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Abstract

Most of the neural sequence-to-sequence
(seq2seq) models for grammatical error
correction (GEC) have two limitations: (1)
a seq2seq model may not be well gen-
eralized with only limited error-corrected
data; (2) a seq2seq model may fail to
completely correct a sentence with mul-
tiple errors through normal seq2seq infer-
ence. We attempt to address these limita-
tions by proposing a fluency boost learn-
ing and inference mechanism. Fluency
boosting learning generates fluency-boost
sentence pairs during training, enabling
the error correction model to learn how to
improve a sentence’s fluency from more
instances, while fluency boosting infer-
ence allows the model to correct a sen-
tence incrementally through multi-round
seq2seq inference until the sentence’s flu-
ency stops increasing. Experiments show
our approaches improve the performance
of seq2seq models for GEC, achieving
state-of-the-art results on both CoNLL-
2014 and JFLEG benchmark datasets.

1 Introduction

Sequence-to-sequence (seq2seq) models (Cho
et al., 2014; Sutskever et al., 2014) for grammati-
cal error correction (GEC) have drawn growing at-
tention (Yuan and Briscoe, 2016; Xie et al., 2016;
Ji et al., 2017; Schmaltz et al., 2017; Sakaguchi
et al., 2017; Chollampatt and Ng, 2018) in recent
years. However, most of the seq2seq models for
GEC have two flaws. First, the seq2seq models
are trained with only limited error-corrected sen-
tence pairs like Figure 1(a). Limited by the size
of training data, the models with millions of pa-
rameters may not be well generalized. Thus, it is
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Figure 1: (a) an error-corrected sentence pair;
(b) if the sentence becomes slightly different, the
model fails to correct it perfectly; (c) single-round
seq2seq inference cannot perfectly correct the sen-
tence, but multi-round inference can.

common that the models fail to correct a sentence
perfectly even if the sentence is slightly different
from the training instance, as illustrated by Figure
1(b). Second, the seq2seq models usually cannot
perfectly correct a sentence with many grammati-
cal errors through single-round seq2seq inference,
as shown in Figure 1(b) and 1(c), because some
errors in a sentence may make the context strange,
which confuses the models to correct other errors.

To address the above-mentioned limitations in
model learning and inference, this paper proposes
a novel fluency boost learning and inference mech-
anism, illustrated in Figure 2.

For fluency boosting learning, not only is
a seq2seq model trained with original error-
corrected sentence pairs, but also it generates less
fluent sentences (e.g., from its n-best outputs) to
establish new error-corrected sentence pairs by
pairing them with their correct sentences during
training, as long as the sentences’ fluency1 is be-

1A sentence’s fluency score is defined to be inversely pro-
portional to the sentence’s cross entropy, as is in Eq (3).
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Figure 2: Fluency boost learning and inference: (a) given a training instance (i.e., an error-corrected sen-
tence pair), fluency boost learning establishes multiple fluency boost sentence pairs from the seq2seq’s
n-best outputs during training. The fluency boost sentence pairs will be used as training instances in sub-
sequent training epochs, which helps expand the training set and accordingly benefits model learning;
(b) fluency boost inference allows an error correction model to correct a sentence incrementally through
multi-round seq2seq inference until its fluency score stops increasing.

low that of their correct sentences, as Figure 2(a)
shows. Specifically, we call the generated error-
corrected sentence pairs fluency boost sentence
pairs because the sentence in the target side al-
ways improves fluency over that in the source side.
The generated fluency boost sentence pairs dur-
ing training will be used as additional training in-
stances during subsequent training epochs, allow-
ing the error correction model to see more gram-
matically incorrect sentences during training and
accordingly improving its generalization ability.

For model inference, fluency boost inference
mechanism allows the model to correct a sentence
incrementally with multi-round inference as long
as the proposed edits can boost the sentence’s flu-
ency, as Figure 2(b) shows. For a sentence with
multiple grammatical errors, some of the errors
will be corrected first. The corrected parts will
make the context clearer, which may benefit the
model to correct the remaining errors.

Experiments demonstrate fluency boost learn-
ing and inference enable neural seq2seq models to
perform better for GEC and achieve state-of-the-
art results on multiple GEC benchmarks.

Our contributions are summarized as follows:

• We present a novel learning and inference
mechanism to address the limitations in pre-
vious seq2seq models for GEC.

• We propose and compare multiple novel flu-
ency boost learning strategies, exploring the
learning methodology for neural GEC.

• Our approaches are proven to be effective
to improve neural seq2seq GEC models to
achieve state-of-the-art results on CoNLL-
2014 and JFLEG benchmark datasets.

2 Background: Neural grammatical
error correction

As neural machine translation (NMT), a typical
neural GEC approach uses a Recurrent Neural
Network (RNN) based encoder-decoder seq2seq
model (Sutskever et al., 2014; Cho et al., 2014)
with attention mechanism (Bahdanau et al., 2014)
to edit a raw sentence into the grammatically cor-
rect sentence it should be, as Figure 1(a) shows.

Given a raw sentence xr = (xr1, · · · , xrM )
and its corrected sentence xc = (xc1, · · · , xcN )
in which xrM and xcN are the M -th and N -th
words of sentence xr and xc respectively, the er-
ror correction seq2seq model learns a probabilis-
tic mapping P (xc|xr) from error-corrected sen-
tence pairs through maximum likelihood estima-
tion (MLE), which learns model parameters Θcrt

to maximize the following equation:

Θ∗crt = argmax
Θcrt

∑
(xr ,xc)∈S∗

logP (xc|xr;Θcrt) (1)

where S∗ denotes the set of error-corrected sen-
tence pairs.

For model inference, an output sequence xo =
(xo1, · · · , xoi , · · · , xoL) is selected through beam
search, which maximizes the following equation:

P (xo|xr) =
L∏

i=1

P (xoi |xr,xo
<i;Θcrt) (2)
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Figure 3: Three fluency boost learning strategies: (a) back-boost, (b) self-boost, (c) dual-boost; all of
them generate fluency boost sentence pairs (the pairs in the dashed boxes) to help model learning during
training. The numbers in this figure are fluency scores of their corresponding sentences.

3 Fluency boost learning

Conventional seq2seq models for GEC learns
model parameters only from original error-
corrected sentence pairs. However, such error-
corrected sentence pairs are not sufficiently avail-
able. As a result, many neural GEC models are not
very well generalized.

Fortunately, neural GEC is different from NMT.
For neural GEC, its goal is improving a sentence’s
fluency2 without changing its original meaning;
thus, any sentence pair that satisfies this condition
(we call it fluency boost condition) can be used
as a training instance.

In this paper, we define f(x) as the fluency
score of a sentence x:

f(x) =
1

1 +H(x)
(3)

H(x) = −
∑|x|

i=1 logP (xi|x<i)

|x| (4)

where P (xi|x<i) is the probability of xi given
context x<i, computed by a language model, and
|x| is the length of sentence x. H(x) is actually
the cross entropy of the sentence x, whose range is
[0,+∞). Accordingly, the range of f(x) is (0, 1].

The core idea of fluency boost learning is to
generate fluency boost sentence pairs that satisfy
the fluency boost condition during training, as Fig-
ure 2(a) illustrates, so that these pairs can further
help model learning.

In this section, we present three fluency boost
learning strategies: back-boost, self-boost, and

2Fluency of a sentence in this paper refers to how likely
the sentence is written by a native speaker. In other words, if
a sentence is very likely to be written by a native speaker, it
should be regarded highly fluent.

dual-boost that generate fluency boost sentence
pairs in different ways, as illustrated in Figure 3.

3.1 Back-boost learning

Back-boost learning borrows the idea from back
translation (Sennrich et al., 2016) in NMT, refer-
ring to training a backward model (we call it error
generation model, as opposed to error correction
model) that is used to convert a fluent sentence to a
less fluent sentence with errors. Since the less flu-
ent sentences are generated by the error generation
seq2seq model trained with error-corrected data,
they usually do not change the original sentence’s
meaning; thus, they can be paired with their cor-
rect sentences, establishing fluency boost sentence
pairs that can be used as training instances for er-
ror correction models, as Figure 3(a) shows.

Specifically, we first train a seq2seq error gener-
ation model Θgen with S̃∗ which is identical to S∗
except that the source sentence and the target sen-
tence are interchanged. Then, we use the model
Θgen to predict n-best outputs xo1, · · · , xon

given a correct sentence xc. Given the fluency
boost condition, we compare the fluency of each
output xok (where 1 ≤ k ≤ n) to that of its cor-
rect sentence xc. If an output sentence’s fluency
score is much lower than its correct sentence, we
call it a disfluency candidate of xc.

To formalize this process, we first define
Yn(x;Θ) to denote the n-best outputs predicted
by model Θ given the input x. Then, disfluency
candidates of a correct sentence xc can be derived:

Dback(x
c) = {xok |xok ∈ Yn(xc;Θgen) ∧

f(xc)

f(xok)
≥ σ}

(5)
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Algorithm 1 Back-boost learning
1: Train error generation model Θgen with S̃∗;
2: for each sentence pair (xr,xc) ∈ S do
3: Compute Dback(x

c) according to Eq (5);
4: end for
5: for each training epoch t do
6: S ′ ← ∅;
7: Derive a subset St by randomly sampling |S∗| ele-

ments from S;
8: for each (xr,xc) ∈ St do
9: Establish a fluency boost pair (x′,xc) by ran-

domly sampling x′ ∈ Dback(x
c);

10: S ′ ← S ′ ∪ {(x′,xc)};
11: end for
12: Update error correction model Θcrt with S∗ ∪ S ′;
13: end for

where Dback(x
c) denotes the disfluency candidate

set for xc in back-boost learning. σ is a thresh-
old to determine if xok is less fluent than xc and it
should be slightly larger3 than 1.0, which helps fil-
ter out sentence pairs with unnecessary edits (e.g.,
I like this book. → I like the book.).

In the subsequent training epochs, the error cor-
rection model will not only learn from the original
error-corrected sentence pairs (xr,xc), but also
learn from fluency boost sentence pairs (xok ,xc)
where xok is a sample of Dback(x

c).
We summarize this process in Algorithm 1

where S∗ is the set of original error-corrected sen-
tence pairs, and S can be tentatively considered
identical to S∗ when there is no additional native
data to help model training (see Section 3.4). Note
that we constrain the size of St not to exceed |S∗|
(the 7th line in Algorithm 1) to avoid that too many
fluency boost pairs overwhelm the effects of the
original error-corrected pairs on model learning.

3.2 Self-boost learning
In contrast to back-boost learning whose core
idea is originally from NMT, self-boost learning
is original, which is specially devised for neu-
ral GEC. The idea of self-boost learning is il-
lustrated by Figure 3(b) and was already briefly
introduced in Section 1 and Figure 2(a). Un-
like back-boost learning in which an error gen-
eration seq2seq model is trained to generate dis-
fluency candidates, self-boost learning allows the
error correction model to generate the candidates
by itself. Since the disfluency candidates gener-
ated by the error correction seq2seq model trained
with error-corrected data rarely change the input

3In this paper, we set σ = 1.05 since the corrected sen-
tence in our training data improves its corresponding raw sen-
tence about 5% fluency on average.

Algorithm 2 Self-boost learning
1: for each sentence pair (xr,xc) ∈ S do
2: Dself (x

c)← ∅;
3: end for
4: S ′ ← ∅
5: for each training epoch t do
6: Update error correction model Θcrt with S∗ ∪ S ′;
7: S ′ ← ∅
8: Derive a subset St by randomly sampling |S∗| ele-

ments from S;
9: for each (xr,xc) ∈ St do

10: Update Dself (x
c) according to Eq (6);

11: Establish a fluency boost pair (x′,xc) by ran-
domly sampling x′ ∈ Dself (x

c);
12: S ′ ← S ′ ∪ {(x′,xc)};
13: end for
14: end for

sentence’s meaning; thus, they can be used to es-
tablish fluency boost sentence pairs.

For self-boost learning, given an error corrected
pair (xr,xc), an error correction model Θcrt first
predicts n-best outputs xo1 , · · · ,xon for the raw
sentence xr. Among the n-best outputs, any out-
put that is not identical to xc can be considered as
an error prediction. Instead of treating the error
predictions useless, self-boost learning fully ex-
ploits them. Specifically, if an error prediction xok

is much less fluent than that of its correct sentence
xc, it will be added to xc’s disfluency candidate
set Dself (x

c), as Eq (6) shows:

Dself (x
c) = Dself (x

c) ∪

{xok |xok ∈ Yn(xr;Θcrt) ∧
f(xc)

f(xok)
≥ σ}

(6)

In contrast to back-boost learning, self-boost
generates disfluency candidates from a different
perspective – by editing the raw sentence xr rather
than the correct sentence xc. It is also notewor-
thy that Dself (x

c) is incrementally expanded be-
cause the error correction model Θcrt is dynami-
cally updated, as shown in Algorithm 2.

3.3 Dual-boost learning

As introduced above, back- and self-boost learn-
ing generate disfluency candidates from different
perspectives to create more fluency boost sentence
pairs to benefit training the error correction model.
Intuitively, the more diverse disfluency candidates
generated, the more helpful for training an error
correction model. Inspired by He et al. (2016)
and Zhang et al. (2018), we propose a dual-boost
learning strategy, combining both back- and self-
boost’s perspectives to generate disfluency candi-
dates.
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Algorithm 3 Dual-boost learning
1: for each (xr,xc) ∈ S do
2: Ddual(x

c)← ∅;
3: end for
4: S ′ ← ∅; S ′′ ← ∅;
5: for each training epoch t do
6: Update error correction model Θcrt with S∗ ∪ S ′;
7: Update error generation model Θgen with S̃∗ ∪ S ′′;
8: S ′ ← ∅; S ′′ ← ∅;
9: Derive a subset St by randomly sampling |S∗| ele-

ments from S;
10: for each (xr,xc) ∈ St do
11: Update Ddual(x

c) according to Eq (7);
12: Establish a fluency boost pair (x′,xc) by ran-

domly sampling x′ ∈ Ddual(x
c);

13: S ′ ← S ′ ∪ {(x′,xc)};
14: Establish a reversed fluency boost pair (xc,x′′)

by randomly sampling x′′ ∈ Ddual(x
c);

15: S ′′ ← S ′′ ∪ {(xc,x′′)};
16: end for
17: end for

As Figure 3(c) shows, disfluency candidates in
dual-boost learning are from both the error gener-
ation model and the error correction model :

Ddual(x
c) = Ddual(x

c) ∪

{xok |xok ∈ Yn(xr;Θcrt) ∪ Yn(xc;Θgen) ∧
f(xc)

f(xok)
≥ σ}

(7)

Moreover, the error correction model and the er-
ror generation model are dual and both of them
are dynamically updated, which improves each
other: the disfluency candidates produced by er-
ror generation model can benefit training the error
correction model, while the disfluency candidates
created by error correction model can be used as
training data for the error generation model. We
summarize this learning approach in Algorithm 3.

3.4 Fluency boost learning with large-scale
native data

Our proposed fluency boost learning strategies can
be easily extended to utilize the huge volume of
native data which is proven to be useful for GEC.

As discussed in Section 3.1, when there is no
additional native data, S in Algorithm 1–3 is iden-
tical to S∗. In the case where additional native data
is available to help model learning, S becomes:

S = S∗ ∪ C
where C = {(xc,xc)} denotes the set of self-
copied sentence pairs from native data.

4 Fluency boost inference

As we discuss in Section 1, some sentences with
multiple grammatical errors usually cannot be per-
fectly corrected through normal seq2seq inference

Corpus #sent pair
Lang-8 1,114,139
CLC 1,366,075

NUCLE 57,119
Total 2,537,333

Table 1: Error-corrected training data.

which does only single-round inference. Fortu-
nately, neural GEC is different from NMT: its
source and target language are the same. The char-
acteristic allows us to edit a sentence more than
once through multi-round model inference, which
motivates our fluency boost inference. As Fig-
ure 2(b) shows, fluency boost inference allows a
sentence to be incrementally edited through multi-
round seq2seq inference as long as the sentence’s
fluency can be improved. Specifically, an error
correction seq2seq model first takes a raw sen-
tence xr as an input and outputs a hypothesis xo1 .
Instead of regarding xo1 as the final prediction,
fluency boost inference will then take xo1 as the
input to generate the next output xo2 . The pro-
cess will not terminate unless xot does not im-
prove xot−1 in terms of fluency.

5 Experiments

5.1 Dataset and evaluation

As previous studies (Ji et al., 2017), we use the
public Lang-8 Corpus (Mizumoto et al., 2011;
Tajiri et al., 2012), Cambridge Learner Cor-
pus (CLC) (Nicholls, 2003) and NUS Corpus
of Learner English (NUCLE) (Dahlmeier et al.,
2013) as our original error-corrected training data.
Table 1 shows the stats of the datasets. In addi-
tion, we also collect 2,865,639 non-public error-
corrected sentence pairs from Lang-8.com. The
native data we use for fluency boost learning is
English Wikipedia that contains 61,677,453 sen-
tences.

We use CoNLL-2014 shared task dataset with
original annotations (Ng et al., 2014), which con-
tains 1,312 sentences, as our main test set for eval-
uation. We use MaxMatch (M2) precision, recall
andF0.5 (Dahlmeier and Ng, 2012b) as our evalua-
tion metrics. As previous studies, we use CoNLL-
2013 test data as our development set.

5.2 Experimental setting

We set up experiments in order to answer the fol-
lowing questions:
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Model seq2seq fluency boost seq2seq (+LM) fluency boost (+LM)
P R F0.5 P R F0.5 P R F0.5 P R F0.5

normal seq2seq 61.06 18.49 41.81 61.56 18.85 42.37 61.75 23.30 46.42 61.94 23.70 46.83
back-boost 61.66 19.54 43.09 61.43 19.61 43.07 61.47 24.74 47.40 61.24 25.01 47.48
self-boost 61.64 19.83 43.35 61.50 19.90 43.36 62.13 24.45 47.49 61.67 24.76 47.51
dual-boost 62.03 20.82 44.44 61.64 21.19 44.61 62.22 25.49 48.30 61.64 26.45 48.69

back-boost (+native) 63.93 22.03 46.31 63.95 22.12 46.40 62.04 27.43 49.54 61.98 27.70 49.68
self-boost (+native) 64.33 22.10 46.54 64.14 22.19 46.54 62.18 27.59 49.71 61.64 28.37 49.93
dual-boost (+native) 65.77 21.92 46.98 65.82 22.14 47.19 62.64 27.40 49.83 62.70 27.69 50.04

back-boost (+native)? 67.37 24.31 49.75 67.25 24.35 49.73 64.61 28.44 51.51 64.46 28.78 51.66
self-boost (+native)? 66.52 25.13 50.03 66.78 25.33 50.31 63.82 30.15 52.17 63.34 31.63 52.21
dual-boost (+native)? 66.34 25.39 50.16 66.45 25.51 50.30 64.72 30.06 52.59 64.47 30.48 52.72

Table 2: Performance of seq2seq for GEC with different learning (row) and inference (column) meth-
ods on CoNLL-2014 dataset. (+LM) denotes decoding with the RNN language model through shallow
fusion. The last 3 systems (with ?) use the additional non-public Lang-8 data for training.

• Whether is fluency boost learning mechanism
helpful for training the error correction model,
and which of the strategies (back-boost, self-
boost, dual-boost) is the most effective?

• Whether does our fluency boost inference im-
prove normal seq2seq inference for GEC?

• Whether can our approach improve neural
GEC to achieve state-of-the-art results?

The training details for our seq2seq error cor-
rection model and error generation model are as
follows: the encoder of the seq2seq models is a
2-layer bidirectional GRU RNN and the decoder
is a 2-layer GRU RNN with the general attention
mechanism (Luong et al., 2015). Both the dimen-
sionality of word embeddings and the hidden size
of GRU cells are 500. The vocabulary sizes of the
encoder and decoder are 100,000 and 50,000 re-
spectively. The models’ parameters are uniformly
initialized in [-0.1,0.1]. We train the models with
an Adam optimizer with a learning rate of 0.0001
up to 40 epochs with batch size = 128. Dropout is
applied to non-recurrent connections at a ratio of
0.15. For fluency boost learning, we generate dis-
fluency candidates from 10-best outputs. During
model inference, we set beam size to 5 and decode
1-best result with a 2-layer GRU RNN language
model (Mikolov et al., 2010) through shallow fu-
sion (Gülçehre et al., 2015) with weight β = 0.15.
The RNN language model is trained from the na-
tive data mentioned in Section 5.1, which is also
used for computing fluency score in Eq (3). UNK
tokens are replaced with the source token with the
highest attention weight.

We resolve spelling errors with a public spell
checker4 as preprocessing, as Xie et al. (2016) and
Sakaguchi et al. (2017) do.

4https://azure.microsoft.com/en-us/services/cognitive-
services/spell-check/

5.3 Experimental results

5.3.1 Effectiveness of fluency boost learning

Table 2 compares the performance of seq2seq er-
ror correction models with different learning and
inference methods. By comparing by row, one can
observe that our fluency boost learning approaches
improve the performance over normal seq2seq
learning, especially on the recall metric, since the
fluency boost learning approaches generate a va-
riety of grammatically incorrect sentences, allow-
ing the error correction model to learn to correct
much more sentences than the conventional learn-
ing strategy. Among the proposed three fluency
boost learning strategies, dual-boost achieves the
best result in most cases because it produces more
diverse incorrect sentences (average |Ddual| ≈
9.43) than either back-boost (avg |Dback| ≈ 1.90)
or self-boost learning (avg |Dself | ≈ 8.10). With
introducing large amounts of native text data, the
performance of all the fluency boost learning ap-
proaches gets improved. One reason is that our
learning approaches produce more error-corrected
sentence pairs to let the model be better general-
ized. In addition, the huge volume of native data
benefits the decoder to learn better to generate a
fluent and error-free sentence.

We test the effect of hyper-parameter σ in Eq
(5–7) on fluency boost learning and show the re-
sult in Table 3. When σ is slightly larger than 1.0
(e.g., σ = 1.05), the model achieves the best per-
formance because it effectively avoids generating
sentence pairs with unnecessary or undesirable ed-
its that affect the performance, as we discussed in
Section 3.1. When σ continues increasing, the dis-
fluency candidate set |Ddual| drastically decreases,
making the dual-boost learning gradually degrade
to normal seq2seq learning.

Table 4 shows some examples of disfluency
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σ 0 0.95 1.0 1.05 1.1 2.0
|Ddual| 41.18 39.21 29.40 9.43 3.87 0.01
F0.5 43.20 43.30 43.39 44.44 43.30 41.78

Table 3: The effect of σ on dual-boost learning
with normal seq2seq inference. |Ddual| is the av-
erage size of dual-boost disfluency candidate sets.

Correct sentence How autism occurs is not well understood.

Disfluency candidates

How autism occurs is not good understood.
How autism occur is not well understood.

What autism occurs is not well understood.
How autism occurs is not well understand.

How autism occurs does not well understood.

Table 4: Examples of disfluency candidates for a
correct sentence in dual-boost learning.

candidates5 generated in dual-boost learning given
a correct sentence in the native data. It is clear that
our approach can generate less fluent sentences
with various grammatical errors and most of them
are typical mistakes that a human learner tends to
make. Therefore, they can be used to establish
high-quality training data with their correct sen-
tence, which will be helpful for increasing the size
of training data to numbers of times, accounting
for the improvement by fluency boost learning.

5.3.2 Effectiveness of fluency boost inference
The effectiveness of various inference approaches
can be observed by comparing the results in Table
2 by column. Compared to the normal seq2seq
inference and seq2seq (+LM) baselines, fluency
boost inference brings about on average 0.14 and
0.18 gain on F0.5 respectively, which is a signif-
icant6 improvement, demonstrating multi-round
edits by fluency boost inference is effective.

Take our best system (the last row in Table
2) as an example, among 1,312 sentences in
the CoNLL-2014 dataset, seq2seq inference with
shallow fusion LM edits 566 sentences. In con-
trast, fluency boost inference additionally edits 23
sentences during the second round inference, im-
proving F0.5 from 52.59 to 52.72.

5.3.3 Towards the state-of-the-art for GEC
Now, we answer the last question raised in Section
5.2 by testing if our approaches achieve the state-
of-the-art result.

We first compare our best models – dual-boost
learning (+native) with fluency boost inference
and shallow fusion LM – to top-performing GEC
systems evaluated on CoNLL-2014 dataset:

5We give more details about disfluency candidates, in-
cluding error type proportion, in the supplementary notes.

6p < 0.0005 according to Wilcoxon Signed-Rank Test.

System P R F0.5

Spell check 53.01 8.16 25.25
CAMB14 39.71 30.10 37.33

CAMB16SMT 45.39 21.82 37.33
CAMB16NMT - - 39.90

CAMB17 (CAMB16SMT based) 51.09 25.30 42.44
CAMB17 (AMU16 based) 59.88 32.16 51.08

AMU14 41.62 21.40 35.01
AMU16 61.27 27.98 49.49

AMU16? 63.52 30.49 52.21
CUUI 41.78 24.88 36.79
VT16? 60.17 25.64 47.40
NUS14 53.55 19.14 39.39
NUS16 - - 44.27
NUS17 62.74 32.96 53.14

Char-seq2seq 49.24 23.77 40.56
Nested-seq2seq - - 45.15
Adapt-seq2seq - - 41.37

dual-boost (single) 62.70 27.69 50.04
dual-boost (AMU16 based) 60.57 36.02 53.30

dual-boost (single)? 64.47 30.48 52.72
dual-boost (AMU16 based)? 61.24 37.86 54.51

Table 5: Performance of systems on CoNLL-2014
dataset. The system with bold fonts are based on
seq2seq models. ? denotes the system uses the
non-public error-corrected data from Lang-8.com.

• CAMB14, CAMB16SMT, CAMB16NMT and
CAMB17: GEC systems (Felice et al., 2014;
Yuan et al., 2016; Yuan and Briscoe, 2016;
Yannakoudakis et al., 2017) developed by
Cambridge University.

• AMU14 and AMU16: SMT-based GEC sys-
tems (Junczys-Dowmunt and Grundkiewicz,
2014, 2016) developed by AMU.

• CUUI and VT16: the former system (Ro-
zovskaya et al., 2014) uses a classifier-based
approach, which is improved by the latter sys-
tem (Rozovskaya and Roth, 2016) through
combining with an SMT-based approach.

• NUS14, NUS16 and NUS17: GEC systems
(Susanto et al., 2014; Chollampatt et al., 2016a;
Chollampatt and Ng, 2017) that combine SMT
with other techniques (e.g., classifiers).

• Char-seq2seq: a character-level seq2seq model
(Xie et al., 2016). It uses a rule-based method
to synthesize errors for data augmentation.

• Nested-seq2seq: a nested attention neural hy-
brid seq2seq model (Ji et al., 2017).

• Adapt-seq2seq: a seq2seq model adapted to
incorporate edit operations (Schmaltz et al.,
2017).

Table 5 shows the evaluation results on the
CoNLL-2014 dataset. Without using the non-
public training data from Lang-8.com, our sin-
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gle model obtains 50.04 F0.5, larlgely outperform-
ing the other seq2seq models and only inferior to
CAMB17 (AMU16 based) and NUS17. It should
be noted, however, that the CAMB17 and NUS17
are actually re-rankers built on top of an SMT-
based GEC system (AMU16’s framework); thus,
they are ensemble models. When we build our ap-
proach on top of AMU16 (i.e., we take AMU16’s
outputs as the input to our GEC system to edit
on top of its outputs), we achieve 53.30 F0.5

score. With introducing the non-public training
data, our single and ensemble system obtain 52.72
and 54.51 F0.5 score respectively, which is a state-
of-the-art result7 on CoNLL-2014 dataset.

Moreover, we evaluate our approach on JFLEG
corpus (Napoles et al., 2017). JFLEG is the latest
released dataset for GEC evaluation and it contains
1,501 sentences (754 in dev set and 747 in test set).
To test our approach’s generalization ability, we
evaluate our single models used for CoNLL eval-
uation (in Table 5) on JFLEG without re-tuning.

Table 6 shows the JFLEG leaderboard. Instead
of M2 score, JFLEG uses GLEU (Napoles et al.,
2015) as its evaluation metric, which is a fluency-
oriented GEC metric based on a variant of BLEU
(Papineni et al., 2002) and has several advantages
over M2 for GEC evaluation. It is observed that
our single models consistently perform well on
JFLEG, outperforming most of the CoNLL-2014
top-performing systems and yielding a state-of-
the-art result8 on this benchmark, demonstrating
that our models are well generalized and perform
stably on multiple datasets.

6 Related work

Most of advanced GEC systems are classifier-
based (Chodorow et al., 2007; De Felice and Pul-
man, 2008; Han et al., 2010; Leacock et al., 2010;
Tetreault et al., 2010a; Dale and Kilgarriff, 2011)

7The state-of-the-art result on CoNLL-2014 dataset has
been recently advanced by Chollampatt and Ng (2018)
(F0.5=54.79) and Grundkiewicz and Junczys-Dowmunt
(2018) (F0.5=56.25), which are contemporaneous to this pa-
per. In contrast to the basic seq2seq model in this paper, they
used advanced approaches for modeling (e.g., convolutional
seq2seq with pre-trained word embedding, using edit opera-
tion features, ensemble decoding and advanced model combi-
nations). It should be noted that their approaches are orthog-
onal to ours, making it possible to apply our fluency boost
learning and inference mechanism to their models.

8The recently proposed SMT-NMT hybrid system
(Grundkiewicz and Junczys-Dowmunt, 2018), which is tuned
towards GLEU on JFLEG Dev set, reports a higher result
(GLEU=61.50 on JFLEG test set).

System JFLEG Dev JFLEG Test
GLEU GLEU

Source 38.21 40.54
CAMB14 42.81 46.04

CAMB16SMT 46.10 -
CAMB16NMT 47.20 52.05

CAMB17 (CAMB16SMT based) 47.72 -
CAMB17 (AMU16 based) 43.26 -

NUS16 46.27 50.13
NUS17 51.01 56.78

AMU16∗ 49.74 51.46
Nested-seq2seq 48.93 53.41

Sakaguchi et al. (2017)∗ 49.82 53.98
Ours 51.35 56.33

Ours (with non-public Lang-8 data) 52.93 57.74
Human 55.26 62.37

Table 6: JFLEG Leaderboard. Ours denote the
single dual-boost models in Table 5. The systems
with bold fonts are based on seq2seq models. ∗

denotes the system is tuned on JFLEG.

or MT-based (Brockett et al., 2006; Dahlmeier
and Ng, 2011, 2012a; Yoshimoto et al., 2013;
Yuan and Felice, 2013; Behera and Bhattacharyya,
2013). For example, top-performing systems (Fe-
lice et al., 2014; Rozovskaya et al., 2014; Junczys-
Dowmunt and Grundkiewicz, 2014) in CoNLL-
2014 shared task (Ng et al., 2014) use either of the
methods. Recently, many novel approaches (Su-
santo et al., 2014; Chollampatt et al., 2016b,a; Ro-
zovskaya and Roth, 2016; Junczys-Dowmunt and
Grundkiewicz, 2016; Mizumoto and Matsumoto,
2016; Yuan et al., 2016; Hoang et al., 2016; Yan-
nakoudakis et al., 2017) have been proposed for
GEC. Among them, seq2seq models (Yuan and
Briscoe, 2016; Xie et al., 2016; Ji et al., 2017; Sak-
aguchi et al., 2017; Schmaltz et al., 2017; Chol-
lampatt and Ng, 2018) have caught much atten-
tion. Unlike the models trained only with origi-
nal error-corrected data, we propose a novel flu-
ency boost learning mechanism for dynamic data
augmentation along with training for GEC, despite
some previous studies that explore artificial error
generation for GEC (Brockett et al., 2006; Foster
and Andersen, 2009; Rozovskaya and Roth, 2010,
2011; Rozovskaya et al., 2012; Felice and Yuan,
2014; Xie et al., 2016; Rei et al., 2017). More-
over, we propose fluency boost inference which
allows the model to repeatedly edit a sentence as
long as the sentence’s fluency can be improved.
To the best of our knowledge, it is the first to
conduct multi-round seq2seq inference for GEC,
while similar ideas have been proposed for NMT
(Xia et al., 2017).

In addition to the studies on GEC, there is
also much research on grammatical error detection
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(Leacock et al., 2010; Rei and Yannakoudakis,
2016; Kaneko et al., 2017) and GEC evaluation
(Tetreault et al., 2010b; Madnani et al., 2011;
Dahlmeier and Ng, 2012c; Napoles et al., 2015;
Sakaguchi et al., 2016; Napoles et al., 2016;
Bryant et al., 2017; Asano et al., 2017). We do
not introduce them in detail because they are not
much related to this paper’s contributions.

7 Conclusion

We propose a novel fluency boost learning and
inference mechanism to overcome the limitations
of previous neural GEC models. Our proposed
fluency boost learning fully exploits both error-
corrected data and native data, largely improv-
ing the performance over normal seq2seq learn-
ing, while fluency boost inference utilizes the
characteristic of GEC to incrementally improve a
sentence’s fluency through multi-round inference.
The powerful learning and inference mechanism
enables the seq2seq models to achieve state-of-
the-art results on both CoNLL-2014 and JFLEG
benchmark datasets.

Acknowledgments

We thank all the anonymous reviewers for their
professional and constructive comments. We also
thank Shujie Liu for his insightful discussions and
suggestions.

References

Hiroki Asano, Tomoya Mizumoto, and Kentaro Inui.
2017. Reference-based metrics can be replaced with
reference-less metrics in evaluating grammatical er-
ror correction systems. In IJCNLP.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Bibek Behera and Pushpak Bhattacharyya. 2013.
Automated grammar correction using hierarchical
phrase-based statistical machine translation. In IJC-
NLP.

Chris Brockett, William B Dolan, and Michael Gamon.
2006. Correcting esl errors using phrasal smt tech-
niques. In COLING/ACL.

Christopher Bryant, Mariano Felice, and E Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In ACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP.

Martin Chodorow, Joel R Tetreault, and Na-Rae Han.
2007. Detection of grammatical errors involving
prepositions. In ACL-SIGSEM workshop on prepo-
sitions.

Shamil Chollampatt, Duc Tam Hoang, and Hwee Tou
Ng. 2016a. Adapting grammatical error correction
based on the native language of writers with neural
network joint models. In EMNLP.

Shamil Chollampatt and Hwee Tou Ng. 2017. Con-
necting the dots: Towards human-level grammatical
error correction. In Workshop on Innovative Use of
NLP for Building Educational Applications.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. arXiv preprint
arXiv:1801.08831.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016b. Neural network translation models
for grammatical error correction. arXiv preprint
arXiv:1606.00189.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Correcting
semantic collocation errors with l1-induced para-
phrases. In EMNLP.

Daniel Dahlmeier and Hwee Tou Ng. 2012a. A beam-
search decoder for grammatical error correction. In
EMNLP/CoNLL.

Daniel Dahlmeier and Hwee Tou Ng. 2012b. Bet-
ter evaluation for grammatical error correction. In
NAACL.

Daniel Dahlmeier and Hwee Tou Ng. 2012c. Bet-
ter evaluation for grammatical error correction. In
NAACL.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In Work-
shop on innovative use of NLP for building educa-
tional applications.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The hoo 2011 pilot shared task. In European
Workshop on Natural Language Generation.

Rachele De Felice and Stephen G Pulman. 2008. A
classifier-based approach to preposition and deter-
miner error correction in l2 english. In COLING.

Mariano Felice and Zheng Yuan. 2014. Generating ar-
tificial errors for grammatical error correction. In
Student Research Workshop at EACL.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473


1064

Mariano Felice, Zheng Yuan, Øistein E Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In CoNLL (Shared Task).

Jennifer Foster and Øistein E Andersen. 2009. Gen-
errate: generating errors for use in grammatical er-
ror detection. In Workshop on innovative use of nlp
for building educational applications.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2018. Near human-level performance in grammati-
cal error correction with hybrid machine translation.
arXiv preprint arXiv:1804.05945.
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