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Abstract

Many natural language processing tasks
can be modeled into structured prediction
and solved as a search problem. In this
paper, we distill an ensemble of multiple
models trained with different initialization
into a single model. In addition to learning
to match the ensemble’s probability out-
put on the reference states, we also use the
ensemble to explore the search space and
learn from the encountered states in the
exploration. Experimental results on two
typical search-based structured prediction
tasks – transition-based dependency pars-
ing and neural machine translation show
that distillation can effectively improve the
single model’s performance and the final
model achieves improvements of 1.32 in
LAS and 2.65 in BLEU score on these
two tasks respectively over strong base-
lines and it outperforms the greedy struc-
tured prediction models in previous litera-
tures.

1 Introduction

Search-based structured prediction models the
generation of natural language structure (part-of-
speech tags, syntax tree, translations, semantic
graphs, etc.) as a search problem (Collins and
Roark, 2004; Liang et al., 2006; Zhang and Clark,
2008; Huang et al., 2012; Sutskever et al., 2014;
Goodman et al., 2016). It has drawn a lot of re-
search attention in recent years thanks to its com-
petitive performance on both accuracy and run-
ning time. A stochastic policy that controls the
whole search process is usually learned by imitat-
ing a reference policy. The imitation is usually ad-
dressed as training a classifier to predict the ref-
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Figure 1: Workflow of our knowledge distillation
for search-based structured prediction. The yel-
low bracket represents the ensemble of multiple
models trained with different initialization. The
dashed red line shows our distillation from refer-
ence (§3.2). The solid blue line shows our distilla-
tion from exploration (§3.3).

erence policy’s search action on the encountered
states when performing the reference policy. Such
imitation process can sometimes be problematic.
One problem is the ambiguities of the reference
policy, in which multiple actions lead to the op-
timal structure but usually, only one is chosen as
training instance (Goldberg and Nivre, 2012). An-
other problem is the discrepancy between train-
ing and testing, in which during the test phase,
the learned policy enters non-optimal states whose
search action is never learned (Ross and Bagnell,
2010; Ross et al., 2011). All these problems harm
the generalization ability of search-based struc-
tured prediction and lead to poor performance.

Previous works tackle these problems from two
directions. To overcome the ambiguities in data,
techniques like ensemble are often adopted (Di-
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Dependency parsing Neural machine translation
st (σ, β,A), where σ is a stack, β is a buffer, andA is the

partially generated tree
($, y1, y2, ..., yt), where $ is the start symbol.

A {SHIFT, LEFT, RIGHT} pick one word w from the target side vocabularyW .
S0 {([ ], [1, .., n], ∅)} {($)}
ST {([ROOT], [ ], A)} {($, y1, y2, ..., ym)}

T (s, a) • SHIFT: (σ, j|β)→ (σ|j, β) ($, y1, y2, ..., yt)→ ($, y1, y2, ..., yt, yt+1 = w)
• LEFT: (σ|i j, β)→ (σ|j, β) A← A ∪ {i← j}
• RIGHT: (σ|i j, β)→ (σ|i, β) A← A ∪ {i→ j}

Table 1: The search-based structured prediction view of transition-based dependency parsing (Nivre,
2008) and neural machine translation (Sutskever et al., 2014).

etterich, 2000). To mitigate the discrepancy, ex-
ploration is encouraged during the training process
(Ross and Bagnell, 2010; Ross et al., 2011; Gold-
berg and Nivre, 2012; Bengio et al., 2015; Good-
man et al., 2016). In this paper, we propose to con-
sider these two problems in an integrated knowl-
edge distillation manner (Hinton et al., 2015). We
distill a single model from the ensemble of sev-
eral baselines trained with different initialization
by matching the ensemble’s output distribution on
the reference states. We also let the ensemble
randomly explore the search space and learn the
single model to mimic ensemble’s distribution on
the encountered exploration states. Combing the
distillation from reference and exploration further
improves our single model’s performance. The
workflow of our method is shown in Figure 1.

We conduct experiments on two typical search-
based structured prediction tasks: transition-based
dependency parsing and neural machine transla-
tion. The results of both these two experiments
show the effectiveness of our knowledge distilla-
tion method by outperforming strong baselines. In
the parsing experiments, an improvement of 1.32
in LAS is achieved and in the machine translation
experiments, such improvement is 2.65 in BLEU.
Our model also outperforms the greedy models in
previous works.

Major contributions of this paper include:

• We study the knowledge distillation in
search-based structured prediction and pro-
pose to distill the knowledge of an en-
semble into a single model by learning to
match its distribution on both the reference
states (§3.2) and exploration states encoun-
tered when using the ensemble to explore the
search space (§3.3). A further combination
of these two methods is also proposed to im-
prove the performance (§3.4).

• We conduct experiments on two search-based
structured prediction problems: transition-
based dependency parsing and neural ma-
chine translation. In both these two problems,
the distilled model significantly improves
over strong baselines and outperforms other
greedy structured prediction (§4.2). Compre-
hensive analysis empirically shows the feasi-
bility of our distillation method (§4.3).

2 Background

2.1 Search-based Structured Prediction
Structured prediction maps an input x =
(x1, x2, ..., xn) to its structural output y =
(y1, y2, ..., ym), where each component of y has
some internal dependencies. Search-based struc-
tured prediction (Collins and Roark, 2004; Daumé
III et al., 2005; Daumé III et al., 2009; Ross and
Bagnell, 2010; Ross et al., 2011; Doppa et al.,
2014; Vlachos and Clark, 2014; Chang et al.,
2015) models the generation of the structure as a
search problem and it can be formalized as a tu-
ple (S,A, T (s, a),S0,ST ), in which S is a set of
states, A is a set of actions, T is a function that
maps S × A → S, S0 is a set of initial states, and
ST is a set of terminal states. Starting from an ini-
tial state s0 ∈ S0, the structured prediction model
repeatably chooses an action at ∈ A by follow-
ing a policy π(s) and applies at to st and enter a
new state st+1 as st+1 ← T (st, at), until a final
state sT ∈ ST is achieved. Several natural lan-
guage structured prediction problems can be mod-
eled under the search-based framework including
dependency parsing (Nivre, 2008) and neural ma-
chine translation (Liang et al., 2006; Sutskever
et al., 2014). Table 1 shows the search-based struc-
tured prediction view of these two problems.

In the data-driven settings, π(s) controls the
whole search process and is usually parameterized
by a classifier p(a | s) which outputs the proba-
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Algorithm 1: Generic learning algorithm for
search-based structured prediction.

Input: training data: {x(n),y(n)}Nn=1; the
reference policy: πR(s,y).

Output: classifier p(a|s).
1 D ← ∅;
2 for n← 1...N do
3 t← 0;
4 st ← s0(x

(n));
5 while st /∈ ST do
6 at ← πR(st,y

(n));
7 D ← D ∪ {st};
8 st+1 ← T (st, at);
9 t← t+ 1;

10 end
11 end
12 optimize LNLL;

bility of choosing an action a on the given state
s. The commonly adopted greedy policy can be
formalized as choosing the most probable action
with π(s) = argmaxa p(a | s) at test stage. To
learn an optimal classifier, search-based structured
prediction requires constructing a reference policy
πR(s,y), which takes an input state s, gold struc-
ture y and outputs its reference action a, and train-
ing p(a | s) to imitate the reference policy. Algo-
rithm 1 shows the common practices in training
p(a | s), which involves: first, using πR(s,y) to
generate a sequence of reference states and actions
on the training data (line 1 to line 11 in Algorithm
1); second, using the states and actions on the ref-
erence sequences as examples to train p(a | s)
with negative log-likelihood (NLL) loss (line 12
in Algorithm 1),

LNLL =
∑
s∈D

∑
a

−1{a = πR} · log p(a | s)

where D is a set of training data.
The reference policy is sometimes sub-optimal

and ambiguous which means on one state, there
can be more than one action that leads to the
optimal prediction. In transition-based depen-
dency parsing, Goldberg and Nivre (2012) showed
that one dependency tree can be reached by sev-
eral search sequences using Nivre (2008)’s arc-
standard algorithm. In machine translation, the
ambiguity problem also exists because one source
language sentence usually has multiple semanti-
cally correct translations but only one reference

translation is presented. Similar problems have
also been observed in semantic parsing (Goodman
et al., 2016). According to Frénay and Verleysen
(2014), the widely used NLL loss is vulnerable to
ambiguous data which make it worse for search-
based structured prediction.

Besides the ambiguity problem, training and
testing discrepancy is another problem that lags
the search-based structured prediction perfor-
mance. Since the training process imitates the ref-
erence policy, all the states in the training data are
optimal which means they are guaranteed to reach
the optimal structure. But during the test phase,
the model can predict non-optimal states whose
search action is never learned. The greedy search
which is prone to error propagation also worsens
this problem.

2.2 Knowledge Distillation
A cumbersome model, which could be an en-
semble of several models or a single model with
larger number of parameters, usually provides bet-
ter generalization ability. Knowledge distillation
(Buciluǎ et al., 2006; Ba and Caruana, 2014; Hin-
ton et al., 2015) is a class of methods for trans-
ferring the generalization ability of the cumber-
some teacher model into a small student model.
Instead of optimizing NLL loss, knowledge distil-
lation uses the distribution q(y | x) outputted by
the teacher model as “soft target” and optimizes
the knowledge distillation loss,

LKD =
∑
x∈D

∑
y

−q(y | x) · log p(y | x).

In search-based structured prediction scenario, x
corresponds to the state s and y corresponds to the
action a. Through optimizing the distillation loss,
knowledge of the teacher model is learned by the
student model p(y | x). When correct label is pre-
sented, NLL loss can be combined with the distil-
lation loss via simple interpolation as

L = αLKD + (1− α)LNLL (1)

3 Knowledge Distillation for
Search-based Structured Prediction

3.1 Ensemble
As Hinton et al. (2015) pointed out, although the
real objective of a machine learning algorithm is
to generalize well to new data, models are usu-
ally trained to optimize the performance on train-
ing data, which bias the model to the training data.
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In search-based structured prediction, such biases
can result from either the ambiguities in the train-
ing data or the discrepancy between training and
testing. It would be more problematic to train
p(a | s) using the loss which is in-robust to am-
biguities and only considering the optimal states.

The effect of ensemble on ambiguous data has
been studied in Dietterich (2000). They empiri-
cally showed that ensemble can overcome the am-
biguities in the training data. Daumé III et al.
(2005) also use weighted ensemble of parame-
ters from different iterations as their final structure
prediction model. In this paper, we consider to
use ensemble technique to improve the generaliza-
tion ability of our search-based structured predic-
tion model following these works. In practice, we
train M search-based structured prediction mod-
els with different initialized weights and ensemble
them by the average of their output distribution as
q(a | s) = 1

M

∑
m qm(a | s). In Section 4.3.1, we

empirically show that the ensemble has the ability
to choose a good search action in the optimal-yet-
ambiguous states and the non-optimal states.

3.2 Distillation from Reference
As we can see in Section 4, ensemble indeed im-
proves the performance of baseline models. How-
ever, real world deployment is usually constrained
by computation and memory resources. Ensemble
requires running the structured prediction models
for multiple times, and that makes it less appli-
cable in real-world problem. To take the advan-
tage of the ensemble model while avoid running
the models multiple times, we use the knowledge
distillation technique to distill a single model from
the ensemble. We started from changing the NLL
learning objective in Algorithm 1 into the distil-
lation loss (Equation 1) as shown in Algorithm 2.
Since such method learns the model on the states
produced by the reference policy, we name it as
distillation from reference. Blocks connected by
in dashed red lines in Figure 1 show the workflow
of our distillation from reference.

3.3 Distillation from Exploration
In the scenario of search-based structured predic-
tion, transferring the teacher model’s generaliza-
tion ability into a student model not only includes
matching the teacher model’s soft targets on the
reference search sequence, but also imitating the
search decisions made by the teacher model. One
way to accomplish the imitation can be sampling

Algorithm 2: Knowledge distillation for
search-based structured prediction.

Input: training data: {x(n),y(n)}Nn=1; the
reference policy: πR(s,y); the
exploration policy: πE(s) which
samples an action from the annealed
ensemble q(a | s)

1
T

Output: classifier p(a | s).
1 D ← ∅;
2 for n← 1...N do
3 t← 0;
4 st ← s0(x

(n));
5 while st /∈ ST do
6 if distilling from reference then
7 at ← πR(st,y

(n));
8 else
9 at ← πE(st);

10 end
11 D ← D ∪ {st};
12 st+1 ← T (st, at);
13 t← t+ 1;
14 end
15 end
16 if distilling from reference then
17 optimize αLKD + (1− α)LNLL;
18 else
19 optimize LKD;
20 end

search sequence from the ensemble and learn from
the soft target on the sampled states. More con-
cretely, we change πR(s,y) into a policy πE(s)

which samples an action a from q(a | s)
1
T , where

T is the temperature that controls the sharpness
of the distribution (Hinton et al., 2015). The algo-
rithm is shown in Algorithm 2. Since such distilla-
tion generate training instances from exploration,
we name it as distillation from exploration. Blocks
connected by in solid blue lines in Figure 1 show
the workflow of our distillation from exploration.

On the sampled states, reference decision from
πR is usually non-trivial to achieve, which makes
learning from NLL loss infeasible. In Section 4,
we empirically show that fully distilling from the
soft target, i.e. setting α = 1 in Equation 1,
achieves comparable performance with that both
from distillation and NLL.
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3.4 Distillation from Both
Distillation from reference can encourage the
model to predict the action made by the reference
policy and distillation from exploration learns the
model on arbitrary states. They transfer the gener-
alization ability of the ensemble from different as-
pects. Hopefully combining them can further im-
prove the performance. In this paper, we combine
distillation from reference and exploration with
the following manner: we use πR and πE to gener-
ate a set of training states. Then, we learn p(a | s)
on the generated states. If one state was generated
by the reference policy, we minimize the interpre-
tation of distillation and NLL loss. Otherwise, we
minimize the distillation loss only.

4 Experiments

We perform experiments on two tasks: transition-
based dependency parsing and neural machine
translation. Both these two tasks are converted to
search-based structured prediction as Section 2.1.

For the transition-based parsing, we use the
stack-lstm parsing model proposed by Dyer et al.
(2015) to parameterize the classifier.1 For the neu-
ral machine translation, we parameterize the clas-
sifier as an LSTM encoder-decoder model by fol-
lowing Luong et al. (2015).2 We encourage the
reader of this paper to refer corresponding papers
for more details.

4.1 Settings
4.1.1 Transition-based Dependency Parsing
We perform experiments on Penn Treebank (PTB)
dataset with standard data split (Section 2-21 for
training, Section 22 for development, and Sec-
tion 23 for testing). Stanford dependencies are
converted from the original constituent trees us-
ing Stanford CoreNLP 3.3.03 by following Dyer
et al. (2015). Automatic part-of-speech tags are
assigned by 10-way jackknifing whose accuracy is
97.5%. Labeled attachment score (LAS) exclud-
ing punctuation are used in evaluation. For the
other hyper-parameters, we use the same settings
as Dyer et al. (2015). The best iteration and α is
determined on the development set.

1The code for parsing experiments is available at:
https://github.com/Oneplus/twpipe.

2We based our NMT experiments on OpenNMT (Klein
et al., 2017). The code for NMT experiments is available at:
https://github.com/Oneplus/OpenNMT-py.

3stanfordnlp.github.io/CoreNLP/
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Figure 2: The effect of using different Ks when
approximating distillation loss with K-most prob-
able actions in the machine translation experi-
ments.

Reimers and Gurevych (2017) and others have
pointed out that neural network training is nonde-
terministic and depends on the seed for the random
number generator. To control for this effect, they
suggest to report the average of M differently-
seeded runs. In all our dependency parsing, we
set n = 20.

4.1.2 Neural Machine Translation
We conduct our experiments on a small ma-
chine translation dataset, which is the German-
to-English portion of the IWSLT 2014 machine
translation evaluation campaign. The dataset con-
tains around 153K training sentence pairs, 7K de-
velopment sentence pairs, and 7K testing sentence
pairs. We use the same preprocessing as Ranzato
et al. (2015), which leads to a German vocabu-
lary of about 30K entries and an English vocabu-
lary of 25K entries. One-layer LSTM for both en-
coder and decoder with 256 hidden units are used
by following Wiseman and Rush (2016). BLEU
(Papineni et al., 2002) was used to evaluate the
translator’s performance.4 Like in the dependency
parsing experiments, we run M = 10 differently-
seeded runs and report the averaged score.

Optimizing the distillation loss in Equation 1 re-
quires enumerating over the action space. It is ex-
pensive for machine translation since the size of
the action space (vocabulary) is considerably large
(25K in our experiments). In this paper, we use
the K-most probable actions (translations on tar-
get side) on one state to approximate the whole
probability distribution of q(a | s) as

∑
a q(a |

s) · log p(a | s) ≈
∑K

k q(âk | s) · log p(âk | s),
where âk is the k-th probable action. We fix α to

4We use multi-bleu.perl to evaluate our model’s
performance

https://github.com/Oneplus/twpipe
https://github.com/Oneplus/OpenNMT-py
stanfordnlp.github.io/CoreNLP/history.html
stanfordnlp.github.io/CoreNLP/history.html
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LAS
Baseline 90.83
Ensemble (20) 92.73
Distill (reference, α=1.0) 91.99
Distill (exploration, T=1.0) 92.00
Distill (both) 92.14
Ballesteros et al. (2016) (dyn. oracle) 91.42
Andor et al. (2016) (local, B=1) 91.02
Buckman et al. (2016) (local, B=8) 91.19
Andor et al. (2016) (local, B=32) 91.70
Andor et al. (2016) (global, B=32) 92.79
Dozat and Manning (2016) 94.08
Kuncoro et al. (2016) 92.06
Kuncoro et al. (2017) 94.60

Table 2: The dependency parsing results. Signif-
icance test (Nilsson and Nivre, 2008) shows the
improvement of our Distill (both) over Baseline is
statistically significant with p < 0.01.

1 and vary K and evaluate the distillation model’s
performance. These results are shown in Figure
2 where there is no significant difference between
different Ks and in speed consideration, we set K
to 1 in the following experiments.

4.2 Results

4.2.1 Transition-based Dependency Parsing
Table 2 shows our PTB experimental results. From
this result, we can see that the ensemble model
outperforms the baseline model by 1.90 in LAS.
For our distillation from reference, when setting
α = 1.0, best performance on development set is
achieved and the test LAS is 91.99.

We tune the temperature T during exploration
and the results are shown in Figure 3. Sharpen the
distribution during the sampling process generally
performs better on development set. Our distilla-
tion from exploration model gets almost the same
performance as that from reference, but simply
combing these two sets of data outperform both
models by achieving an LAS of 92.14.

We also compare our parser with the other
parsers in Table 2. The second group shows the
greedy transition-based parsers in previous litera-
tures. Andor et al. (2016) presented an alternative
state representation and explored both greedy and
beam search decoding. (Ballesteros et al., 2016)
explores training the greedy parser with dynamic
oracle. Our distillation parser outperforms all
these greedy counterparts. The third group shows

BLEU
Baseline 22.79
Ensemble (10) 26.26
Distill (reference, α=0.8) 24.76
Distill (exploration, T=0.1) 24.64
Distill (both) 25.44
MIXER 20.73
BSO (local, B=1) 22.53
BSO (global, B=1) 23.83

Table 3: The machine translation results. MIXER
denotes that of Ranzato et al. (2015), BSO denotes
that of Wiseman and Rush (2016). Significance
test (Koehn, 2004) shows the improvement of our
Distill (both) over Baseline is statistically signifi-
cant with p < 0.01.
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Figure 3: The effect of T on PTB (above) and
IWSLT 2014 (below) development set.

parsers trained on different techniques includ-
ing decoding with beam search (Buckman et al.,
2016; Andor et al., 2016), training transition-
based parser with beam search (Andor et al.,
2016), graph-based parsing (Dozat and Manning,
2016), distilling a graph-based parser from the
output of 20 parsers (Kuncoro et al., 2016), and
converting constituent parsing results to depen-
dencies (Kuncoro et al., 2017). Our distillation
parser still outperforms its transition-based coun-
terparts but lags the others. We attribute the gap
between our parser with the other parsers to the
difference in parsing algorithms.
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4.2.2 Neural Machine Translation

Table 3 shows the experimental results on IWSLT
2014 dataset. Similar to the PTB parsing results,
the ensemble 10 translators outperforms the base-
line translator by 3.47 in BLEU score. Distill-
ing from the ensemble by following the reference
leads to a single translator of 24.76 BLEU score.

Like in the parsing experiments, sharpen the
distribution when exploring the search space is
more helpful to the model’s performance but the
differences when T ≤ 0.2 is not significant as
shown in Figure 3. We set T = 0.1 in our
distillation from exploration experiments since it
achieves the best development score. Table 3
shows the exploration result of a BLEU score of
24.64 and it slightly lags the best reference model.
Distilling from both the reference and exploration
improves the single model’s performance by a
large margin and achieves a BLEU score of 25.44.

We also compare our model with other trans-
lation models including the one trained with re-
inforcement learning (Ranzato et al., 2015) and
that using beam search in training (Wiseman and
Rush, 2016). Our distillation translator outper-
forms these models.

Both the parsing and machine translation exper-
iments confirm that it’s feasible to distill a rea-
sonable search-based structured prediction model
by just exploring the search space. Combining
the reference and exploration further improves the
model’s performance and outperforms its greedy
structured prediction counterparts.

4.3 Analysis

In Section 4.2, improvements from distilling
the ensemble have been witnessed in both the
transition-based dependency parsing and neural
machine translation experiments. However, ques-
tions like “Why the ensemble works better? Is
it feasible to fully learn from the distillation loss
without NLL? Is learning from distillation loss sta-
ble?” are yet to be answered. In this section,
we first study the ensemble’s behavior on “prob-
lematic” states to show its generalization ability.
Then, we empirically study the feasibility of fully
learning from the distillation loss by studying the
effect of α in the distillation from reference set-
ting. Finally, we show that learning from dis-
tillation loss is less sensitive to initialization and
achieves a more stable model.

optimal-yet-
ambiguous

non-optimal

Baseline 68.59 89.59
Ensemble 74.19 90.90
Distill (both) 81.15 91.38

Table 4: The ranking performance of parsers’ out-
put distributions evaluated in MAP on “problem-
atic” states.

4.3.1 Ensemble on “Problematic” States

As mentioned in previous sections, “problematic”
states which is either ambiguous or non-optimal
harm structured prediciton’s performance. Ensem-
ble shows to improve the performance in Section
4.2, which indicates it does better on these states.
To empirically testify this, we use dependency
parsing as a testbed and study the ensemble’s out-
put distribution using the dynamic oracle.

The dynamic oracle (Goldberg and Nivre, 2012;
Goldberg et al., 2014) can be used to efficiently
determine, given any state s, which transition ac-
tion leads to the best achievable parse from s; if
some errors may have already made, what is the
best the parser can do, going forward? This allows
us to analyze the accuracy of each parser’s indi-
vidual decisions, in the “problematic” states. In
this paper, we evaluate the output distributions of
the baseline and ensemble parser against the ref-
erence actions suggested by the dynamic oracle.
Since dynamic oracle yields more than one refer-
ence actions due to ambiguities and previous mis-
takes and the output distribution can be treated as
their scoring, we evaluate them as a ranking prob-
lem. Intuitively, when multiple reference actions
exist, a good parser should push probability mass
to these actions. We draw problematic states by
sampling from our baseline parser. The compar-
ison in Table 4 shows that the ensemble model
significantly outperforms the baseline on ambigu-
ous and non-optimal states. This observation in-
dicates the ensemble’s output distribution is more
“informative”, thus generalizes well on problem-
atic states and achieves better performance. We
also observe that the distillation model perform
better than both the baseline and ensemble. We
attribute this to the fact that the distillation model
is learned from exploration.
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Figure 4: The effect of α on PTB (above) and
IWSLT 2014 (below) development set.

4.3.2 Effect of α

Over our distillation from reference model, we
study the effect of α in Equation 1. We vary α
from 0 to 1 by a step of 0.1 in both the transition-
based dependency parsing and neural machine
translation experiments and plot the model’s per-
formance on development sets in Figure 4. Similar
trends are witnessed in both these two experiments
that model that’s configured with larger α gener-
ally performs better than that with smaller α. For
the dependency parsing problem, the best develop-
ment performance is achieved when we set α = 1,
and for the machine translation, the best α is 0.8.
There is only 0.2 point of difference between the
best α model and the one with α equals to 1. Such
observation indicates that when distilling from the
reference policy paying more attention to the dis-
tillation loss rather than the NLL is more benefi-
cial. It also indicates that fully learning from the
distillation loss outputted by the ensemble is rea-
sonable because models configured with α = 1
generally achieves good performance.

4.3.3 Learning Stability

Besides the improved performance, knowledge
distillation also leads to more stable learning. The
performance score distributions of differently-
seed runs are depicted as violin plot in Figure 5.
Table 5 also reveals the smaller standard deriva-
tions are achieved by our distillation methods. As
Keskar et al. (2016) pointed out that the general-
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Figure 5: The distributions of scores for the
baseline model and our distillation from both on
PTB test (left) and IWSLT 2014 test (right) on
differently-seeded runs.

system seeds min max σ

PTB test
Baseline 20 90.45 91.14 0.17

Distill (both) 20 92.00 92.37 0.09
IWSLT 2014 test
Baseline 10 21.63 23.67 0.55

Distill (both) 10 24.22 25.65 0.12

Table 5: The minimal, maximum, and standard
derivation values on differently-seeded runs.

ization gap is not due to overfit, but due to the net-
work converge to sharp minimizer which general-
izes worse, we attribute the more stable training
from our distillation model as the distillation loss
presents less sharp minimizers.

5 Related Work

Several works have been proposed to applying
knowledge distillation to NLP problems. Kim and
Rush (2016) presented a distillation model which
focus on distilling the structured loss from a large
model into a small one which works on sequence-
level. In contrast to their work, we pay more at-
tention to action-level distillation and propose to
do better action-level distillation by both from ref-
erence and exploration.

Freitag et al. (2017) used an ensemble of 6-
translators to generate training reference. Explo-
ration was tried in their work with beam-search.
We differ their work by training the single model
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to match the distribution of the ensemble.
Using ensemble in exploration was also stud-

ied in reinforcement learning community (Osband
et al., 2016). In addition to distilling the ensem-
ble on the labeled training data, a line of semi-
supervised learning works show that it’s effective
to transfer knowledge of cumbersome model into
a simple one on the unlabeled data (Liang et al.,
2008; Li et al., 2014). Their extensions to knowl-
edge distillation call for further study.

Kuncoro et al. (2016) proposed to compile the
knowledge from an ensemble of 20 transition-
based parsers into a voting and distill the knowl-
edge by introducing the voting results as a regu-
larizer in learning a graph-based parser. Different
from their work, we directly do the distillation on
the classifier of the transition-based parser.

Besides the attempts for directly using the
knowledge distillation technique, Stahlberg and
Byrne (2017) propose to first build the ensemble
of several machine translators into one network
by unfolding and then use SVD to shrink its pa-
rameters, which can be treated as another kind of
knowledge distillation.

6 Conclusion

In this paper, we study knowledge distillation for
search-based structured prediction and propose to
distill an ensemble into a single model both from
reference and exploration states. Experiments
on transition-based dependency parsing and ma-
chine translation show that our distillation method
significantly improves the single model’s perfor-
mance. Comparison analysis gives empirically
guarantee for our distillation method.
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