization (Takase et al., 2016) and
event detection (Li et al., 2015).

The task of AMR-to-text generation is to pro-
duce a text with the same meaning as a given in-
put AMR graph. The task is challenging as word
tenses and function words are abstracted away
when constructing AMR graphs from texts. The
translation from AMR nodes to text phrases can

:name

:ARG0

describe-01

name

person

"Ryan"

:op1

:ARG1

genius

:ARG2

Figure 1: An example of AMR graph meaning
“Ryan’s description of himself: a genius.”

be far from literal. For example, shown in Figure
1, “Ryan” is represented as “(p / person :name (n /
name :op1 “Ryan”))”, and “description of” is rep-
resented as “(d / describe-01 :ARG1 )”.

While initial work used statistical approaches
(Flanigan et al., 2016b; Pourdamghani et al., 2016;
Song et al., 2017; Lampouras and Vlachos, 2017;
Mille et al., 2017; Gruzitis et al., 2017), recent re-
search has demonstrated the success of deep learn-
ing, and in particular the sequence-to-sequence
model (Sutskever et al., 2014), which has achieved
the state-of-the-art results on AMR-to-text gen-
eration (Konstas et al., 2017). One limitation
of sequence-to-sequence models, however, is that
they require serialization of input AMR graphs,
which adds to the challenge of representing graph
structure information, especially when the graph is
large. In particular, closely-related nodes, such as
parents, children and siblings can be far away after
serialization. It can be difficult for a linear recur-
rent neural network to automatically induce their
original connections from bracketed string forms.

To address this issue, we introduce a novel
graph-to-sequence model, where a graph-state
LSTM is used to encode AMR structures directly.
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To capture non-local information, the encoder per-
forms graph state transition by information ex-
change between connected nodes, with a graph
state consisting of all node states. Multiple recur-
rent transition steps are taken so that information
can propagate non-locally, and LSTM (Hochreiter
and Schmidhuber, 1997) is used to avoid gradient
diminishing and bursting in the recurrent process.
The decoder is an attention-based LSTM model
with a copy mechanism (Gu et al., 2016; Gulcehre
et al., 2016), which helps copy sparse tokens (such
as numbers and named entities) from the input.

Trained on a standard dataset (LDC2015E86),
our model surpasses a strong sequence-to-
sequence baseline by 2.3 BLEU points, demon-
strating the advantage of graph-to-sequence mod-
els for AMR-to-text generation compared to
sequence-to-sequence models. Our final model
achieves a BLEU score of 23.3 on the test set,
which is 1.3 points higher than the existing state of
the art (Konstas et al., 2017) trained on the same
dataset. When using gigaword sentences as ad-
ditional training data, our model is consistently
better than Konstas et al. (2017) using the same
amount of gigaword data, showing the effective-
ness of our model on large-scale training set.

We release our code and models at https:
//github.com/freesunshine0316/
neural-graph-to-seq-mp.

2 Baseline: a seq-to-seq model

Our baseline is a sequence-to-sequence model,
which follows the encoder-decoder framework of
Konstas et al. (2017).

2.1 Input representation

Given an AMR graph G = (V,E), where V and
E denote the sets of nodes and edges, respectively,
we use the depth-first traversal of Konstas et al.
(2017) to linearize it to obtain a sequence of to-
kens v1, . . . , vN , whereN is the number of tokens.
For example, the AMR graph in Figure 1 is seri-
alized as “describe :arg0 ( person :name ( name
:op1 ryan ) ) :arg1 person :arg2 genius”. We can
see that the distance between “describe” and “ge-
nius”, which are directly connected in the original
AMR, becomes 14 in the serialization result.

A simple way to calculate the representation for
each token vj is using its word embedding ej :

xj =W1ej + b1, (1)

where W1 and b1 are model parameters for com-
pressing the input vector size.

To alleviate the data sparsity problem and ob-
tain better word representation as the input, we
also adopt a forward LSTM over the characters of
the token, and concatenate the last hidden state hcj
with the word embedding:

xj =W1

(
[ej ;h

c
j ]
)
+ b1 (2)

2.2 Encoder
The encoder is a bi-directional LSTM applied on
the linearized graph by depth-first traversal, as in
Konstas et al. (2017). At each step j, the current
states

←�
hj and

�→
hj are generated given the previous

states
←��
hj+1 and

��→
hj�1 and the current input xj :

←�
hj = LSTM(

←��
hj+1, xj)

�→
hj = LSTM(

��→
hj�1, xj)

2.3 Decoder
We use an attention-based LSTM decoder (Bah-
danau et al., 2015), where the attention memory
(A) is the concatenation of the attention vectors
among all input words. Each attention vector aj is
the concatenation of the encoder states of an input
token in both directions (

←�
hj and

�→
hj) and its input

vector (xj):

aj = [
←�
hj ;
�→
hj ;xj ] (3)

A = [a1; a2; . . . ; aN ] (4)

where N is the number of input tokens.
The decoder yields an output sequence

w1, w2, . . . , wM by calculating a sequence of
hidden states s1, s2 . . . , sM recurrently. While
generating the t-th word, the decoder considers
five factors: (1) the attention memory A; (2) the
previous hidden state of the LSTM model st�1;
(3) the embedding of the current input (previously
generated word) et; (4) the previous context
vector µt�1, which is calculated with attention
from A; and (5) the previous coverage vector
γt�1, which is the accumulation of all attention
distributions so far (Tu et al., 2016). When t = 1,
we initialize µ0 and γ0 as zero vectors, set e1 to
the embedding of the start token “<s>”, and s0
as the average of all encoder states.

For each time-step t, the decoder feeds the con-
catenation of the embedding of the current input
et and the previous context vector µt�1 into the
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Time

Figure 2: Graph state LSTM.

LSTM model to update its hidden state. Then the
attention probability αt,i on the attention vector
ai ∈ A for the time-step is calculated as:

εt,i = vT2 tanh(Waai +Wsst +Wγγt�1 + b2)

αt,i =
exp(εt,i)∑N
j=1 exp(εt,j)

where Wa, Ws, Wγ , v2 and b2 are model pa-
rameters. The coverage vector γt is updated by
γt = γt�1 + αt, and the new context vector µt is
calculated via µt =

∑N
i=1 αt,iai.

The output probability distribution over a vo-
cabulary at the current state is calculated by:

Pvocab = softmax(V3[st, µt] + b3), (5)

where V3 and b3 are learnable parameters, and the
number of rows in V3 represents the number of
words in the vocabulary.

3 The graph-to-sequence model

Unlike the baseline sequence-to-sequence model,
we leverage a recurrent graph encoder to represent
each input AMR, which directly models the graph
structure without serialization.

3.1 The graph encoder

Figure 2 shows the overall structure of our graph
encoder. Formally, given a graph G = (V,E),
we use a hidden state vector hj to represent each
node vj ∈ V . The state of the graph can thus be
represented as:

g = {hj}|vj∈V

In order to capture non-local interaction between
nodes, we allow information exchange between
nodes through a sequence of state transitions,
leading to a sequence of states g0, g1, . . . , gt, . . . ,
where gt = {hjt}|vj∈V . The initial state g0 con-
sists of a set of initial node states hj0 = h0, where
h0 is a hyperparameter of the model.

State transition A recurrent neural network
is used to model the state transition process. In
particular, the transition from gt�1 to gt consists of
a hidden state transition for each node, as shown
in Figure 2. At each state transition step t, we
allow direct communication between a node and
all nodes that are directly connected to the node.
To avoid gradient diminishing or bursting, LSTM
(Hochreiter and Schmidhuber, 1997) is adopted,
where a cell cjt is taken to record memory for hjt .
We use an input gate ijt , an output gate ojt and a
forget gate f jt to control information flow from the
inputs and to the output hjt .

The inputs include representations of edges that
are connected to vj , where vj can be either the
source or the target of the edge. We define each
edge as a triple (i, j, l), where i and j are indices
of the source and target nodes, respectively, and l
is the edge label. xli,j is the representation of edge
(i, j, l), detailed in Section 3.3. The inputs for vj
are distinguished by incoming and outgoing edges,
before being summed up:

xij =
∑

(i,j,l)∈Ein(j)

xli,j

xoj =
∑

(j,k,l)∈Eout(j)

xlj,k,

where Ein(j) and Eout(j) denote the sets of in-
coming and outgoing edges of vj , respectively.

In addition to edge inputs, a cell also takes the
hidden states of its incoming nodes and outgoing
nodes during a state transition. In particular, the
states of all incoming nodes and outgoing nodes
are summed up before being passed to the cell and
gate nodes:

hij =
∑

(i,j,l)∈Ein(j)

hit�1

hoj =
∑

(j,k,l)∈Eout(j)

hkt�1,

Based on the above definitions of xij , x
o
j , h

i
j and

hoj , the state transition from gt�1 to gt, as repre-
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sented by hjt , can be defined as:

ijt = σ(Wix
i
j + Ŵix

o
j + Uih

i
j + Ûih

o
j + bi),

ojt = σ(Wox
i
j + Ŵox

o
j + Uoh

i
j + Ûoh

o
j + bo),

f jt = σ(Wfx
i
j + Ŵfx

o
j + Ufh

i
j + Ûfh

o
j + bf ),

ujt = σ(Wux
i
j + Ŵux

o
j + Uuh

i
j + Ûuh

o
j + bu),

cjt = f jt � c
j
t�1 + ijt � u

j
t ,

hjt = ojt � tanh(cjt ),

where ijt , o
j
t and f jt are the input, output and for-

get gates mentioned earlier. Wx, Ŵx, Ux, Ûx, bx,
where x ∈ {i, o, f, u}, are model parameters.

3.2 Recurrent steps
Using the above state transition mechanism, infor-
mation from each node propagates to all its neigh-
boring nodes after each step. Therefore, for the
worst case where the input graph is a chain of
nodes, the maximum number of steps necessary
for information from one arbitrary node to reach
another is equal to the size of the graph. We exper-
iment with different transition steps to study the
effectiveness of global encoding.

Note that unlike the sequence LSTM encoder,
our graph encoder allows parallelization in node-
state updates, and thus can be highly efficient us-
ing a GPU. It is general and can be potentially ap-
plied to other tasks, including sequences, syntactic
trees and cyclic structures.

3.3 Input Representation
Different from sequences, the edges of an AMR
graph contain labels, which represent relations be-
tween the nodes they connect, and are thus impor-
tant for modeling the graphs. Similar with Section
2, we adopt two different ways for calculating the
representation for each edge (i, j, l):

xli,j =W4

(
[el; ei]

)
+ b4 (6)

xli,j =W4

(
[el; ei;h

c
i ]
)
+ b4, (7)

where el and ei are the embeddings of edge label l
and source node vi, hci denotes the last hidden state
of the character LSTM over vi, and W4 and b4 are
trainable parameters. The equations correspond to
Equations 1 and 2 in Section 2.1, respectively.

3.4 Decoder
We adopt the attention-based LSTM decoder as
described in Section 2.3. Since our graph encoder

generates a sequence of graph states, only the last
graph state is adopted in the decoder. In partic-
ular, we make the following changes to the de-
coder. First, each attention vector becomes aj =

[hjT ;xj ], where hjT is the last state for node vj .
Second, the decoder initial state s�1 is the average
of the last states of all nodes.

3.5 Integrating the copy mechanism
Open-class tokens, such as dates, numbers and
named entities, account for a large portion in the
AMR corpus. Most appear only a few times, re-
sulting in a data sparsity problem. To address this
issue, Konstas et al. (2017) adopt anonymization
for dealing with the data sparsity problem. In par-
ticular, they first replace the subgraphs that repre-
sent dates, numbers and named entities (such as
“(q / quantity :quant 3)” and “(p / person :name
(n / name :op1 “Ryan”))”) with predefined place-
holders (such as “num 0” and “person name 0”)
before decoding, and then recover the correspond-
ing surface tokens (such as “3” and “Ryan”) af-
ter decoding. This method involves hand-crafted
rules, which can be costly.

Copy We find that most of the open-class to-
kens in a graph also appear in the correspond-
ing sentence, and thus adopt the copy mechanism
(Gulcehre et al., 2016; Gu et al., 2016) to solve
this problem. The mechanism works on top of an
attention-based RNN decoder by integrating the
attention distribution into the final vocabulary dis-
tribution. The final probability distribution is de-
fined as the interpolation between two probability
distributions:

Pfinal = θtPvocab + (1� θt)Pattn, (8)

where θt is a switch for controlling generating a
word from the vocabulary or directly copying it
from the input graph. Pvocab is the probability
distribution of directly generating the word, as de-
fined in Equation 5, and Pattn is calculated based
on the attention distribution αt by summing the
probabilities of the graph nodes that contain iden-
tical concept. Intuitively, θt is relevant to the cur-
rent decoder input et and state st, and the context
vector µt. Therefore, we define it as:

θt = σ(wTµµt + wTs st + wTe et + b5), (9)

where vectors wµ, ws, we and scalar b5 are model
parameters. The copy mechanism favors gener-
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ating words that appear in the input. For AMR-
to-text generation, it facilitates the generation of
dates, numbers, and named entities that appear in
AMR graphs.

Copying vs anonymization Both copying
and anonymization alleviate the data sparsity
problem by handling the open-class tokens. How-
ever, the copy mechanism has the following ad-
vantages over anonymization: (1) anonymization
requires significant manual work to define the
placeholders and heuristic rules both from sub-
graphs to placeholders and from placeholders to
the surface tokens, (2) the copy mechanism auto-
matically learns what to copy, while anonymiza-
tion relies on hard rules to cover all types of the
open-class tokens, and (3) the copy mechanism is
easier to adapt to new domains and languages than
anonymization.

4 Training and decoding

We train our models using the cross-entropy loss
over each gold-standard output sequence W ∗ =
w∗1, . . . , w

∗
t , . . . , w

∗
M :

l = �
M∑
t=1

log p(w∗t |w∗t�1, . . . , w∗1, X; θ), (10)

where X is the input graph, and θ is the model
parameters. Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 is used as the optimizer, and
the model that yields the best devset performance
is selected to evaluate on the test set. Dropout with
rate 0.1 is used during training. Beam search with
beam size to 5 is used for decoding. Both training
and decoding use Tesla K80 GPUs.

5 Experiments

5.1 Data
We use a standard AMR corpus (LDC2015E86) as
our experimental dataset, which contains 16,833
instances for training, 1368 for development and
1371 for test. Each instance contains a sentence
and an AMR graph.

Following Konstas et al. (2017), we supple-
ment the gold data with large-scale automatic data.
We take Gigaword as the external data to sam-
ple raw sentences, and train our model on both
the sampled data and LDC2015E86. We adopt
Konstas et al. (2017)’s strategy for sampling sen-
tences from Gigaword, and choose JAMR (Flani-
gan et al., 2016a) to parse selected sentences into

Model BLEU Time
Seq2seq 18.8 35.4s
Seq2seq+copy 19.9 37.4s
Seq2seq+charLSTM+copy 20.6 39.7s
Graph2seq 20.4 11.2s
Graph2seq+copy 22.2 11.1s
Graph2seq+Anon 22.1 9.2s
Graph2seq+charLSTM+copy 22.8 16.3s

Table 1: DEV BLEU scores and decoding times.

AMRs, as the AMR parser of Konstas et al. (2017)
only works on the anonymized data. For training
on both sampled data and LDC2015E86, we also
follow the method of Konstas et al. (2017), which
is fine-tuning the model on the AMR corpus after
every epoch of pretraining on the gigaword data.

5.2 Settings

We extract a vocabulary from the training set,
which is shared by both the encoder and the de-
coder. The word embeddings are initialized from
Glove pretrained word embeddings (Pennington
et al., 2014) on Common Crawl, and are not up-
dated during training. Following existing work,
we evaluate the results with the BLEU metric (Pa-
pineni et al., 2002).

For model hyperparameters, we set the graph
state transition number as 9 according to devel-
opment experiments. Each node takes informa-
tion from at most 10 neighbors. The hidden vector
sizes for both encoder and decoder are set to 300
(They are set to 600 for experiments using large-
scale automatic data). Both character embeddings
and hidden layer sizes for character LSTMs are set
100, and at most 20 characters are taken for each
graph node or linearized token.

5.3 Development experiments

As shown in Table 1, we compare our model with
a set of baselines on the AMR devset to demon-
strate how the graph encoder and the copy mecha-
nism can be useful when training instances are not
sufficient. Seq2seq is the sequence-to-sequence
baseline described in Section 2. Seq2seq+copy
extends Seq2seq with the copy mechanism,
and Seq2seq+charLSTM+copy further extends
Seq2seq+copy with character LSTM. Graph2seq
is our graph-to-sequence model, Graph2seq+copy
extends Graph2seq with the copy mechanism,
and Graph2seq+charLSTM+copy further extends
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Graph2seq+copy with the character LSTM. We
also try Graph2seq+Anon, which applies our
graph-to-sequence model on the anonymized data
from Konstas et al. (2017).

The graph encoder As can be seen from Ta-
ble 1, the performance of Graph2seq is 1.6 BLEU
points higher than Seq2seq, which shows that our
graph encoder is effective when applied alone.
Adding the copy mechanism (Graph2seq+copy vs
Seq2seq+copy), the gap becomes 2.3. This shows
that the graph encoder learns better node represen-
tations compared to the sequence encoder, which
allows attention and copying to function better.

Applying the graph encoder together with the
copy mechanism gives a gain of 3.4 BLEU points
over the baseline (Graph2seq+copy vs Seq2seq).
The graph encoder is consistently better than the
sequence encoder no matter whether character
LSTMs are used.

We also list the encoding part of decoding times
on the devset, as the decoders of the seq2seq and
the graph2seq models are similar, so the time dif-
ferences reflect efficiencies of the encoders. Our
graph encoder gives consistently better efficiency
compared with the sequence encoder, showing the
advantage of parallelization.

The copy mechanism Table 1 shows that
the copy mechanism is effective on both the
graph-to-sequence and the sequence-to-sequence
models. Anonymization gives comparable over-
all performance gains on our graph-to-sequence
model as the copy mechanism (comparing
Graph2seq+Anon with Graph2seq+copy). How-
ever, the copy mechanism has several advantages
over anonymization as discussed in Section 3.5.

Character LSTM Character LSTM helps to
increase the performances of both systems by
roughly 0.6 BLEU points. This is largely because
it further alleviates the data sparsity problem by
handling unseen words, which may share common
substrings with in-vocabulary words.

5.4 Effectiveness on graph state transitions

We report a set of development experiments for
understanding the graph LSTM encoder.

Number of iterations We analyze the influ-
ence of the number of state transitions to the model
performance on the devset. Figure 3 shows the
BLEU scores of different state transition numbers,

1 2 3 4 5 6 7 8 9
10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

only-incoming

only-outgoing

both

Figure 3: DEV BLEU scores against transition
steps for the graph encoder.

0 5 10 15 20
0

20

40
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80

100

Figure 4: Percentage of DEV AMRs with different
diameters.

when both incoming and outgoing edges are taken
for calculating the next state (as shown in Figure
2). The system is Graph2seq+charLSTM+copy.
Executing only 1 iteration results in a poor BLEU
score of 14.1. In this case the state for each node
only contains information about immediately adja-
cent nodes. The performance goes up dramatically
to 21.5 when increasing the iteration number to 5.
In this case, the state for each node contains infor-
mation of all nodes within a distance of 5. The per-
formance further goes up to 22.8 when increasing
the iteration number from 5 to 9, where all nodes
with a distance of less than 10 are incorporated in
the state for each node.

Graph diameter We analyze the percentage
of the AMR graphs in the devset with different
graph diameters and show the cumulative distribu-
tion in Figure 4. The diameter of an AMR graph is
defined as the longest distance between two AMR
nodes.1 Even though the diameters for less than
80% of the AMR graphs are less or equal than 10,
our development experiments show that it is not
necessary to incorporate the whole-graph informa-
tion for each node. Further increasing state transi-
tion number may lead to additional improvement.

1The diameter of single-node graphs is 0.
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Model BLEU
PBMT 26.9
SNRG 25.6
Tree2Str 23.0
MSeq2seq+Anon 22.0
Graph2seq+copy 22.7
Graph2seq+charLSTM+copy 23.3
MSeq2seq+Anon (200K) 27.4
MSeq2seq+Anon (2M) 32.3
Seq2seq+charLSTM+copy (200K) 27.4
Seq2seq+charLSTM+copy (2M) 31.7
Graph2seq+charLSTM+copy (200K) 28.2
Graph2seq+charLSTM+copy (2M) 33.0

Table 2: TEST results. “(200K)”, “(2M)” and
“(20M)” represent training with the corresponding
number of additional sentences from Gigaword.

We do not perform exhaustive search for finding
the optimal state transition number.

Incoming and outgoing edges As shown in
Figure 3, we analyze the efficiency of state tran-
sition when only incoming or outgoing edges are
used. From the results, we can see that there is a
huge drop when state transition is performed only
with incoming or outgoing edges. Using edges of
one direction, the node states only contain infor-
mation of ancestors or descendants. On the other
hand, node states contain information of ancestors,
descendants, and siblings if edges of both direc-
tions are used. From the results, we can conclude
that not only the ancestors and descendants, but
also the siblings are important for modeling the
AMR graphs. This is similar to observations on
syntactic parsing tasks (McDonald et al., 2005),
where sibling features are adopted.

We perform a similar experiment for the
Seq2seq+copy baseline by only executing single-
directional LSTM for the encoder. We observe
BLEU scores of 11.8 and 12.7 using only forward
or backward LSTM, respectively. This is consis-
tent with our graph model in that execution using
only one direction leads to a huge performance
drop. The contrast is also reminiscent of using the
normal input versus the reversed input in neural
machine translation (Sutskever et al., 2014).

5.5 Results
Table 2 compares our final results with existing
work. MSeq2seq+Anon (Konstas et al., 2017)
is an attentional multi-layer sequence-to-sequence

model trained with the anonymized data. PBMT
(Pourdamghani et al., 2016) adopts a phrase-based
model for machine translation (Koehn et al., 2003)
on the input of linearized AMR graph, SNRG
(Song et al., 2017) uses synchronous node replace-
ment grammar for parsing the AMR graph while
generating the text, and Tree2Str (Flanigan et al.,
2016b) converts AMR graphs into trees by split-
ting the re-entrances before using a tree transducer
to generate the results.

Graph2seq+charLSTM+copy achieves a BLEU
score of 23.3, which is 1.3 points better than
MSeq2seq+Anon trained on the same AMR cor-
pus. In addition, our model without charac-
ter LSTM is still 0.7 BLEU points higher than
MSeq2seq+Anon. Note that MSeq2seq+Anon re-
lies on anonymization, which requires additional
manual work for defining mapping rules, thus lim-
iting its usability on other languages and domains.
The neural models tend to underperform statistical
models when trained on limited (16K) gold data,
but performs better with scaled silver data (Kon-
stas et al., 2017).

Following Konstas et al. (2017), we also
evaluate our model using both the AMR cor-
pus and sampled sentences from Gigaword.
Using additional 200K or 2M gigaword sen-
tences, Graph2seq+charLSTM+copy achieves
BLEU scores of 28.2 and 33.0, respectively,
which are 0.8 and 0.7 BLEU points better than
MSeq2seq+Anon using the same amount of data,
respectively. The BLEU scores are 5.3 and 10.1
points better than the result when it is only trained
with the AMR corpus, respectively. This shows
that our model can benefit from scaled data with
automatically generated AMR graphs, and it is
more effective than MSeq2seq+Anon using the
same amount of data. Using 2M gigaword data,
our model is better than all existing methods. Kon-
stas et al. (2017) also experimented with 20M ex-
ternal data, obtaining a BLEU of 33.8. We did not
try this setting due to hardware limitations. The
Seq2seq+charLSTM+copy baseline trained on the
large-scale data is close to MSeq2seq+Anon us-
ing the same amount of training data, yet is much
worse than our model.

5.6 Case study

We conduct case studies for better understanding
the model performances. Table 3 shows example
outputs of sequence-to-sequence (S2S), graph-to-



1623

sequence (G2S) and graph-to-sequence with copy
mechanism (G2S+CP). Ref denotes the reference
output sentence, and Lin shows the serialization
results of input AMRs. The best hyperparameter
configuration is chosen for each model.

For the first example, S2S fails to recognize the
concept “a / account” as a noun and loses the con-
cept “o / old” (both are underlined). The fact
that “a / account” is a noun is implied by “a / ac-
count :mod (o / old)” in the original AMR graph.
Though directly connected in the original graph,
their distance in the serialization result (the input
of S2S) is 26, which may be why S2S makes these
mistakes. In contrast, G2S handles “a / account”
and “o / old” correctly. In addition, the copy mech-
anism helps to copy “look-over” from the input,
which rarely appears in the training set. In this
case, G2S+CP is incorrect only on hyphens and
literal reference to “anti-japanese war”, although
the meaning is fully understandable.

For the second case, both G2S and G2S+CP
correctly generate the noun “agreement” for “a /
agree” in the input AMR, while S2S fails to. The
fact that “a / agree” represents a noun can be de-
termined by the original graph segment “p / pro-
vide :ARG0 (a / agree)”, which indicates that “a /
agree” is the subject of “p / provide”. In the se-
rialization output, the two nodes are close to each
other. Nevertheless, S2S still failed to capture this
structural relation, which reflects the fact that a se-
quence encoder is not designed to explicitly model
hierarchical information encoded in the serialized
graph. In the training instances, serialized nodes
that are close to each other can originate from
neighboring graph nodes, or distant graph nodes,
which prevents the decoder from confidently de-
ciding the correct relation between them. In con-
trast, G2S sends the node “p / provide” simulta-
neously with relation “ARG0” when calculating
hidden states for “a / agree”, which facilitates the
yielding of “the agreement provides”.

6 Related work

Among early statistical methods for AMR-to-text
generation, Flanigan et al. (2016b) convert input
graphs to trees by splitting re-entrances, and then
translate the trees into sentences with a tree-to-
string transducer. Song et al. (2017) use a syn-
chronous node replacement grammar to parse in-
put AMRs and generate sentences at the same
time. Pourdamghani et al. (2016) linearize input

(p / possible-01 :polarity -
:ARG1 (l / look-over-06

:ARG0 (w / we)
:ARG1 (a / account-01

:ARG1 (w2 / war-01
:ARG1 (c2 / country :wiki “Japan”

:name (n2 / name :op1 “Japan”))
:time (p2 / previous)
:ARG1-of (c / call-01

:mod (s / so)))
:mod (o / old))))

Lin: possible :polarity - :arg1 ( look-over :arg0 we :arg1 (
account :arg1 ( war :arg1 ( country :wiki japan :name ( name
:op1 japan ) ) :time previous :arg1-of ( call :mod so ) ) :mod
old ) )
Ref: we can n’t look over the old accounts of the previous
so-called anti-japanese war .
S2S: we can n’t be able to account the past drawn out of
japan ’s entire war .
G2S: we can n’t be able to do old accounts of the previous
and so called japan war.
G2S+CP: we can n’t look-over the old accounts of the pre-
vious so called war on japan .
(p / provide-01

:ARG0 (a / agree-01)
:ARG1 (a2 / and

:op1 (s / staff
:prep-for (c / center

:mod (r / research-01)))
:op2 (f / fund-01

:prep-for c)))
Lin: provide :arg0 agree :arg1 ( and :op1 ( staff :prep-for (
center :mod research ) ) :op2 ( fund :prep-for center ) )
Ref: the agreement will provide staff and funding for the
research center .
S2S: agreed to provide research and institutes in the center .
G2S: the agreement provides the staff of research centers
and funding .
G2S+CP: the agreement provides the staff of the research
center and the funding .

Table 3: Example system outputs.

graphs by breadth-first traversal, and then use a
phrase-based machine translation system2 to gen-
erate results by translating linearized sequences.

Prior work using graph neural networks for
NLP include the use graph convolutional net-
works (GCN) (Kipf and Welling, 2017) for seman-
tic role labeling (Marcheggiani and Titov, 2017)
and neural machine translation (Bastings et al.,
2017). Both GCN and the graph LSTM update
node states by exchanging information between
neighboring nodes within each iteration. However,
our graph state LSTM adopts gated operations for
making updates, while GCN uses a linear transfor-
mation. Intuitively, the former has better learning
power than the later. Another major difference is
that our graph state LSTM keeps a cell vector for
each node to remember all history. The contrast

2http://www.statmt.org/moses/
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between our model with GCN is reminiscent of the
contrast between RNN and CNN. We leave em-
pirical comparison of their effectiveness to future
work. In this work our main goal is to show that
graph LSTM encoding of AMR is superior com-
pared with sequence LSTM.

Closest to our work, Peng et al. (2017) mod-
eled syntactic and discourse structures using DAG
LSTM, which can be viewed as extensions to tree
LSTMs (Tai et al., 2015). The state update follows
the sentence order for each node, and has sequen-
tial nature. Our state update is in parallel. In addi-
tion, Peng et al. (2017) split input graphs into sep-
arate DAGs before their method can be used. To
our knowledge, we are the first to apply an LSTM
structure to encode AMR graphs.

The recurrent information exchange mechanism
in our state transition process is remotely related to
the idea of loopy belief propagation (LBP) (Mur-
phy et al., 1999). However, there are two major
differences. First, messages between LSTM states
are gated neural node values, rather than probabil-
ities in LBP. Second, while the goal of LBP is
to estimate marginal probabilities, the goal of in-
formation exchange between graph states in our
LSTM is to find neural representation features,
which are directly optimized by a task objective.

In addition to NMT (Gulcehre et al., 2016),
the copy mechanism has been shown effective on
tasks such as dialogue (Gu et al., 2016), summa-
rization (See et al., 2017) and question generation
(Song et al., 2018). We investigate the copy mech-
anism on AMR-to-text generation.

7 Conclusion

We introduced a novel graph-to-sequence model
for AMR-to-text generation. Compared to
sequence-to-sequence models, which require lin-
earization of AMR before decoding, a graph
LSTM is leveraged to directly model full AMR
structure. Allowing high parallelization, the graph
encoder is more efficient than the sequence en-
coder. In our experiments, the graph model out-
performs a strong sequence-to-sequence model,
achieving the best performance.
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