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Abstract

The International Classification of Dis-
eases (ICD) provides a hierarchy of di-
agnostic codes for classifying diseases.
Medical coding – which assigns a sub-
set of ICD codes to a patient visit – is
a mandatory process that is crucial for
patient care and billing. Manual coding
is time-consuming, expensive, and error-
prone. In this paper, we build a neural ar-
chitecture for automated coding. It takes
the diagnosis descriptions (DDs) of a pa-
tient as inputs and selects the most rele-
vant ICD codes. This architecture con-
tains four major ingredients: (1) tree-of-
sequences LSTM encoding of code de-
scriptions (CDs), (2) adversarial learning
for reconciling the different writing styles
of DDs and CDs, (3) isotonic constraints
for incorporating the importance order
among the assigned codes, and (4) atten-
tional matching for performing many-to-
one and one-to-many mappings from DDs
to CDs. We demonstrate the effective-
ness of the proposed methods on a clinical
datasets with 59K patient visits.

1 Introduction

The International Classification of Diseases (ICD)
is a healthcare classification system maintained
by the World Health Organization (Organization
et al., 1978). It provides a hierarchy of diagnos-
tic codes of diseases, disorders, injuries, signs,
symptoms, etc. It is widely used for reporting
diseases and health conditions, assisting in medi-
cal reimbursement decisions, collecting morbidity
and mortality statistics, to name a few.

While ICD codes are important for making
clinical and financial decisions, medical coding

– which assigns proper ICD codes to a patient
visit – is time-consuming, error-prone, and expen-
sive. Medical coders review the diagnosis descrip-
tions written by physicians in the form of textual
phrases and sentences, and (if necessary) other in-
formation in the electronic health record of a clin-
ical episode, then manually attribute the appro-
priate ICD codes by following the coding guide-
lines (O’malley et al., 2005). Several types of er-
rors frequently occur. First, the ICD codes are
organized in a hierarchical structure. For a node
representing a disease C, the children of this node
represent the subtypes of C. In many cases, the
difference between disease subtypes is very sub-
tle. It is common that human coders select in-
correct subtypes. Second, when writing diagno-
sis descriptions, physicians often utilize abbrevia-
tions and synonyms, which causes ambiguity and
imprecision when the coders are matching ICD
codes to those descriptions (Sheppard et al., 2008).
Third, in many cases, several diagnosis descrip-
tions are closely related and should be mapped to a
single ICD code. However, unexperienced coders
may code each disease separately. Such errors are
called unbundling. The cost incurred by coding
errors and the financial investment spent on im-
proving coding quality are estimated to be $25 bil-
lion per year in the US (Lang, 2007; Farkas and
Szarvas, 2008).

To reduce coding errors and cost, we aim at
building an ICD coding model which automati-
cally and accurately translates the free-text diag-
nosis descriptions into ICD codes. To achieve this
goal, several technical challenges need to be ad-
dressed. First, there exists a hierarchical structure
among the ICD codes. This hierarchy can be lever-
aged to improve coding accuracy. On one hand,
if code A and B are both children of C, then it
is unlikely to simultaneously assign A and B to
a patient. On the other hand, if the distance be-
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tween A and B in the code tree is smaller than that
between A and C and we know A is the correct
code, then B is more likely to be a correct code
than C, since codes with smaller distance are more
clinically relevant. How to explore this hierarchi-
cal structure for better coding is technically de-
manding. Second, the diagnosis descriptions and
the textual descriptions of ICD codes are written
in quite different styles even if they refer to the
same disease. In particular, the textual description
of an ICD code is formally and precisely worded,
while diagnosis descriptions are usually written
by physicians in an informal and ungrammatical
way, with telegraphic phrases, abbreviations, and
typos. Third, it is required that the assigned ICD
codes are ranked according to their relevance to
the patient. How to correctly determine this or-
der is technically nontrivial. Fourth, as stated ear-
lier, there does not necessarily exist an one-to-
one mapping between diagnosis descriptions and
ICD codes, and human coders should consider the
overall health condition when assigning codes. In
many cases, two closely related diagnosis descrip-
tions need to be mapped onto a single combina-
tion ICD code. On the other hand, physicians may
write two health conditions into one diagnosis de-
scription which should be mapped onto two ICD
codes under such circumstances.

Contributions In this paper, we design a neural
architecture to automatically perform ICD coding
given the diagnosis descriptions. Specifically, we
make the following contributions:

• We propose a tree-of-sequences LSTM archi-
tecture to simultaneously capture the hierarchi-
cal relationship among codes and the semantics
of each code.

• We use an adversarial learning approach to rec-
oncile the heterogeneous writing styles of diag-
nosis descriptions and ICD code descriptions.

• We use isotonic constraints to preserve the im-
portance order among codes and develop an al-
gorithm based on ADMM and isotonic projec-
tion to solve the constrained problem.

• We use an attentional matching mechanism to
perform many-to-one and one-to-many map-
pings between diagnosis descriptions and codes.

• On a clinical datasets with 59K patient visits,
we demonstrate the effectiveness of the pro-
posed methods.

The rest of the paper is organized as follows.
Section 2 introduces related works. Section 3 and
4 present the dataset and methods. Section 5 gives
experimental results. Section 6 presents conclu-
sions and discussions.

2 Related Works

Larkey and Croft (1996) studied the automatic as-
signment of ICD-9 codes to dictated inpatient dis-
charge summaries, using a combination of three
classifiers: k-nearest neighbors, relevance feed-
back, and Bayesian independence classifiers. This
method assigns a single code to each patient
visit. However, in clinical practice, each patient
is usually assigned with multiple codes. Franz
et al. (2000) investigated the automated coding
of German-language free-text diagnosis phrases.
This approach performs one-to-one mapping be-
tween diagnosis descriptions and ICD codes. This
is not in accordance with the coding practice
where one-to-many and many-to-one mappings
widely exist (O’malley et al., 2005). Pestian et al.
(2007) studied the assignment of ICD-9 codes to
radiology reports. Kavuluru et al. (2013) proposed
an unsupervised ensemble approach to automati-
cally perform ICD-9 coding based on textual nar-
ratives in electronic health records (EHRs) Kavu-
luru et al. (2015) developed multi-label classifi-
cation, feature selection, and learning to rank ap-
proaches for ICD-9 code assignment of in-patient
visits based on EHRs. Koopman et al. (2015) ex-
plored the automatic ICD-10 classification of can-
cers from free-text death certificates. These meth-
ods did not consider the hierarchical relationship
or importance order among codes.

The tree LSTM network was first proposed
by (Tai et al., 2015) to model the constituent
or dependency parse trees of sentences. Teng
and Zhang (2016) extended the unidirectional tree
LSTM to a bidirectional one. Xie and Xing (2017)
proposed a sequence-of-trees LSTM network to
model a passage. In this network, a sequential
LSTM is used to compose a sequence of tree
LSTMs. The tree LSTMs are built on the con-
stituent parse trees of individual sentences and the
sequential LSTM is built on the sequence of sen-
tences. Our proposed tree-of-sequences LSTM
network differs from the previous works in two-
fold. First, it is applied to a code tree to capture
the hierarchical relationship among codes. Sec-
ond, it uses a tree LSTM to compose a hierarchy
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Diagnosis Descriptions
1. Prematurity at 35 4/7 weeks gestation
2. Twin number two of twin gestation
3. Respiratory distress secondary to transient tachypnea

of the newborn
4. Suspicion for sepsis ruled out
Assigned ICD Codes
1. V31.00 (Twin birth, mate liveborn, born in hospital,

delivered without mention of cesarean section)
2. 765.18 (Other preterm infants, 2,000-2,499 grams)
3. 775.6 (Neonatal hypoglycemia)
4. 770.6 (Transitory tachypnea of newborn)
5. V29.0 (Observation for suspected infectious condition)
6. V05.3 (Need for prophylactic vaccination and inoculation

against viral hepatitis)

Table 1: The diagnosis descriptions of a patient
visit and the assigned ICD codes. Inside the paren-
theses are the descriptions of the codes. The codes
are ranked according to descending importance.

of sequential LSTMs.
Adversarial learning (Goodfellow et al., 2014)

has been widely applied to image genera-
tion (Goodfellow et al., 2014), domain adap-
tion (Ganin and Lempitsky, 2015), feature learn-
ing (Donahue et al., 2016), text generation (Yu
et al., 2017), to name a few. In this paper, we use
adversarial learning for mitigating the discrepancy
among the writing styles of a pair of sentences.

The attention mechanism was widely used in
machine translation (Bahdanau et al., 2014), im-
age captioning (Xu et al., 2015), reading compre-
hension (Seo et al., 2016), text classification (Yang
et al., 2016), etc. In this work, we compute at-
tention between sentences to perform many-to-one
and one-to-many mappings.

3 Dataset and Preprocessing

We performed the study on the publicly available
MIMIC-III dataset (Johnson et al., 2016), which
contains de-identified electronic health records
(EHRs) of 58,976 patient visits in the Beth Israel
Deaconess Medical Center from 2001 to 2012.
Each EHR has a clinical note called discharge
summary, which contains multiple sections of in-
formation, such as ‘discharge diagnosis’, ‘past
medical history’, etc. From the ‘discharge diag-
nosis’ and ‘final diagnosis’ sections, we extracted
the diagnosis descriptions (DDs) written by physi-
cians. Each DD is a short phrase or a sentence,
articulating a certain disease or condition. Med-
ical coders perform ICD coding mainly based on
DDs. Following such a practice, in this paper, we
set the inputs of the automated coding model to be

Encoder of diagnosis
description

Tree-of-sequences
LSTM encoder of ICD-
code description

Adversarial
reconciliation module

Attentional matching
moduleIsotonic constraints

1. Pneumonia
2. Acute kidney failure
......

Diagnosis descriptions

V31.00 775.6
765.18 770.6

Assigned ICD codes

Figure 1: Architecture of the ICD Coding Model

the DDs while acknowledging that other informa-
tion in the EHRs is also valuable and is referred to
by coders for code assignment. For simplicity, we
leave the incorporation of non-DD information to
future study.

Each patient visit is assigned with a list of ICD
codes, ranked in descending order of importance
and relevance. For each visit, the number of codes
is usually not equal to the number of diagnosis de-
scriptions. These ground-truth codes serve as the
labels to train our coding model. The entire dataset
contains 6,984 unique codes, each of which has
a textual description, describing a disease, symp-
tom, or condition. The codes are organized into a
hierarchy where the top-level codes correspond to
general diseases while the bottom-level ones rep-
resent specific diseases. In the code tree, children
of a node represent subtypes of a disease. Table 1
shows the DDs and codes of an exemplar patient.

4 Methods

In this section, we present a neural architecture for
ICD coding.

4.1 Overview
Figure 1 shows the overview of our approach. The
proposed ICD coding model consists of five mod-
ules. The model takes the ICD-code tree and
diagnosis descriptions (DDs) of a patient as in-
puts and assigns a set of ICD codes to the pa-
tient. The encoder of DDs generates a latent rep-
resentation vector for a DD. The encoder of ICD
codes is a tree-of-sequences long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
network. It takes the textual descriptions of the
ICD codes and their hierarchical structure as in-
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Neonatal Necrotizing Enterocolitis

Seq LSTM

Sequential LSTM
Seq LSTM Seq LSTM

Seq LSTM

Seq LSTM

Figure 2: Tree-of-Sequences LSTM

puts and produces a latent representation for each
code. The representation aims at simultaneously
capturing the semantics of each code and the hi-
erarchical relationship among codes. By incor-
porating the code hierarchy, the model can avoid
selecting codes that are subtypes of the same dis-
ease and promote the selection of codes that are
clinically correlated. The writing styles of DDs
and code descriptions (CDs) are largely different,
which makes the matching between a DD and a
CD error-prone. To address this issue, we develop
an adversarial learning approach to reconcile the
writing styles. On top of the latent representa-
tion vectors of the descriptions, we build a dis-
criminative network to distinguish which ones are
DDs and which are CDs. The encoders of DDs
and CDs try to make such a discrimination impos-
sible. By doing this, the learned representations
are independent of the writing styles and facilitate
more accurate matching. The representations of
DDs and CDs are fed into an attentional match-
ing module to perform code assignment. This at-
tentional mechanism allows multiple DDs to be
matched to a single code and allows a single DD to
be matched to multiple codes. During training, we
incorporate the order of importance among codes
as isotonic constraints. These constraints regu-
late the model’s weight parameters so that codes
with higher importance are given larger prediction
scores.

4.2 Tree-of-Sequences LSTM Encoder

This section introduces the encoder of ICD codes.
Each code has a description (a sequence of words)
that tells the semantics of this code. We use
a sequential LSTM (SLSTM) (Hochreiter and
Schmidhuber, 1997) to encode this description. To
capture the hierarchical relationship among codes,
we build a tree LSTM (TLSTM) (Tai et al., 2015)
along the code tree. At each TLSTM node, the
input vector is the latent representation generated

by the SLSTM. Combining these two types of
LSTMs together, we obtain a tree-of-sequences
LSTM network (Figure 2).

Sequential LSTM A sequential LSTM
(SLSTM) (Hochreiter and Schmidhuber, 1997)
network is a special type of recurrent neural
network that (1) learns the latent representation
(which usually reflects certain semantic infor-
mation) of words, and (2) models the sequential
structure among words. In the word sequence,
each word t is allocated with an SLSTM unit,
which consists of the following components: an
input gate it, a forget gate ft, an output gate ot,
a memory cell ct, and a hidden state st. These
components (vectors) are computed as follows:

it = σ(W(i)st−1 + U(i)xt + b(i))

ft = σ(W(f)st−1 + U(f)xt + b(f))

ot = σ(W(o)st−1 + U(o)xt + b(o))

ct = it � tanh(W(c)st−1 + U(c)xt + b(c))
+ft � ct−1

st = ot � tanh(ct)
(1)

where xt is the embedding vector of word t. W,
U are component-specific weight matrices and b
are bias vectors.

Tree-of-sequences LSTM We use a bidirec-
tional tree LSTM (TLSTM) (Tai et al., 2015; Xie
and Xing, 2017) to capture the hierarchical rela-
tionships among codes. The inputs of this LSTM
include the code hierarchy and hidden states of in-
dividual codes produced by the SLSTMs. It con-
sists of a bottom-up TLSTM and a top-down TL-
STM, which produce two hidden states h↑ and h↓
at each node in the tree.

In the bottom-up TLSTM, an internal node (rep-
resenting a code C, having M children) is com-
prised of these components: an input gate i↑, an
output gate o↑, a memory cell c↑, a hidden state
h↑ and M child-specific forget gates {f (m)

↑ }Mm=1

where f
(m)
↑ corresponds to the m-th child. The

transition equations among components are:

i↑ = σ(
∑M

m=1 W
(i,m)
↑ h

(m)
↑ + U(i)s + b

(i)
↑ )

∀m, f (m)
↑ = σ(W

(f,m)
↑ h

(m)
↑ + U(f,m)s + b

(f,m)
↑ )

o↑ = σ(
∑M

m=1 W
(o,m)
↑ h

(m)
↑ + U(o)s + b

(o)
↑ )

u↑ = tanh(
∑M

m=1 W
(u,m)
↑ h

(m)
↑ + U(u)s + b

(u)
↑ )

c↑ = i↑ � u↑ +
∑M

m=1 f
(m)
↑ � c

(m)
↑

h↑ = o↑ � tanh(c↑)
(2)
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where s is the SLSTM hidden state that en-
codes the description of code C; {h(m)

↑ }
M
m=1 and

{c(m)
↑ }

M
m=1 are the bottom-up TLSTM hidden

states and memory cells of the children. W, U, b
are component-specific weight matrices and bias
vectors. For a leaf node having no children, its
only input is the SLSTM hidden state s and no for-
get gates are needed.

In the top-down TLSTM, for a non-root node,
it has such components: an input gate i↓, a forget
gate f↓, an output gate o↓, a memory cell c↓ and a
hidden state h↓. The transition equations are:

i↓ = σ(W
(i)
↓ h

(p)
↓ + b

(i)
↓ )

f↓ = σ(W
(f)
↓ h

(p)
↓ + b

(f)
↓ )

o↓ = σ(W
(o)
↓ h

(p)
↓ + b

(o)
↓ )

u↓ = tanh(W
(u)
↓ h

(p)
↓ + b

(u)
↓ )

c↓ = i↓ � u↓ + f↓ � c
(p)
↓

h↓ = o↓ � tanh(c↓)

(3)

where h(p)
↓ and c

(p)
↓ are the top-down TLSTM hid-

den state and memory cell of the parent of this
node. For the root node which has no parent, h↓
cannot be computed using the above equations. In-
stead, we set h↓ to h↑ (the bottom-up TLSTM hid-
den state generated at the root node). h↑ captures
the semantics of all codes in this hierarchy, which
is then propagated downwards to each individual
code via the top-down TLSTM dynamics.

We concatenate the hidden states of the two di-
rections to obtain the bidirectional TLSTM encod-
ing of each code h = [h↑;h↓]. The bottom-up TL-
STM composes the semantics of children (repre-
senting sub-diseases) and merge them into the cur-
rent node, which hence captures child-to-parent
relationship. The top-down TLSTM makes each
node inherit the semantics of its parent, which cap-
tures parent-to-child relation. As a result, the hier-
archical relationship among codes are encoded in
the hidden states.

For the diagnosis descriptions of a patient, we
use an SLSTM network to encode each descrip-
tion individually. The weight parameters of this
SLSTM are tied with those of the SLSTM used
for encoding code descriptions.

4.3 Attentional Matching
Next, we introduce how to map the DDs to codes.
We denote the hidden representations of DDs and
codes as {hm}Mm=1 and {un}Nn=1 respectively,
where M is the number of DDs of one patient and

N is the total number of codes in the dataset. The
mapping from DDs to codes is not one-to-one. In
many cases, a code is assigned only when a certain
combination of K (1 < K ≤ M ) diseases simul-
taneously appear within the M DDs and the value
of K depends on this code. Among the K dis-
eases, their importance of determining the assign-
ment of this code is different. For the rest M −K
DDs, we can consider their importance score to
be zero. We use a soft-attention mechanism (Bah-
danau et al., 2014) to calculate these importance
scores. For a code un, the importance of a DD
hm to un is calculated as anm = u>nhm. We
normalize the scores {anm}Mm=1 of all DDs into
a probabilistic simplex using the softmax opera-
tion: ãnm = exp(anm)/

∑M
l=1 exp(anl). Given

these normalized importance scores {ãnm}Mm=1,
we use them to weight the representations of DDs
and get a single attentional vector of the M DDs:
ĥn =

∑M
m=1 ãnmhm. Then we concatenate ĥn

and un, and use a linear classifier to predict the
probability that code n should be assigned: pn =
sigmoid(w>n [ĥn;un] + bn), where the coefficients
wn and bias bn are specific to code n.

We train the weight parameters Θ of the pro-
posed model using the data of L patient visits. Θ
includes the sequential LSTM weights Ws, tree
LSTM weights Wt and weights Wp in the final
prediction layer. Let c(l) ∈ RN be a binary vector
where c(l)

n = 1 if the n-th code is assigned to this
patient and c(l)

n = 0 if otherwise. Θ can be learned
by minimizing the following prediction loss:

minΘ Lpred(Θ) =
L∑
l=1

N∑
n=1

CE(p(l)
n , c

(l)
n ) (4)

where p(l)
n is the predicted probability that code n

is assigned to patient visit l and p(l)
n is a function

of Θ. CE(·, ·) is the cross-entropy loss.

4.4 Adversarial Reconciliation of Writing
Styles

We use an adversarial learning (Goodfellow et al.,
2014) approach to reconcile the different writing
styles of diagnosis descriptions (DDs) and code
descriptions (CDs). The basic idea is: after en-
coded, if a description cannot be discerned to be
a DD or a CD, then the difference in their writ-
ing styles is eliminated. We build a discriminative
network which takes the encoding vector of a de-
scription as input and tries to identify it as a DD



1071

or CD. The encoders of DDs and CDs adjust their
weight parameters so that such a discrimination is
difficult to be achieved by the discriminative net-
work. Consider all the descriptions {tr, yr}Rr=1

where tr is a description and yr is a binary label.
yr = 1 if tr is a DD and yr = 0 if otherwise. Let
f(tr;Ws) denote the sequential LSTM (SLSTM)
encoder parameterized by Ws. This encoder is
shared by the DDs and CDs. Note that for CDs, a
tree LSTM is further applied on top of the encod-
ings produced by the SLSTM. We use the SLSTM
encoding vectors of CDs as the input of the dis-
criminative network rather than using the TLSTM
encodings since the latter are irrelevant to writing
styles. Let g(f(tr;Ws);Wd) denote the discrim-
inative network parameterized by Wd. It takes the
encoding vector f(tr;Ws) as input and produces
the probability that tr is a DD. Adversarial learn-
ing is performed by solving this problem:

max
Ws

min
Wd

Ladv =
R∑
r=1

CE(g(f(tr;Ws);Wd), yr)

(5)
The discriminative network tries to differentiate
DDs from CDs by minimizing this classification
loss while the encoder maximizes this loss so that
DDs and CDs are not distinguishable.

4.5 Isotonic Constraints

Next, we incorporate the importance order among
ICD codes. For the D(l) codes assigned to patient
l, without loss of generality, we assume the order
is 1 � 2 · · · � D(l) (the order is given by human
coders as ground-truth in the MIMIC-III dataset).
We use the predicted probability pi (1 ≤ i ≤ D(l))
defined in Section 4.3 to characterize the impor-
tance of code i. To incorporate the order, we im-
pose an isotonic constraint on the probabilities:
p

(l)
1 � p

(l)
2 · · · � p

(l)

D(l) , and solve the following
problem:

minΘ Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

s.t. p
(l)
1 � p

(l)
2 · · · � p

(l)

D(l)

∀l = 1, · · · , L
(6)

where the probabilities p(l)
i are functions of Θ and

λ is a tradeoff parameter.
We develop an algorithm based on the

alternating direction method of multiplier
(ADMM) (Boyd et al., 2011) to solve the problem
defined in Eq.(6). Let p(l) be a |D(l)|-dimensional

vector where the i-th element is p(l)
i . We first

write the problem into an equivalent form

minΘ Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

s.t. p(l) = q(l)

q
(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
∀l = 1, · · · , L

(7)
Then we write down the augmented Lagrangian

min
Θ,q,v

Lpred(Θ) + maxWd
(−λLadv(Ws,Wd))

+〈p(l) − q(l),v(l)〉+ ρ
2‖p

(l) − q(l)‖22
s.t. q

(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
∀l = 1, · · · , L

(8)
We solve this problem by alternating between
{p(l)}Ll=1, {q(l)}Ll=1 and {v(l)}Ll=1 The sub-
problem defined over q(l) is

minq(l) −〈q(l),v(l)〉+ ρ
2‖p

(l) − q(l)‖22
s.t. q

(l)
1 � q

(l)
2 · · · � q

(l)

|D(l)|
(9)

which is an isotonic projection problem and can
be solved via the algorithm proposed in (Yu
and Xing, 2016). With {q(l)}Ll=1 and {v(l)}Ll=1

fixed, the sub-problem is minΘ Lpred(Θ) +
maxWd

(−λLadv(Ws,Wd)) which can be solved
using stochastic gradient descent (SGD). The up-
date of v(l) is simple: v(l) = v(l) + ρ(p(l)−q(l)).

5 Experiments

In this section, we present experiment results.

5.1 Experimental Settings
Out of the 6,984 unique codes, we selected 2,833
codes that have the top frequencies to perform the
study. We split the data into a train/validation/test
dataset with 40k/7k/12k patient visits respectively.
The hyperparameters were tuned on the valida-
tion set. The SLSTMs were bidirectional and
dropout with 0.5 probability (Srivastava et al.,
2014) was used. The size of hidden states in all
LSTMs was set to 100. The word embeddings
were trained on the fly and their dimension was
set to 200. The tradeoff parameter λ was set to
0.1. The parameter ρ in the ADMM algorithm
was set to 1. In the SGD algorithm for solving
minΘ Lpred(Θ)+maxWd

(−λLadv(Ws,Wd)), we
used the ADAM (Kingma and Ba, 2014) optimizer
with an initial learning rate 0.001 and a mini-
batch size 20. Sensitivity (true positive rate) and
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specificity (true negative rate) were used to eval-
uate the code assignment performance. We cal-
culated these two scores for each individual code
on the test set, then took a weighted (proportional
to codes’ frequencies) average across all codes.
To evaluate the ranking performance of codes,
we used normalized discounted cumulative gain
(NDCG) (Järvelin and Kekäläinen, 2002).

5.2 Ablation Study

We perform ablation study to verify the effective-
ness of each module in our model. To evaluate
module X, we remove it from the model without
changing other modules and denote such a base-
line by No-X. The comparisons of No-X with the
full model are given in Table 2.

Tree-of-sequences LSTM To evaluate this
module, we compared with the two configu-
rations: (1) No-TLSTM, which removes the
tree LSTM and directly uses the hidden states
produced by the sequential LSTM as final rep-
resentations of codes; (2) Bottom-up TLSTM,
which removes the hidden states generated by
the top-down TLSTM. In addition, we compared
with four hierarchical classification baselines
including (1) hierarchical network (HierNet) (Yan
et al., 2015), (2) HybridNet (Hou et al., 2017),
(3) branch network (BranchNet) (Zhu and Bain,
2017), (4) label embedding tree (LET) (Bengio
et al., 2010), by using them to replace the bidirec-
tional tree LSTM while keeping other modules
untouched. Table 2 shows the average sensitivity
and specificity scores achieved by these methods
on the test set. We make the following observa-
tions. First, removing tree LSTM largely degrades
performance: the sensitivity and specificity of
No-TLSTM is 0.23 and 0.28 respectively while
our full model (which uses bidirectional TLSTM)
achieves 0.29 and 0.33 respectively. The reason is
No-TLSTM ignores the hierarchical relationship
among codes. Second, bottom-up tree LSTM
alone performs less well than bidirectional tree
LSTM. This demonstrates the necessity of the
top-down TLSTM, which ensures every two
codes are connected by directed paths and can
more expressively capture code-relations in the
hierarchy. Third, our method outperforms the four
baselines. The possible reason is our method di-
rectly builds codes’ hierarchical relationship into
their representations while the baselines perform
representation-learning and relationship-capturing

Sensitivity Specificity
(Larkey and Croft, 1996) 0.15 0.17
(Franz et al., 2000) 0.19 0.21
(Pestian et al., 2007) 0.12 0.21
(Kavuluru et al., 2013) 0.09 0.11
(Kavuluru et al., 2015) 0.21 0.25
(Koopman et al., 2015) 0.18 0.20
LET 0.23 0.29
HierNet 0.26 0.30
HybridNet 0.25 0.31
BranchNet 0.25 0.29
No-TLSTM 0.23 0.28
Bottom-up TLSTM 0.27 0.31
No-AL 0.26 0.31
No-IC 0.24 0.29
No-AM 0.27 0.29
Our full model 0.29 0.33

Table 2: Sensitivity and Specificity on the Test Set

separately.

Next, we present some qualitative results. For
a patient (admission ID 147798) having a DD ‘E
Coli urinary tract infection’, without using tree
LSTM, two sibling codes 585.2 (chronic kidney
disease, stage II (mild)) – which is the ground-
truth – and 585.4 (chronic kidney disease, stage
IV (severe)) are simultaneously assigned possibly
because their textual descriptions are very similar
(only differ in the level of severity). This is in-
correct because 585.2 and 585.4 are the children
of 585 (chronic kidney disease) and the severity
level of this disease cannot simultaneously be mild
and severe. After tree LSTM is added, the false
prediction of 585.4 is eliminated, which demon-
strates the effectiveness of tree LSTM in incorpo-
rating one constraint induced by the code hierar-
chy: among the nodes sharing the same parent,
only one should be selected.

For patient 197205, No-TLSTM assigns the
following codes: 462 (subacute sclerosing pa-
nencephalitis), 790.29 (other abnormal glucose),
799.9 (unspecified viral infection), and 285.21
(anemia in chronic kidney disease). Among these
codes, the first three are ground-truth and the
fourth one is incorrect (the ground-truth is 401.9
(unspecified essential hypertension)). Adding tree
LSTM fixes this error. The average distance be-
tween 401.9 and the rest of ground-truth codes
is 6.2. For the incorrectly assigned code 285.21,
such a distance is 7.9. This demonstrates that tree
LSTM is able to capture another constraint im-
posed by the hierarchy: codes with smaller tree-
distance are more likely to be assigned together.
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Position 2 4 6 8
No-IC 0.27 0.26 0.23 0.20
IC 0.32 0.29 0.27 0.23

Table 3: Comparison of NDCG Scores in the Ab-
lation Study of Isotonic Constraints.

Adversarial learning To evaluate the efficacy
of adversarial learning (AL), we remove it from
the full model and refer to this baseline as
No-AL. Specifically, in Eq.(6), the loss term
maxWd

(−Ladv(Ws,Wd)) is taken away. Table 2
shows the results, from which we observe that af-
ter AL is removed, the sensitivity and specificity
are dropped from 0.29 and 0.33 to 0.26 and 0.31
respectively. No-AL does not reconcile different
writing styles of diagnosis descriptions (DDs) and
code descriptions (CDs). As a result, a DD and
a CD that have similar semantics may be mis-
matched because their writing styles are differ-
ent. For example, a patient (admission ID 147583)
has a DD ‘h/o DVT on anticoagulation’, which
contains abbreviation DVT (deep vein thrombo-
sis). Due to the presence of this abbreviation,
it is difficult to assign a proper code to this DD
since the textual descriptions of codes do not con-
tain abbreviations. With adversarial learning, our
model can correctly map this DD to a ground-truth
code: 443.9 (peripheral vascular disease, unspec-
ified). Without AL, this code is not selected. As
another example, a DD ‘coronary artery disease,
STEMI, s/p 2 stents placed in RCA’ was given to
patient 148532. This DD is written informally and
ungrammatically, and contains too much detailed
information, e.g., ‘s/p 2 stents placed in RCA’.
Such a writing style is quite different from that of
CDs. With AL, our model successfully matches
this DD to a ground-truth code: 414.01 (coronary
atherosclerosis of native coronary artery). On the
contrary, No-AL fails to achieve this.

Isotonic constraint (IC) To evaluate this in-
gredient, we remove the ICs from Eq.(6) during
training and denote this baseline as No-IC. We
use NDCG to measure the ranking performance,
which is calculated in the following way. Consider
a testing patient-visit lwhere the ground-truth ICD
codes are M(l). For any code c, we define the
relevance score of c to l as 0 if c /∈ M(l) and
as |M(l)| − r(c) if otherwise, where r(c) is the
ground-truth rank of c inM(l). We rank codes in
descending order of their corresponding prediction

probabilities and obtain the predicted rank for each
code. We calculate the NDCG scores at position 2,
4, 6, 8 based on the relevance scores and predicted
ranks, which are shown in Table 3. As can be seen,
using IC achieves much higher NDCG than No-
IC, which demonstrates the effectiveness of IC in
capturing the importance order among codes.

We also evaluate how IC affects the sensitivity
and specificity of code assignment. As can be seen
from Table 2, No-IC degrades the two scores from
0.29 and 0.33 to 0.24 and 0.29 respectively, which
indicates that IC is helpful in training a model that
can more correctly assign codes. This is because
IC encourages codes that are highly relevant to the
patients to be ranked at top positions, which pre-
vents the selection of irrelevant codes.

Attentional matching (AM) In the evaluation
of this module, we compare with a baseline –
No-AM, which performs an unweighted average
of the M DDs: ĥn = 1

M

∑M
m=1 hm, concate-

nates ĥn with un and feeds the concatenated vec-
tor into the final prediction layer. From Table 2,
we can see our full model (with AM) outperforms
No-AM, which demonstrates the effectiveness of
attentional matching. In determining whether a
code should be assigned, different DDs have dif-
ferent importance weights. No-AM ignores such
weights, therefore performing less well.

AM can correctly perform many-to-one map-
ping from multiple DDs to a CD. For example,
patient 190236 was given two DDs: ‘renal insuffi-
ciency’ and ‘acute renal failure’. AM maps them
to a combined ICD code: 403.91 (hypertensive
chronic kidney disease, unspecified, with chronic
kidney disease stage V or end stage renal disease),
which is in the ground-truth provided by medical
coders. On the contrary, No-AM fails to assign
this code. On the other hand, AM is able to cor-
rectly map a DD to multiple CDs. For example, a
DD ‘congestive heart failure, diastolic’ was given
to patient 140851. AM successfully maps this
DD to two codes: (1) 428.0 (congestive heart fail-
ure, unspecified); (2) 428.30 (diastolic heart fail-
ure, unspecified). Without AM, this DD is mapped
only to 428.0.

5.3 Holistic Comparison with Other
Baselines

In addition to evaluating the four modules individ-
ually, we also compared our full model with four
other baselines proposed by (Larkey and Croft,
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1996; Franz et al., 2000; Pestian et al., 2007;
Kavuluru et al., 2013, 2015; Koopman et al., 2015)
for ICD coding. Table 2 shows the results. As can
be seen, our approach achieves much better sensi-
tivity and specificity scores. The reason that our
model works better is two-fold. First, our model
is based on deep neural network, which has ar-
guably better modeling power than linear methods
used in the baselines. Second, our model is able
to capture the hierarchical relationship and impor-
tance order among codes, can alleviate the discrep-
ancy in writing styles and allows flexible many-to-
one and one-to-many mappings from DDs to CDs.
These merits are not possessed by the baselines.

6 Conclusions and Discussions

In this paper, we build a neural network model
for automated ICD coding. Evaluations on the
MIMIC-III dataset demonstrate the following.
First, the tree-of-sequences LSTM network effec-
tively discourages the co-selection of sibling codes
and promotes the co-assignment of clinically-
relevant codes. Adversarial learning improves the
matching accuracy by alleviating the discrepancy
among the writing styles of DDs and CDs. Third,
isotonic constraints promote the correct ranking of
codes. Fourth, the attentional matching mecha-
nism is able to perform many-to-one and one-to-
many mappings.

In the coding practice of human coders, in addi-
tion to the diagnosis descriptions, other informa-
tion contained in nursing notes, lab values, and
medical procedures are also leveraged for code as-
signment. We have initiated preliminary investi-
gation along this line and added two new input
sources: (1) the rest of discharge summary and (2)
lab values. The sensitivity is improved from 0.29
to 0.32 and the specificity is improved from 0.33
to 0.35. A full study is ongoing.

At present, the major limitations of this work
include: (1) it does not perform well on infrequent
codes; (2) it is less capable of dealing with abbre-
viations. We will address these two issues in fu-
ture by investigating diversity-promoting regular-
ization (Xie et al., 2017) and leveraging an exter-
nal knowledge base that maps medical abbrevia-
tions into their full names.

The proposed methods can be applied to other
tasks in NLP. The tree-of-sequences model can
be applied for ontology annotation. It takes the
textual descriptions of concepts in the ontology

and their hierarchical structure as inputs and pro-
duces a latent representation for each concept.
The representations can simultaneously capture
the semantics of codes and their relationships.
The proposed adversarial reconciliation of writ-
ing styles and attentional matching can be applied
for knowledge mapping or entity linking. For ex-
ample, in tweets, we can use the method to map
an informally written mention ‘nbcbightlynews’
to a canonical entity ‘NBC Nightly News’ in the
knowledge base.
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mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422–446.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-
wei H Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. 2016. Mimic-iii,
a freely accessible critical care database. Scientific
data, 3.

Ramakanth Kavuluru, Sifei Han, and Daniel Har-
ris. 2013. Unsupervised extraction of diagnosis
codes from emrs using knowledge-based and extrac-
tive text summarization techniques. In Canadian
conference on artificial intelligence, pages 77–88.
Springer.

Ramakanth Kavuluru, Anthony Rios, and Yuan Lu.
2015. An empirical evaluation of supervised learn-
ing approaches in assigning diagnosis codes to elec-
tronic medical records. Artificial intelligence in
medicine, 65(2):155–166.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Bevan Koopman, Guido Zuccon, Anthony Nguyen,
Anton Bergheim, and Narelle Grayson. 2015. Auto-
matic icd-10 classification of cancers from free-text
death certificates. International journal of medical
informatics, 84(11):956–965.

Dee Lang. 2007. Consultant report-natural language
processing in the health care industry. Cincinnati
Children’s Hospital Medical Center, Winter.

Leah S Larkey and W Bruce Croft. 1996. Combining
classifiers in text categorization. In Proceedings of
the 19th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 289–297. ACM.

Kimberly J O’malley, Karon F Cook, Matt D Price,
Kimberly Raiford Wildes, John F Hurdle, and
Carol M Ashton. 2005. Measuring diagnoses:
Icd code accuracy. Health services research,
40(5p2):1620–1639.

World Health Organization et al. 1978. International
classification of diseases:[9th] ninth revision, basic
tabulation list with alphabetic index. World Health
Organization.

John P Pestian, Christopher Brew, Paweł Matykiewicz,
Dj J Hovermale, Neil Johnson, K Bretonnel Cohen,
and Włodzisław Duch. 2007. A shared task involv-
ing multi-label classification of clinical free text. In
Proceedings of the Workshop on BioNLP 2007: Bio-
logical, Translational, and Clinical Language Pro-
cessing, pages 97–104. Association for Computa-
tional Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Joanna E Sheppard, Laura CE Weidner, Saher Zakai,
Simon Fountain-Polley, and Judith Williams. 2008.
Ambiguous abbreviations: an audit of abbreviations
in paediatric note keeping. Archives of disease in
childhood, 93(3):204–206.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning re-
search, 15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Zhiyang Teng and Yue Zhang. 2016. Bidirectional
tree-structured lstm with head lexicalization. arXiv
preprint arXiv:1611.06788.

Pengtao Xie, Aarti Singh, and Eric P. Xing. 2017. Un-
correlation and evenness: a new diversity-promoting
regularizer. In Proceedings of the 34th International
Conference on Machine Learning, pages 3811–
3820.

Pengtao Xie and Eric Xing. 2017. A constituent-
centric neural architecture for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 1405–1414.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention.

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vi-
gnesh Jagadeesh, Dennis DeCoste, Wei Di, and
Yizhou Yu. 2015. Hd-cnn: hierarchical deep convo-
lutional neural networks for large scale visual recog-
nition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2740–2748.



1076

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI.

Yao-Liang Yu and Eric P Xing. 2016. Exact algo-
rithms for isotonic regression and related. In Jour-
nal of Physics: Conference Series, volume 699, page
012016. IOP Publishing.

Xinqi Zhu and Michael Bain. 2017. B-cnn: Branch
convolutional neural network for hierarchical classi-
fication. arXiv preprint arXiv:1709.09890.


