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Abstract

During the last years, there has been a
lot of interest in achieving some kind of
complex reasoning using deep neural net-
works. To do that, models like Mem-
ory Networks (MemNNs) have combined
external memory storages and attention
mechanisms. These architectures, how-
ever, lack of more complex reasoning
mechanisms that could allow, for instance,
relational reasoning. Relation Networks
(RNs), on the other hand, have shown
outstanding results in relational reasoning
tasks. Unfortunately, their computational
cost grows quadratically with the number
of memories, something prohibitive for
larger problems. To solve these issues,
we introduce the Working Memory Net-
work, a MemNN architecture with a novel
working memory storage and reasoning
module. Our model retains the relational
reasoning abilities of the RN while re-
ducing its computational complexity from
quadratic to linear. We tested our model
on the text QA dataset bAbI and the visual
QA dataset NLVR. In the jointly trained
bAbI-10k, we set a new state-of-the-art,
achieving a mean error of less than 0.5%.
Moreover, a simple ensemble of two of our
models solves all 20 tasks in the joint ver-
sion of the benchmark.

1 Introduction

A central ability needed to solve daily tasks is
complex reasoning. It involves the capacity to
comprehend and represent the environment, re-
tain information from past experiences, and solve
problems based on the stored information. Our
ability to solve those problems is supported by

multiple specialized components, including short-
term memory storage, long-term semantic and
procedural memory, and an executive controller
that, among others, controls the attention over
memories (Baddeley, 1992).

Many promising advances for achieving com-
plex reasoning with neural networks have been ob-
tained during the last years. Unlike symbolic ap-
proaches to complex reasoning, deep neural net-
works can learn representations from perceptual
information. Because of that, they do not suf-
fer from the symbol grounding problem (Har-
nad, 1999), and can generalize better than clas-
sical symbolic approaches. Most of these neu-
ral network models make use of an explicit mem-
ory storage and an attention mechanism. For in-
stance, Memory Networks (MemNN), Dynamic
Memory Networks (DMN) or Neural Turing Ma-
chines (NTM) (Weston et al., 2014; Kumar et al.,
2016; Graves et al., 2014) build explicit memories
from the perceptual inputs and access these mem-
ories using learned attention mechanisms. Af-
ter that some memories have been attended, us-
ing a multi-step procedure, the attended memories
are combined and passed through a simple out-
put layer that produces a final answer. While this
allows some multi-step inferential process, these
networks lack a more complex reasoning mecha-
nism, needed for more elaborated tasks such as in-
ferring relations among entities (relational reason-
ing). On the contrary, Relation Networks (RNs),
proposed in Santoro et al. (2017), have shown
outstanding performance in relational reasoning
tasks. Nonetheless, a major drawback of RNs
is that they consider each of the input objects in
pairs, having to process a quadratic number of
relations. That limits the usability of the model
on large problems and makes forward and back-
ward computations quite expensive. To solve these
problems we propose a novel Memory Network
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Figure 1: The W-MemNN model applied to textual question answering. Each input fact is processed
using a GRU, and the output representation is stored in the short-term memory storage. Then, the atten-
tional controller computes an output vector that summarizes relevant parts of the memories. This process
is repeated H hops (a dotted line delimits each hop), and each output is stored in the working memory
buffer. Finally, the output of each hop is passed to the reasoning module that produces the final output.

architecture called the Working Memory Network
(W-MemNN). Our model augments the original
MemNN with a relational reasoning module and
a new working memory buffer.

The attention mechanism of the Memory Net-
work allows the filtering of irrelevant inputs, re-
ducing a lot of the computational complexity
while keeping the relational reasoning capabili-
ties of the RN. Three main components compose
the W-MemNN: An input module that converts
the perceptual inputs into an internal vector rep-
resentation and save these representations into a
short-term storage, an attentional controller that
attend to these internal representations and update
a working memory buffer, and a reasoning mod-
ule that operates on the set of objects stored in
the working memory buffer in order to produce a
final answer. This component-based architecture
is inspired by the well-known model from cogni-
tive sciences called the multi-component working
memory model, proposed in Baddeley and Hitch
(1974).
We studied the proposed model on the text-based
QA benchmark bAbI (Weston et al., 2015) which
consists of 20 different toy tasks that measure dif-
ferent reasoning skills. While models such as Ent-
Net (Henaff et al., 2016) have focused on the per-
task training version of the benchmark (where a
different model is trained for each task), we de-
cided to focus on the jointly trained version of the

task, where the model is trained on all tasks simul-
taneously. In the jointly trained bAbI-10k bench-
mark we achieved state-of-the-art performance,
improving the previous state-of-the-art on more
than 2%. Moreover, a simple ensemble of two
of our models can solve all 20 tasks simultane-
ously. Also, we tested our model on the visual QA
dataset NLVR. In that dataset, we obtained per-
formance at the level of the Module Neural Net-
works (Andreas et al., 2016). Our model, however,
achieves these results using the raw input state-
ments, without the extra text processing used in
the Module Networks.

Finally, qualitative and quantitative analysis
shows that the inclusion of the Relational Rea-
soning module is crucial to improving the perfor-
mance of the MemNN on tasks that involve re-
lational reasoning. We can achieve this perfor-
mance by also reducing the computation times of
the RN considerably. Consequently, we hope that
this contribution may allow applying RNs to larger
problems.

2 Model

Our model is based on the Memory Network ar-
chitecture. Unlike MemNN we have included a
reasoning module that helps the network to solve
more complex tasks. The proposed model consists
of three main modules: An input module, an at-
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tentional controller, and a reasoning module. The
model processes the input information in multiple
passes or hops. At each pass the output of the pre-
vious hop can condition the current pass, allowing
some incremental refinement.
Input module: The input module converts the
perceptual information into an internal feature rep-
resentation. The input information can be pro-
cessed in chunks, and each chunk is saved into
a short-term storage. The definition of what is a
chunk of information depends on each task. For
instance, for textual question answering, we define
each chunk as a sentence. Other options might be
n-grams or full documents. This short-term stor-
age can only be accessed during the hop.
Attentional Controller: The attentional con-
troller decides in which parts of the short-term
storage the model should focus. The attended
memories are kept during all the hops in a work-
ing memory buffer. The attentional controller is
conditioned by the task at hand, for instance, in
question answering the question can condition the
attention. Also, it may be conditioned by the out-
put of previous hops, allowing the model to change
its focus to new portions of the memory over time.
Many models compute the attention for each
memory using a compatibility function between
the memory and the question. Then, the output
is calculated as the weighted sum of the memory
values, using the attention as weight. A simple
way to compute the attention for each memory is
to use dot-product attention. This kind of mech-
anism is used in the original Memory Network
and computes the attention value as the dot prod-
uct between each memory and the question. Al-
though this kind of attention is simple, it may not
be enough for more complex tasks. Also, since
there are no learned weights in the attention mech-
anism, the attention relies entirely on the learned
embeddings. That is something that we want to
avoid in order to separate the learning of the in-
put and attention module. One way to allow learn-
ing in the dot-product attention is to project the
memories and query vectors linearly. That is done
by multiplying each vector by a learned projec-
tion matrix (or equivalently a feed-forward neural
network). In this way, we can set apart the atten-
tion and input embeddings learning, and also al-
low more complex patterns of attention.

Reasoning Module: The memories stored in
the working memory buffer are passed to the rea-

soning module. The choice of reasoning mecha-
nism is left open and may depend on the task at
hand. In this work, we use a Relation Network
as the reasoning module. The RN takes the at-
tended memories in pairs to infer relations among
the memories. That can be useful, for example, in
tasks that include comparisons.
A detailed description of the full model is shown
in Figure 1.

2.1 W-MemN2N for Textual Question
Answering

We proceed to describe an implementation of the
model for textual question answering. In textual
question answering the input consists of a set of
sentences or facts, a question, and an answer. The
goal is to answer the question correctly based on
the given facts.
Let (s, q, a) represents an input sample, consisting
of a set of sentences s = {xi}Li=1, a query q and
an answer a. Each sentence contains M words,
{wi}Mi=1, where each word is represented as a one-
hot vector of length |V |, being |V | the vocabulary
size. The question contains Q words, represented
as in the input sentences.

Input Module
Each word in each sentence is encoded into a vec-
tor representation vi using an embedding matrix
W ∈ R|V |×d, where d is the embedding size.
Then, the sentence is converted into a memory
vector mi using the final output of a gated recur-
rent neural network (GRU) (Chung et al., 2014):

mi = GRU([v1, v2, ..., vM ])

Each memory {mi}Li=1, where mi ∈ Rd, is stored
into the short-term memory storage. The question
is encoded into a vector u in a similar way, using
the output of a gated recurrent network.

Attentional Controller
Our attention module is based on the Multi-Head
attention mechanism proposed in Vaswani et al.
(2017). First, the memories are projected using
a projection matrixWm ∈ Rd×d, asm′i =Wmmi.
Then, the similarity between the projected mem-
ory and the question is computed using the Scaled
Dot-Product attention:

αi = Softmax
(uTm′i√

d

)
(1)

=
exp((uTm′i)/

√
d)∑

j exp((u
Tm′j)/

√
d)
. (2)
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Next, the memories are combined using the atten-
tion weights αi, obtaining an output vector h =∑

j αjmj .
In the Multi-Head mechanism, the memories are
projected S times using different projection matri-
ces {W s

m}Ss=1. For each group of projected mem-
ories, an output vector {hi}Si=1 is obtained using
the Scaled Dot-Product attention (eq. 2). Finally,
all vector outputs are concatenated and projected
again using a different matrix:

ok = [h1;h2; ...;hS ]Wo,

where ; is the concatenation operator and Wo ∈
RSd×d. The ok vector is the final response vector
for the hop k. This vector is stored in the working
memory buffer. The attention procedure can be
repeated many times (or hops). At each hop, the
attention can be conditioned on the previous hop
by replacing the question vector u by the output of
the previous hop. To do that we pass the output
through a simple neural network ft. Then, we use
the output of the network as the new conditioner:

onk = ft(ok). (3)

This network allows some learning in the transi-
tion patterns between hops.
We found Multi-Head attention to be very useful
in the joint bAbI task. This can be a product of
the intrinsic multi-task nature of the bAbI dataset.
A possibility is that each attention head is being
adapted for different groups of related tasks. How-
ever, we did not investigate this further.
Also, note that while in this section we use the
same set of memories at each hop, this is not nec-
essary. For larger sequences each hop can operate
in different parts of the input sequence, allowing
the processing of the input in various steps.

Reasoning Module
The outputs stored in the working memory buffer
are passed to the reasoning module. The reason-
ing module used in this work is a Relation Net-
work (RN). In the RN the output vectors are con-
catenated in pairs together with the question vec-
tor. Each pair is passed through a neural network
gθ and all the outputs of the network are added to
produce a single vector. Then, the sum is passed
to a final neural network fφ:

r = fφ

(∑
i,j

gθ([oi; oj ;u])

)
, (4)

The output of the Relation Network is then passed
through a final weight matrix and a softmax to pro-
duce the predicted answer:

â = Softmax(V r), (5)

where V ∈ R|A|×dφ , |A| is the number of possi-
ble answers and dφ is the dimension of the output
of fφ. The full network is trained end-to-end us-
ing standard cross-entropy between â and the true
label a.

3 Related Work

3.1 Memory Augmented Neural Networks
During the last years, there has been plenty of
work on achieving complex reasoning with deep
neural networks. An important part of these de-
velopments has used some kind of explicit mem-
ory and attention mechanisms. One of the earliest
recent work is that of Memory Networks (Weston
et al., 2014). Memory Networks work by building
an addressable memory from the inputs and then
accessing those memories in a series of reading
operations. Another, similar, line of work is the
one of Neural Turing Machines. They were pro-
posed in Graves et al. (2014) and are the basis for
recent neural architectures including the Differ-
entiable Neural Computer (DNC) and the Sparse
Access Memory (SAM) (Graves et al., 2016; Rae
et al., 2016). The NTM model also uses a con-
tent addressable memory, as in the Memory Net-
work, but adds a write operation that allows up-
dating the memory over time. The management of
the memory, however, is different from the one of
the MemNN. While the MemNN model pre-load
the memories using all the inputs, the NTM writes
and read the memory one input at a time.

An additional model that makes use of explicit
external memory is the Dynamic Memory Net-
work (DMN) (Kumar et al., 2016; Xiong et al.,
2016). The model shares some similarities with
the Memory Network model. However, unlike the
MemNN model, it operates in the input sequen-
tially (as in the NTM model). The model de-
fines an Episodic Memory module that makes use
of a Gated Recurrent Neural Network (GRU) to
store and update an internal state that represents
the episodic storage.

3.2 Memory Networks
Since our model is based on the MemNN architec-
ture, we proceed to describe it in more detail. The
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Memory Network model was introduced in We-
ston et al. (2014). In that work, the authors pro-
posed a model composed of four components: The
input feature map that converts the input into an
internal vector representation, the generalization
module that updates the memories given the input,
the output feature map that produces a new out-
put using the stored memories, and the response
module that produces the final answer. The model,
as initially proposed, needed some strong supervi-
sion that explicitly tells the model which memo-
ries to attend. In order to solve that limitation, the
End-To-End Memory Network (MemN2N) was
proposed in Sukhbaatar et al. (2015).

The model replaced the hard-attention mech-
anism used in the original MemNN by a soft-
attention mechanism that allowed to train it end-
to-end without strong supervision. In our model,
we use a component-based approach, as in the
original MemNN architecture. However, there are
some differences: First, our model makes use of
two external storages: a short-term storage, and
a working memory buffer. The first is equivalent
to the one updated by the input and generaliza-
tion module of the MemNN. The working memory
buffer, on the other hand, does not have a coun-
terpart in the original model. Second, our model
replaces the response module by a reasoning mod-
ule. Unlike the original MemNN, our reasoning
module is intended to make more complex work
than the response module, that was only designed
to produce a final answer.

3.3 Relation Networks

The ability to infer and learn relations between en-
tities is fundamental to solve many complex rea-
soning problems. Recently, a number of neural
network models have been proposed for this task.
These include Interaction Networks, Graph Neu-
ral Networks, and Relation Networks (Battaglia
et al., 2016; Scarselli et al., 2009; Santoro et al.,
2017). In specific, Relation Networks (RNs) have
shown excellent results in solving textual and vi-
sual question answering tasks requiring relational
reasoning. The model is relatively simple: First,
all the inputs are grouped in pairs and each pair is
passed through a neural network. Then, the out-
puts of the first network are added, and another
neural network processes the final vector. The role
of the first network is to infer relations among each
pair of objects. In Palm et al. (2017) the authors

propose a recurrent extension to the RN. By al-
lowing multiple steps of relational reasoning, the
model can learn to solve more complex tasks. The
main issue with the RN architecture is that its scale
very poorly for larger problems. That is because
it operates on O(n2) pairs, where n is the num-
ber of input objects (for instance, sentences in the
case of textual question answering). This becomes
quickly prohibitive for tasks involving many input
objects.

3.4 Cognitive Science

The concept of working memory has been exten-
sively developed in cognitive psychology. It con-
sists of a limited capacity system that allows tem-
porary storage and manipulation of information
and is crucial to any reasoning task. One of the
most influential models of working memory is the
multi-component model of working memory pro-
posed by Baddeley and Hitch (1974). This model
is composed both of a supervisory attentional con-
troller (the central executive) and two short-term
storage systems: The phonological loop, capable
of holding speech-based information, and the vi-
suospatial sketchpad, concerned with visual stor-
age. The central executive plays various functions,
including the capacity to focus attention, to di-
vide attention and to control access to long-term
memory. Later modifications to the model (Bad-
deley, 2000) include an episodic buffer that is ca-
pable of integrating and holding information from
different sources. Connections of the working
memory model to memory augmented neural net-
works have been already studied in Graves et al.
(2014). We follow this effort and subdivide our
model into components that resemble (in a ba-
sic way) the multi-component model of working
memory. Note, however, that we use the term
working memory buffer instead of episodic buffer.
That is because the episodic buffer has an integra-
tion function that our model does not cover. How-
ever, that can be an interesting source of inspira-
tion for next versions of the model that integrate
both visual and textual information for question
answering.

4 Experiments

4.1 Textual Question Answering

To evaluate our model on textual question answer-
ing we used the Facebook bAbI-10k dataset (We-
ston et al., 2015). The bAbI dataset is a textual
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LSTM MN-S MN SDNC WMN WMN†

1: 1 supporting fact 0.0 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts 81.9 0.0 1.0 0.6 0.7 0.3
3: 3 supporting facts 83.1 0.0 6.8 0.7 5.3 4.6
4: 2 argument relations 0.2 0.0 0.0 0.0 0.0 0.0
5: 3 argument relations 1.2 0.3 6.1 0.3 0.6 0.4
6: yes/no questions 51.8 0.0 0.1 0.0 0.0 0.0
7: counting 24.9 3.3 6.6 0.2 0.6 0.5
8: lists/sets 34.1 1.0 2.7 0.2 0.2 0.3
9: simple negation 20.2 0.0 0.0 0.0 0.0 0.0
10: indefinite knowledge 30.1 0.0 0.5 0.2 0.5 0.0
11: basic coreference 10.3 0.0 0.0 0.0 0.3 0.0
12: conjunction 23.4 0.0 0.1 0.1 0.0 0.0
13: compound coreference 6.1 0.0 0.0 0.1 0.0 0.0
14: time reasoning 81.0 0.0 0.0 0.1 0.0 0.0
15: basic deduction 78.7 0.0 0.2 0.0 0.0 0.0
16: basic induction 51.9 0.0 0.2 54.1 0.0 0.3
17: positional reasoning 50.1 24.6 41.8 0.3 0.3 0.1
18: size reasoning 6.8 2.1 8.0 0.1 0.1 0.4
19: path finding 90.3 31.9 75.7 1.2 0.6 0.0
20: agent’s motivations 2.1 0. 0.0 0.0 0.0 0.0

Mean Error (%) 36.4 3.2 7.5 2.8 0.4 0.3
Failed tasks (err. > 5%) 16 2 6 1 1 0

Table 1: Test accuracies on the jointly trained bAbI-10k dataset. MN-S stands for strongly supervised
Memory Network, MN-U for end-to-end Memory Network without supervision, and WMN for Working
Memory Network. Results for LSTM, MN-U, and MN-S are took from Sukhbaatar et al. (2015). Results
for SDNC are took from Rae et al. (2016). WMN† is an ensemble of two Working Memory Networks.

QA benchmark composed of 20 different tasks.
Each task is designed to test a different reason-
ing skill, such as deduction, induction, and coref-
erence resolution. Some of the tasks need rela-
tional reasoning, for instance, to compare the size
of different entities. Each sample is composed of
a question, an answer, and a set of facts. There
are two versions of the dataset, referring to dif-
ferent dataset sizes: bAbI-1k and bAbI-10k. In
this work, we focus on the bAbI-10k version of
the dataset which consists of 10, 000 training sam-
ples per task. A task is considered solved if a
model achieves greater than 95% accuracy. Note
that training can be done per-task or joint (by train-
ing the model on all tasks at the same time). Some
models (Liu and Perez, 2017) have focused in the
per-task training performance, including the Ent-
Net model (Henaff et al., 2016) that solves all the
tasks in the per-task training version. We choose to
focus on the joint training version since we think
is more indicative of the generalization properties
of the model. A detailed analysis of the dataset

can be found in Lee et al. (2015).

Model Details
To encode the input facts we used a word embed-
ding that projected each word in a sentence into
a real vector of size d. We defined d = 30 and
used a GRU with 30 units to process each sen-
tence. We used the 30 sentences in the support set
that were immediately prior to the question. The
question was processed using the same configura-
tion but with a different GRU. We used 8 heads
in the Multi-Head attention mechanism. For the
transition networks ft, which operates in the out-
put of each hop, we used a two-layer MLP consist-
ing of 15 and 30 hidden units (so the output pre-
serves the memory dimension). We used H = 4
hops (or equivalently, a working memory buffer
of size 4). In the reasoning module, we used a 3-
layer MLP consisting of 128 units in each layer
and with ReLU non-linearities for gθ. We omitted
the fφ network since we did not observe improve-
ments when using it. The final layer was a linear
layer that produced logits for a softmax over the
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answer vocabulary.

Training Details
We trained our model end-to-end with a cross-
entropy loss function and using the Adam opti-
mizer (Kingma and Ba, 2014). We used a learning
rate of ν = 1e−3. We trained the model during
400 epochs. For training, we used a batch size
of 32. As in Sukhbaatar et al. (2015) we did not
average the loss over a batch. Also, we clipped
gradients with norm larger than 40 (Pascanu et al.,
2013). For all the dense layers we used `2 regular-
ization with value 1e−3. All weights were initial-
ized using Glorot normal initialization (Glorot and
Bengio, 2010). 10% of the training set was held-
out to form a validation set that we used to select
the architecture and for hyperparameter tunning.
In some cases, we found useful to restart training
after the 400 epochs with a smaller learning rate
of 1e−5 and anneals every 5 epochs by ν/2 until
20 epochs were reached.

bAbI-10k Results
On the jointly trained bAbI-10k dataset our best
model (out of 10 runs) achieves an accuracy of
99.58%. That is a 2.38% improvement over
the previous state-of-the-art that was obtained
by the Sparse Differential Neural Computer
(SDNC) (Rae et al., 2016). The best model of the
10 runs solves almost all tasks of the bAbI-10k
dataset (by a 0.3% margin). However, a simple
ensemble of the best two models solves all 20
tasks and achieves an almost perfect accuracy of
99.7%. We list the results for each task in Table 1.
Other authors have reported high variance in the
results, for instance, the authors of the SDNC
report a mean accuracy and standard deviation
over 15 runs of 93.6± 2.5 (with 15.9± 1.6 passed
tasks). In contrast, our model achieves a mean
accuracy of 98.3 ± 1.2 (with 18.6 ± 0.4 passed
tasks), which is better and more stable than the
average results obtained by the SDNC.
The Relation Network solves 18/20 tasks. We
achieve even better performance, and with con-
siderably fewer computations, as is explained in
Section 4.3. We think that by including the atten-
tion mechanism, the relation reasoning module
can focus on learning the relation among relevant
objects, instead of learning spurious relations
among irrelevant objects. For that, the Multi-Head
attention mechanism was very helpful.

The Effect of the Relational Reasoning Module
When compared to the original Memory Network,
our model substantially improves the accuracy of
tasks 17 (positional reasoning) and 19 (path find-
ing). Both tasks require the analysis of multiple
relations (Lee et al., 2015). For instance, the task
19 needs that the model reasons about the rela-
tion of different positions of the entities, and in
that way find a path to arrive from one to an-
other. The accuracy improves in 75.1% for task
19 and in 41.5% for task 17 when compared with
the MemN2N model. Since both tasks require rea-
soning about relations, we hypothesize that the re-
lational reasoning module of the W-MemNN was
of great help to improve the performance on both
tasks.
The Relation Network, on the other hand, fails in
the tasks 2 (2 supporting facts) and 3 (3 support-
ing facts). Both tasks require handling a signifi-
cant number of facts, especially in task 3. In those
cases, the attention mechanism is crucial to filter
out irrelevant facts.

4.2 Visual Question Answering
To further study our model we evaluated its per-
formance on a visual question answering dataset.
For that, we used the recently proposed NLVR
dataset (Suhr et al., 2017). Each sample in the
NLVR dataset is composed of an image with three
sub-images and a statement. The task consists in
judging if the statement is true or false for that im-
age. Evaluating the statement requires reasoning
about the sets of objects in the image, comparing
objects properties, and reasoning about spatial re-
lations. The dataset is interesting for us for two
reasons. First, the statements evaluation requires
complex relational reasoning about the objects in
the image. Second, unlike the bAbI dataset, the
statements are written in natural language. Be-
cause of that, each statement displays a range of
syntactic and semantic phenomena that are not
present in the bAbI dataset.

Model details
Our model can be easily adapted to deal with vi-
sual information. Following the idea from Santoro
et al. (2017), instead of processing each input us-
ing a recurrent neural network, we use a Convolu-
tional Neural Network (CNN). The CNN takes as
input each sub-image and convolved them through
convolutional layers. The output of the CNN con-
sists of k feature maps (where k is the number
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One tower with one block block at the top | Answer:False / Pred: False At least one square closely touching one box edge | Answer:True / Pred: True

Story (2 supporting facts) Support Hop 1 Hop 2 Hop 3 Hop 4
Mary moved to the office. 0.79 0.30 0.15 0.15
Sandra travelled to the bedroom. True 0.02 2.64 2.75 0.39
Daniel dropped the football. 0.03 0.13 0.16 0.41
Sandra left the milk there. True 1.01 0.07 0.16 0.38
Daniel grabbed the football there. 0.08 0.31 0.07 0.27
Question: Where is the milk? Answer: bedroom, Pred: bedroom

Story (2 supporting facts) Support Hop 1 Hop 2 Hop 3 Hop 4
Brian is white. 0.46 0.36 0.35 0.89
Bernhard is white. 0.07 0.13 0.19 0.81
Julius is a frog. True 0.16 2.03 0.39 0.26
Julius is white. True 0.09 0.23 2.42 1.32
Greg is a frog. True 1.95 1.60 0.77 0.25
Question: What color is greg? Answer: white, Pred: white

Table 2: Examples of visualizations of attention for textual and visual QA. Top: Visualization of attention
values for the NLVR dataset. To get more aesthetic figures we applied a gaussian blur to the attention
matrix. Bottom: Attention values for the bAbI dataset. In each cell, the sum of the attention for all heads
is shown.

of kernels in the final convolutional layer) of size
d× d. Then, each memory is built from the vector
composed by the concatenation of the cells in the
same position of each feature map. Consequently,
d × d memories of size k are stored in the short-
term storage. The statement is processed using a
GRU neural network as in the textual reasoning
task. Then, we can proceed using the same archi-
tecture for the reasoning and attention module that
the one used in the textual QA model. However,
for the visual QA task, we used an additive atten-
tion mechanism. The additive attention computes
the attention weight using a feed-forward neural
network applied to the concatenation of the mem-
ory vector and statement vector.

Results
Our model achieves a validation / test accuracy
of 65.6%/65.8%. Notably, we achieved a per-
formance comparable to the results of the Mod-
ule Neural Networks (Andreas et al., 2016) that
make use of standard NLP tools to process the
statements into structured representations. Unlike
the Module Neural Networks, we achieved our re-
sults using only raw input statements, allowing the
model to learn how to process the textual input by
itself. Note that given the more complex nature of
the language used in the NLVR dataset we needed
to use a larger embedding size and GRU hidden
layer than in the bAbI dataset (100 and 128 respec-
tively). That, however, is a nice feature of sepa-
rating the input from the reasoning and attention
component: One way to process more complex
language statements is increasing the capacity of

the input module.

4.3 From O(n2) to O(n)

One of the major limitations of RNs is that they
need to process each one of the memories in pairs.
To do that, the RN must perform O(n2) forward
and backward passes (where n is the number of
memories). That becomes quickly prohibitive for
a larger number of memories. In contrast, the
dependence of the W-MemNN run times on the
number of memories is linear. Note, however,
that computation times in the W-MemNN depend
quadratically on the size of the working memory
buffer. Nonetheless, this number is expected to be
much smaller than the number of memories. To
compare both models we measured the wall-clock
time for a forward and backward pass for a single
batch of size 32. We performed these experiments
on a GPU NVIDIA K80. Figure 2 shows the re-
sults.

4.4 Memory Visualizations

One nice feature from Memory Networks is that
they allow some interpretability of the reasoning
procedure by looking at the attention weights. At
each hop, the attention weights show which parts
of the memory the model found relevant to pro-
duce the output. RNs, on the contrary, lack of this
feature. Table 2 shows the attention values for vi-
sual and textual question answering.
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Figure 2: Wall-clock times for a forward and back-
ward pass for a single batch. The batch size used is
32. While for 5 memories the times are compara-
ble, for 30 memories the W-MemNN takes around
50s while the RN takes 930s, a speedup of almost
20×.

5 Conclusion

We have proposed a novel Working Memory Net-
work architecture that introduces improved rea-
soning abilities to the original MemNN model. We
demonstrated that by augmenting the MemNN ar-
chitecture with a Relation Network, the computa-
tional complexity of the RN can be reduced, with-
out loss of performance. That opens the opportu-
nity for using RNs in larger problems, something
that may be very useful, given the many tasks re-
quiring a significant amount of memories.
Although we have used RN as the reasoning mod-
ule in this work, other options can be tested. It
might be interesting to analyze how other reason-
ing modules can improve different weaknesses of
the model.
We presented results on the jointly trained bAbI-
10k dataset, where we achieve a new state-of-the-
art, with an average error of less than 0.5%. Also,
we showed that our model can be easily adapted
for visual question answering.
Our architecture combines perceptual input pro-
cessing, short-term memory storage, an attention
mechanism, and a reasoning module. While other
models have focused on different parts of these
components, we think that is important to find
ways to combine these different mechanisms if we
want to build models capable of complex reason-
ing. Evidence from cognitive sciences seems to
show that all these abilities are needed in order to
achieve human-level complex reasoning.
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Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature
538(7626):471.

Stevan Harnad. 1999. The symbol ground-
ing problem. CoRR cs.AI/9906002.
http://arxiv.org/abs/cs.AI/9906002.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2016. Tracking the world
state with recurrent entity networks. arXiv preprint
arXiv:1612.03969 .

http://arxiv.org/abs/cs.AI/9906002
http://arxiv.org/abs/cs.AI/9906002
http://arxiv.org/abs/cs.AI/9906002


1009

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In International Con-
ference on Machine Learning. pages 1378–1387.

Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng
Gao, Li Deng, and Paul Smolensky. 2015. Reason-
ing in vector space: An exploratory study of ques-
tion answering. arXiv preprint arXiv:1511.06426 .

Fei Liu and Julien Perez. 2017. Gated end-to-end
memory networks. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers. volume 1, pages 1–10.

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther.
2017. Recurrent relational networks for com-
plex relational reasoning. CoRR abs/1711.08028.
http://arxiv.org/abs/1711.08028.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning. pages 1310–1318.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy
Harley, Andrew W Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. 2016. Scaling memory-
augmented neural networks with sparse reads and
writes. In Advances in Neural Information Process-
ing Systems. pages 3621–3629.

Adam Santoro, David Raposo, David G Barrett, Ma-
teusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Tim Lillicrap. 2017. A simple neural network
module for relational reasoning. In Advances in
neural information processing systems. pages 4974–
4983.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks 20(1):61–80.

Alane Suhr, Mike Lewis, James Yeh, and Yoav
Artzi. 2017. A corpus of natural language for vi-
sual reasoning. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 217–223.
https://doi.org/10.18653/v1/P17-2034.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. https://arxiv.org/pdf/1706.03762.pdf.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
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