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Abstract

The process of translation is ambiguous, in
that there are typically many valid trans-
lations for a given sentence. This gives
rise to significant variation in parallel cor-
pora, however, most current models of
machine translation do not account for
this variation, instead treating the prob-
lem as a deterministic process. To this
end, we present a deep generative model
of machine translation which incorporates
a chain of latent variables, in order to ac-
count for local lexical and syntactic varia-
tion in parallel corpora. We provide an in-
depth analysis of the pitfalls encountered
in variational inference for training deep
generative models. Experiments on sev-
eral different language pairs demonstrate
that the model consistently improves over
strong baselines.

1 Introduction

Neural architectures have taken the field of ma-
chine translation by storm and are in the pro-
cess of replacing phrase-based systems. Based on
the encoder-decoder framework (Sutskever et al.,
2014) increasingly complex neural systems are
being developed at the moment. These systems
find new ways of extracting information from the
source sentence and the target sentence prefix for
example by using convolutions (Gehring et al.,
2017) or stacked self-attention layers (Vaswani
et al., 2017). These architectural changes have led
to great performance improvements over classical
RNN-based neural translation systems (Bahdanau
et al., 2014).

∗Code and a workflow that reproduces the experiments
are available at https://github.com/philschulz/
stochastic-decoder.

†Work done prior to joining Amazon.

Surprisingly, there have been almost no efforts
to change the probabilistic model wich is used to
train the neural architectures. A notable exception
is the work of Zhang et al. (2016) who introduce a
sentence-level latent Gaussian variable.
In this work, we propose a more expressive

latent variable model that extends the attention-
based architecture of Bahdanau et al. (2014). Our
model is motivated by the following observation:
translations by professional translators vary across
translators but also within a single translator (the
same translator may produce different translations
on different days, depending on his state of health,
concentration etc.). Neural machine translation
(NMT) models are incapable of capturing this
variation, however. This is because their likeli-
hood function incorporates the statistical assump-
tion that there is one (and only one) output1 for a
given source sentence, i.e.,

P (yn1 |xm1 ) =

n∏
i=1

P (yi|xm1 , y<i) . (1)

Our proposal is to augment this model with la-
tent sources of variation that are able to represent
more of the variation present in the training data.
The noise sources are modelled as Gaussian ran-
dom variables.
The contributions of this work are:
• The introduction of an NMT system that is
capable of capturing word-level variation in
translation data.

• A thorough discussions of issues encountered
when training this model. In particular, we
motivate the use of KL scaling as introduced
by Bowman et al. (2016) theoretically.

1Notice that from a statistical perspective the output of an
NMT system is a distribution over target sentences and not
any particular sentence. The mapping from the output dis-
tribution to a sentence is performed by a decision rule (e.g.
argmax decoding) which can be chosen independently of the
NMT system.

https://github.com/philschulz/stochastic-decoder
https://github.com/philschulz/stochastic-decoder
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• An empirical demonstration of the improve-
ments achievable with the proposed model.

2 Neural Machine Translation

The NMT system upon which we base our exper-
iments is based on the work of Bahdanau et al.
(2014). The likelihood of the model is given in
Equation (1). We briefly describe its architecture.
Let xm1 = (x1, . . . , xm) be the source sentence

and yn1 the target sentence. Let RNN (·) be any
function computed by a recurrent neural network
(we use a bi-LSTM for the encoder and an LSTM
for the decoder). We call the decoder state at the
ith target position ti; 1 ≤ i ≤ n. The computation
performed by the baseline system is summarised
below.[

h1, . . . , hm
]
= RNN (xm1 ) (2a)

t̃i = RNN (ti−1, yi−1) (2b)

eij = v⊤a tanh
(
Wa[t̃i, hj ]

⊤ + ba

)
(2c)

αij =
exp (eij)∑m
j=1 exp (eij)

(2d)

ci =
m∑
j=1

αijhj (2e)

ti = Wt[t̃i, ci]
⊤ + bt (2f)

ϕi = softmax(Woti + bo) (2g)

The parameters {Wa,Wt,Wo, ba, bt, bo, va} ⊆
θ are learned during training. The model is trained
usingmaximum likelihood estimation. Thismeans
that we employ a cross-entropy loss whose input is
the probability vector returned by the softmax.

3 Stochastic Decoder

This section introduces our stochastic decoder
model for capturing word-level variation in trans-
lation data.

3.1 Motivation
Imagine an idealised translator whose translations
are always perfectly accurate and fluent. If an MT
systemwas providedwith training data from such a
translator, it would still encounter variation in that
data. After all, there are several perfectly accurate
and fluent translations for each source sentence.
These can be highly different in both their lexical
as well as their syntactic realisations.

In practice, of course, human translators’ per-
formance varies according to their level of educa-
tion, their experience on the job, their familiarity
with the textual domain and myriads of other fac-
tors. Even within a single translator variation may
occur due to level of stress, tiredness or status of
health. That translation corpora contain variation
is acknowledged by the machine translation com-
munity in the design of their evaluation metrics
which are geared towards comparing onemachine-
generated translation against several human trans-
lations (see e.g. Papineni et al., 2002).

Prior to our work, the only attempt at mod-
elling the latent variation underlying these differ-
ent translations was made by Zhang et al. (2016)
who introduced a sentence level Gaussian variable.
Intuitively, however, there is more to latent varia-
tion than a unimodal density can capture, for ex-
ample, there may be several highly likely clusters
of plausible variations. A cluster may e.g. consist
of identical syntactic structures that differ in word
choice, another may consist of different syntactic
constructs such as active or passive constructions.
Multimodal modelling of these variations is thus
called for—and our results confirm this intuition.

An example of variation comes from free word
order and agreement phenomena in morphologi-
cally rich languages. An English sentence with
rigid word order may be translated into several or-
derings in German. However, all orderings need
to respect the agreement relationship between the
main verb and the subject (indicated by underlin-
ing) as well as the dative case of the direct object
(dashes) and the accusative of the indirect object
(dots). The agreement requirements are fixed and
independent of word order.

1. I can’t imagine you naked.
(a) Ich kann mir . . . .dich nicht nackt vorstellen.
(b) Ich kann . . . . .dich mir nicht nackt vorstellen.
(c) . . . . .Dich kann ichmir nicht nackt vorstellen.

Stochastically encoding the word order variation
allows the model to learn the same agreement phe-
nomenon from different translation variants as it
does not need to encode the word order and agree-
ment relationships jointly in the decoder state.

Further examples of VP and NP variation from
an actual translation corpus are shown in Figure 1.

We aim to address these word-level variation
phenomena with a stochastic decoder model.



1245

预计听证会将进⾏两天。 VOM19981105_0700_0262

The hearing is expected to last two days.
The hearing will last two days.
The hearings are expected to last two days.
It is expected that the hearing will go on for two days.

众议院共和党的起诉⼈则希望传唤莱温斯基等多达15个⼈出庭作证。 VOM19981230_0700_0515

However, the Republican complainant in the House wanted to summon 15 people including Lewinsky
to testify in court.
The prosecutor of Republican Party in House of Representative hoped to summons more than 15
persons, including Lewinsky, to court.
The House of Representatives republican prosecution hopes to summon over fifteen witnesses includ-
ing Monica Lewinsky to appear in court.

Figure 1: Examples from the multiple-translation Chinese corpus (LDC2002T01), where the translations
come from different translators. These demonstrate the lexical variation of the verb and variation between
passive and raising structures (top), and lexical variation on the agent NP (bottom). Both examples also
exhibit appreciable length variation.

3.2 Model formulation
The model contains a latent Gaussian variable for
each target position. This variable depends on
the previous latent states and the decoder state.
Through the use of recurrent networks, the condi-
tioning context does not need to be restricted and
the likelihood factorises exactly.

P (yn1 |xm1 ) =

∫
dzn0 p(z0|xm1 )×

n∏
i=1

p(zi|z<i, y<i, x
m
1 )P (yi|zi1, y<i, x

m
1 )

(3)

As can be seen from Equation (3), the model
also contains a 0th latent variable that is meant to
initialise the chain of latent variables based solely
on the source sentence. Contrast this with the
model of Zhang et al. (2016) which uses only that
0th variable.
A graphical representation of the stochastic de-

coder model is given in Figure 2a. Its generative
story is as follows

Z0|xm1 ∼ N (µ0, σ
2
0) (4a)

Zi|z<i, y<i, x
m
1 ∼ N (µi, σ

2
i ) (4b)

Yi|zi0, y<i, x
m
1 ∼ Cat(ϕi) (4c)

where i = 1, . . . , n and both the Gaussian and
the Categorical parameters are predicted by neural
network architectures whose inputs vary per time
step. This probabilistic formulation can be imple-
mented with a multitude of different architectures.
We present ours in the next section.

3.3 Neural Architecture

Since the model contains latent variables and is
parametrised by a neural network, it falls into the
class of deep generative models (DGMs). We
use a reparametrisation of the Gaussian variables
(Kingma and Welling, 2014; Rezende et al., 2014;
Titsias and Lázaro-Gredilla, 2014) to enable back-
propagation inside a stochastic computation graph
(Schulman et al., 2015). In order to sample d-
dimensional Gaussian variable z ∈ Rd with mean
µ and variance σ2, we first sample from a standard
Gaussian distribution and then transform the sam-
ple,

z = µ+ σ ⊙ ϵ ϵ ∼ N (0, I) . (5)

Here µ, σ ∈ Rd and ⊙ denotes element-wise
multiplication (also known as Hadamard product).
See the supplement for details on the Gaussian
reparametrisation.
We use neural networks with one hidden layer

with a tanh activation to compute the mean and
standard deviation of each Gaussian distribution.
A softplus transformation is applied to the output
of the standard deviation’s network to ensure pos-
itivity. Let us denote the functions that these net-
works compute by f .
For the initial latent state z0 we compute the

mean and standard deviation as

µ0 = fµ0 (hm) σ0 = fσ0 (hm) . (6)
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Figure 2: Graphical representation of 2a the generative model and 2b the inference model. Black lines
indicate generative parameters (θ) and red lines variational parameters (λ). Dashed red-black lines indi-
cate that the inference model uses feature representations computed by the generative model as inputs.
Through the recurrent net, the generative model (2a) also conditions its outputs on all previous latent
assignments. We omit these arrows to avoid clutter. The inference model (2b) is only used at training
time. Dots indicate further conditioning context.

The parameters of all other latent distributions are
computed by functions fµ and fσ whose inputs
vary per target position.

µi = fµ (ti−1, zi−1) σi = fσ (ti−1, zi−1) (7)

Using these values, each latent variable is sam-
pled according to Equation (5). The sampled latent
variables are then used to modify the update of the
decoder hidden state (Equation (2b)) as follows:

t̃i = RNN (ti−1, yi−1, zi) (8)

The remaining computations stay unchanged.
Notice that the latent values are used directly in up-
dating the decoder state. This makes the decoder
state a function of a random variable and thus the
decoder state is itself random. Applying this ar-
gument recursively shows that also the attention
mechanism is random, making the decoder entirely
stochastic.

4 Inference and Training

We use variational inference (see e.g. Blei et al.,
2017) to train the model. In variational inference,
we employ a variational distribution q(z) that ap-
proximates the true posterior p(z|x) over the latent
variables. The distribution q(z) has its own set of
parameters λ that is disjoint from the set of model
parameters θ. It is used to maximise the evidence
lower bound (ELBO) which is a lower bound on
the marginal likelihood p(x). The ELBO is max-
imised with respect to both the model parameters
θ and the variational parameters λ.
Most NLP models that use DGMs only use one

latent variable (e.g. Bowman et al., 2016). Models

that use several variables usually employ a mean
field approximation under which all latent vari-
ables are independent. This turns the ELBO into a
sum of expectations (e.g. Zhou and Neubig, 2017).
For our stochastic decoder we design a more flexi-
ble approximation posterior family which respects
the dependencies between the latent variables,

q(zn0 ) = q(z0)

n∏
i=1

q(zi|z<i) . (9)

Our stochastic decoder can be viewed as a stack of
conditional DGMs (Sohn et al., 2015) in which the
latent variables depend on one another. The ELBO
thus consists of nested positional ELBOs,

ELBO0 + Eq(z0)[ELBO1

+Eq(z1)[ELBO2 + . . .]] ,
(10)

where for a given target position i the ELBO is

ELBOi = Eq(zi) [log p(yi|x
m
1 , y<i, z<i, zi)]

−KL (q(zi) || p(zi|xm1 , y<i, z<i)) .
(11)

The first term is often called reconstruction or like-
lihood term whereas the second term is called the
KL term. Since the KL term is a function of two
Gaussian distributions, and the Gaussian is an ex-
ponential family, we can compute it analytically
(Michalowicz et al., 2014), without the need for
sampling. This is very similar to the hierarchical
latent variable model of Rezende et al. (2014).
Following common practice in DGM research,

we employ a neural network to compute the vari-
ational distributions. To discriminate it from the
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generative model, we call this neural net the in-
ference model. At training time both the source
and target sentence are observed. We exploit this
by endowing our inference model with a “look-
ahead” mechanism. Concretely, samples from the
inference network condition on the information
available to the generation network (Section 3.3)
and also on the target words that are yet to be pro-
cessed by the generative decoder. This allows the
latent distribution to not only encode information
about the currently modelled word but also about
the target words that follow it. The conditioning
of the inference network is illustrated graphically
in Figure 2b.
The inference network produces additional rep-

resentations of the target sentence. One represen-
tation encodes the target sentence bidirectionally
(12a), in analogy to the source sentence encoding.
The second representation is built by encoding the
target sentence in reverse (12b). This reverse en-
coding can be used to provide information about
future context to the decoder. We use the sym-
bols b and r for the bidirectional and reverse target
encodings, respectively. In our experiments, we
again use LSTMs to compute these encodings.[

b1, . . . , bn
]
= RNN (yn1 ) (12a)[

r1, . . . , rn
]
= RNN (yn1 ) (12b)

In analogy to the generativemodel (Section 3.3),
the inference network uses single hidden layer net-
works to compute the mean and standard devia-
tions of the latent variable distributions. We denote
these functions g and again employ different func-
tions for the initial latent state and all other latent
states.

µ0 = gµ0 (hm, bn) (13a)
σ0 = gσ0 (hm, bn) (13b)
µi = gµ (ti−1, zi−1, ri, yi) (13c)
σi = gσ (ti−1, zi−1, ri, yi) (13d)

As before, we use Equation (5) to sample from the
variational distribution.
During training, all samples are obtained from

the inference network. Only at test time do we
sample from the generator. Notice that since the
inference network conditions on representations
produced by the generator network, a naïve appli-
cation of backpropagation would update parts of
the generator network with gradients computed for

the inference network. We prevent this by block-
ing gradient flow from the inference net into the
generator.

4.1 Analysis of the Training Procedure

The training procedure as outlined above does not
work well empirically. This is because our model
uses a strong generator. By this we mean that
the generation model (that is the baseline NMT
model) is a very good density model in and by it-
self and does not need to rely on latent informa-
tion to achieve acceptable likelihood values dur-
ing training. DGMs with strong generators have
a tendency to not make use of latent information
(Bowman et al., 2016). This problem went ini-
tially unnoticed because early DGMs (Kingma and
Welling, 2014; Rezende et al., 2014) used weak
generators2, i.e. models that made very strong in-
dependence assumptions and were not able to cap-
ture contextual information without making use of
the information encoded by the latent variable.
WhyDGMswould ignore the latent information

can be understood by considering the KL-term of
the ELBO. In order for the latent variable to be in-
formative about the observed data, we need them
to have high mutual information I(Z;Y ).

I(Z;Y ) = Ep(z,y)

[
log

p(Z, Y )

p(Z)p(Y )

]
(14)

Observe that we can rewrite the mutual informa-
tion as an expected KL divergence by applying the
definition of conditional probability.

I(Z;Y ) = Ep(y) [KL (p(Z|Y ) || p(Z))] (15)

Since we cannot compute the posterior p(z|y)
exactly, we approximate it with the variational
distribution q(z|y) (the joint is approximated by
q(z|y)p(y) where the latter factor is the data dis-
tribution). To the extent that the variational distri-
bution recovers the true posterior, the mutual in-
formation can be computed this way. In fact, if
we take the learned prior p(z) to be an approxima-
tion of themarginal

∫
q(z|y)p(y)dy it can easily be

shown that the thus computed KL term is an upper
bound on mutual information (Alemi et al., 2017).
The trouble is that the ELBO (Equation (11))

can be trivially maximised by setting the KL-term
to 0 and maximising only the reconstruction term.

2The term weak generator has first been coined by Alemi
et al. (2017).
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This is especially likely at the beginning of train-
ing when the variational approximation does not
yet encode much useful information. We can only
hope to learn a useful variational distribution if a)
the variational approximation is allowed to move
away from the prior and b) the resulting increase in
the reconstruction term is higher than the increase
in the KL-term (i.e. the ELBO increases overall).
Several schemes have been proposed to en-

able better learning of the variational distribution
(Bowman et al., 2016; Kingma et al., 2016; Alemi
et al., 2017). Here we use KL scaling and increase
the scale gradually until the original objective is
recovered. This has the following effect: during
the initial learning stage, the KL-term barely con-
tributes to the objective and thus the updates to
the variational parameters are driven by the signal
from the reconstruction term and hardly restricted
by the prior.
Once the scale factor approaches 1 the varia-

tional distribution will be highly informative to the
generator (assuming sufficiently slow increase of
the scale factor). The KL-term can now be min-
imised by matching the prior to the variational dis-
tribution. Notice that up to this point, the prior
has hardly been updated. Thus moving the varia-
tional approximation back to the prior would likely
reduce the reconstruction term since the standard
normal prior is not useful for inference purposes.
This is in stark contrast to Bowman et al. (2016)
whose prior was a fixed standard normal distri-
bution. Although they used KL scaling, the KL
term could only be decreased by moving the varia-
tional approximation back to the fixed prior. This
problem disappears in our model where priors are
learned.
Moving the prior towards the variational ap-

proximation has another desirable effect. The prior
can now learn to emulate the variational “look-
ahead” mechanism without having access to future
contexts itself (recall that the inference model has
access to future target tokens). At test time we can
thus hope to have learned latent variable distribu-
tions that encode information not only about the
output at the current position but about future out-
puts as well.

5 Experiments

We report experiments on the IWSLT 2016 data
set which contains transcriptions of TED talks and
their respective translations. We trained models to

Data Arabic Czech French German

Train 224,125 114,389 220,399 196,883
Dev 6,746 5,326 5,937 6,996
Test 2,762 2,762 2,762 2,762

Table 1: Number of parallel sentence pairs for each
language paired with English for IWSLT data.

translate from English into Arabic, Czech, French
and German. The number of sentences for each
language after preprocessing is shown in Table 1.
The vocabulary was split into 50,000 subword

units using Google’s sentence piece3 software in
its standard settings. As our baseline NMT sys-
tems we use Sockeye (Hieber et al., 2017)4. Sock-
eye implements several different NMT models
but here we use the standard recurrent attentional
model described in Section 2. We report baselines
with and without dropout (Srivastava et al., 2014).
For dropout a retention probability of 0.5 was used.
As a second baseline we use our own implemen-

tation of the model of Zhang et al. (2016) which
contains a single sentence-level Gaussian latent
variable (SENT). Our implementation differs from
theirs in three aspects. First, we feed the last hid-
den state of the bidirectional encoding into encod-
ing of the source and target sentence into the in-
ference network (Zhang et al. (2016) use the av-
erage of all states). Second, the latent variable is
smaller in size than the one used by (Zhang et al.,
2016).5 This was done to make their model and
the stochastic decoder proposed here as similar as
possible. Finally, their implementation was based
on groundhog whereas ours builds on Sockeye.
Our stochastic decoder model (SDEC) is also

built on top of the basic Sockeyemodel. It adds the
components described in Sections 3 and 4. Recall
that the functions that compute the means and stan-
dard deviations are implemented by neural nets
with a single hidden layer with tanh activation.
The width of that layer is twice the size of the la-
tent variable. In our experiments we tested differ-
ent latent variable sizes and used KL scaling (see
Section 4.1). The scale started from 0 and was in-
creased by 1/20,000 after each mini-batch. Thus, at
iteration t the scale is min(t/20,000, 1).
All models use 1028 units for the LSTM hid-
3https://github.com/google/sentencepiece
4https://github.com/awslabs/sockeye
5We did, however, find that increasing the latent variable

size actually hurt performance in our implementation.

https://github.com/google/sentencepiece
https://github.com/awslabs/sockeye
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den state (or 512 for each direction in the bidirec-
tional LSTMs) and 256 for the attention mechan-
sim. Training is done with Adam (Kingma and
Ba, 2015). In decoding we use a beam of size 5
and output the most likely word at each position.
We deterministically set all latent variables to their
mean values during decoding. Monte Carlo decod-
ing (Gal, 2016) is difficult to apply to our setting
as it would require sampling entire translations.

Results We show the BLEU scores for all mod-
els that we tested on the IWSLT data set in Ta-
ble 2. The stochastic decoder dominates the Sock-
eye baseline across all 4 languages, and outper-
forms SENT on most languages. Except on Ger-
man, there is a trend towards smaller latent vari-
able sizes being more helpful. This is in line with
findings by Chung et al. (2015) and Fraccaro et al.
(2016) who also used relatively small latent vari-
ables. This observation also implies that our model
does not improve simply because it has more pa-
rameters than the baseline.
That the margin between the SDEC and SENT

models is not large was to be expected for two
reasons. First, Chung et al. (2015) and Fraccaro
et al. (2016) have shown that stochastic RNNs lead
to enormous improvements in modelling continu-
ous sequences but only modest increases in perfor-
mance for discrete sequences (such as natural lan-
guage). Second, translation performance is mea-
sured in BLEU score. We observed that SDEC of-
ten reached better ELBO values than SENT indi-
cating a better model fit. How to fully leverage the
better modelling ability of stochastic RNNs when
producing discrete outputs is a matter of future re-
search.

Qualitative Analysis Finally, we would like to
demonstrate that our model does indeed capture
variation in translation. To this end, we randomly
picked sentences from the IWSLT test set and had
our model translate them several times, however,
the values of the latent variables were sampled in-
stead of fixed. Contrary to the BLEU-based evalu-
ation, beam search was not used in this evaluation
in order to avoid interaction between different la-
tent variable samples. See Figure 3 for examples
of syntactic and lexical variation. It is important
to note that we do not sample from the categori-
cal output distribution. For each target position we
pick the most likely word. A non-stochastic NMT
system would always yield the same translation in

this scenario. Interestingly, when we applied the
sampling procedure to the SENT model it did not
produce any variation at all, thus behaving like a
deterministic NMT system. This supports our ini-
tial point that the SENT model is likely insensitive
to local variation, a problem that our model was
designed to address. Like the model of Bowman
et al. (2016), SENT presumably tends to ignore the
latent variable.

6 Related Work

The stochastic decoder is strongly influenced by
previous work on stochastic RNNs. The first
such proposal was made by Bayer and Osendorfer
(2015) who introduced i.i.d. Gaussian latent vari-
ables at each output position. Since their model
neglects any sequential dependence of the noise
sources, it underperformed on several sequence
modeling tasks. Chung et al. (2015) made the la-
tent variables depend on previous information by
feeding the previous decoder state into the latent
variable sampler. Their inference model did not
make use of future elements in the sequence.
Using a “look-ahead” mechanism in the infer-

ence net was proposed by Fraccaro et al. (2016)
who had a separate stochastic and deterministic
RNN layer which both influence the output. Since
the stochastic layer in their model depends on the
deterministic layer but not vice versa, they could
first run the deterministic layer at inference time
and then condition the inference net’s encoding of
the future on the thus obtained features. Like us,
they used KL scaling during training.
More recently, Goyal et al. (2017) proposed an

auxiliary loss that has the inference net predict fu-
ture feature representations. This approach yields
state-of-the-art results but is still in need of a the-
oretical justification.
Within translation, Zhang et al. (2016) were

the first to incorporate Gaussian variables into
an NMT model. Their approach only uses one
sentence-level latent variable (corresponding to
our z0) and can thus not deal with word-level vari-
ation directly. Concurrently to our work, Su et al.
(2018) have also proposed a recurrent latent vari-
able model for NMT. Their approach differs from
ours in that they do not use a 0th latent variable nor
a look-ahead mechanism during inference time.
Furthermore, their underlying recurrent model is
a GRU.
In the wider field of NLP, deep generative mod-
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Model Dropout LatentDim Arabic Czech French German

Sockeye None None 8.2 6.9 23.5 14.3
Sockeye 0.5 None 8.4 7.4 24.4 15.1

SENT 0.5 64 8.4 7.3 24.8 15.3
SENT 0.5 128 8.7 7.4 24.0 15.7
SENT 0.5 256 8.9 7.4 24.7 15.5

SDEC 0.5 64 8.2 7.7 25.3 15.4
SDEC 0.5 128 8.8 7.5 24.2 15.6
SDEC 0.5 256 8.7 7.5 23.2 15.9

Table 2: BLEU scores for different models on the IWSLT data for translation into English. Recall that
all SDEC and SENT models used KL scaling during training.

Source Coincidentally, at the same time, the first easy-to-use clinical tests for diagnosing autism
were introduced.

SENT Im gleichen Zeitraum wurden die ersten einfachen klinischen Tests für Diagnose getestet.
SDEC Übrigens, zur gleichen Zeit, wurden die ersten einfache klinische Tests für die Diagnose

von Autismus eingeführt.
SDEC Übrigens, zur gleichen Zeit, waren die ersten einfache klinische Tests für die Diagnose von

Autismus eingeführt worden.

Source They undertook a study of autism prevalence in the general population.

SENT Sie haben eine Studie von Autismus in der allgemeinen Population übernommen.
SDEC Sie entwarfen eine Studie von Autismus in der allgemeinen Bevölkerung.
SDEC Sie führten eine Studie von Autismus in der allgemeinen Population ein.

Figure 3: Sampled translations from our model (SDEC) and the sentent-level latent variable model
(SENT). The first SDEC example shows alternation between the German simple past and past perfect.
The past perfect introduces a long range dependency between the main and auxiliary verb (underlined)
that the model handles well. The second example shows variation in the lexical realisation of the verb.
The second variant uses a particle verb and we again observe a long range dependency between the main
verb and its particle (underlined).

els have been applied mostly in monolingual set-
tings such as text generation (Bowman et al.,
2016; Semeniuta et al., 2017), morphological anal-
ysis (Zhou and Neubig, 2017), dialogue modelling
(Wen et al., 2017), question selection (Miao et al.,
2016) and summarisation (Miao and Blunsom,
2016).

7 Conclusion and Future Work

Wehave presented a recurrent decoder formachine
translation that uses word-level Gaussian variables
to model underlying sources of variation observed
in translation corpora. Our experiments confirm
our intuition that modelling variation is crucial to
the success of machine translation. The proposed
model consistently outperforms strong baselines

on several language pairs.
As this is the first work that systematically con-

siders word-level variation in NMT, there are lots
of research ideas to explore in the future. Here, we
list the three which we believe to be most promis-
ing.

• Latent factor models: our model only con-
tains one source of variation per word. A
latent factor model such as DARN (Gregor
et al., 2014) would consider several sources
simultaneously. This would also allow us to
perform a better analysis of the model be-
haviour as we could correlate the factors with
observed linguistic phenomena.

• Richer prior and variational distributions:
The diagonal Gaussian is likely too simple a
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distribution to appropriately model the vari-
ation in our data. Richer distributions com-
puted by normalising flows (Rezende and
Mohamed, 2015; Kingma et al., 2016) will
likely improve our model.

• Extension to other architectures: Introduc-
ing latent variables into non-autoregressive
translation models such as the transformer
(Vaswani et al., 2017) should increase their
translation ability further.
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