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Abstract

Aspect sentiment classification (ASC) is
a fundamental task in sentiment analy-
sis. Given an aspect/target and a sentence,
the task classifies the sentiment polarity
expressed on the target in the sentence.
Memory networks (MNs) have been used
for this task recently and have achieved
state-of-the-art results. In MNs, attention
mechanism plays a crucial role in detect-
ing the sentiment context for the given
target. However, we found an important
problem with the current MNs in perform-
ing the ASC task. Simply improving the
attention mechanism will not solve it. The
problem is referred to as target-sensitive
sentiment, which means that the sentiment
polarity of the (detected) context is de-
pendent on the given target and it cannot
be inferred from the context alone. To
tackle this problem, we propose the target-
sensitive memory networks (TMNs). Sev-
eral alternative techniques are designed for
the implementation of TMNs and their ef-
fectiveness is experimentally evaluated.

1 Introduction

Aspect sentiment classification (ASC) is a core
problem of sentiment analysis (Liu, 2012). Given
an aspect and a sentence containing the aspect,
ASC classifies the sentiment polarity expressed in
the sentence about the aspect, namely, positive,
neutral, or negative. Aspects are also called opin-
ion targets (or simply targets), which are usually
product/service features in customer reviews. In
this paper, we use aspect and target interchange-
ably. In practice, aspects can be specified by the
user or extracted automatically using an aspect ex-
traction technique (Liu, 2012). In this work, we
assume the aspect terms are given and only focus
on the classification task.

Due to their impressive results in many NLP
tasks (Deng et al., 2014), neural networks have
been applied to ASC (see the survey (Zhang et al.,
2018)). Memory networks (MNs), a type of neu-
ral networks which were first proposed for ques-
tion answering (Weston et al., 2015; Sukhbaatar
et al., 2015), have achieved the state-of-the-art re-
sults in ASC (Tang et al., 2016). A key factor for
their success is the attention mechanism. How-
ever, we found that using existing MNs to deal
with ASC has an important problem and simply
relying on attention modeling cannot solve it. That
is, their performance degrades when the sentiment
of a context word is sensitive to the given target.

Let us consider the following sentences:

(1) The screen resolution is excellent but
the price is ridiculous.
(2) The screen resolution is excellent but
the price is high.
(3) The price is high.
(4) The screen resolution is high.

In sentence (1), the sentiment expressed on as-
pect screen resolution (or resolution for short) is
positive, whereas the sentiment on aspect price is
negative. For the sake of predicting correct senti-
ment, a crucial step is to first detect the sentiment
context about the given aspect/target. We call this
step targeted-context detection. Memory networks
(MNs) can deal with this step quite well because
the sentiment context of a given aspect can be
captured by the internal attention mechanism in
MNs. Concretely, in sentence (1) the word “ex-
cellent” can be identified as the sentiment context
when resolution is specified. Likewise, the con-
text word “ridiculous” will be placed with a high
attention when price is the target. With the correct
targeted-context detected, a trained MN, which
recognizes “excellent” as positive sentiment and
“ridiculous” as negative sentiment, will infer cor-
rect sentiment polarity for the given target. This



958

is relatively easy as “excellent” and “ridiculous”
are both target-independent sentiment words, i.e.,
the words themselves already indicate clear senti-
ments.

As illustrated above, the attention mechanism
addressing the targeted-context detection problem
is very useful for ASC, and it helps classify many
sentences like sentence (1) accurately. This also
led to existing and potential research in improving
attention modeling (discussed in Section 5). How-
ever, we observed that simply focusing on tackling
the target-context detection problem and learning
better attention are not sufficient to solve the prob-
lem found in sentences (2), (3) and (4).

Sentence (2) is similar to sentence (1) ex-
cept that the (sentiment) context modifying as-
pect/target price is “high”. In this case, when
“high” is assigned the correct attention for the as-
pect price, the model also needs to capture the sen-
timent interaction between “high” and price in or-
der to identify the correct sentiment polarity. This
is not as easy as sentence (1) because “high” itself
indicates no clear sentiment. Instead, its sentiment
polarity is dependent on the given target.

Looking at sentences (3) and (4), we further
see the importance of this problem and also why
relying on attention mechanism alone is insuffi-
cient. In these two sentences, sentiment contexts
are both “high” (i.e., same attention), but sentence
(3) is negative and sentence (4) is positive simply
because their target aspects are different. There-
fore, focusing on improving attention will not help
in these cases. We will give a theoretical insight
about this problem with MNs in Section 3.

In this work, we aim to solve this problem. To
distinguish it from the aforementioned targeted-
context detection problem as shown by sentence
(1), we refer to the problem in (2), (3) and (4) as
the target-sensitive sentiment (or target-dependent
sentiment) problem, which means that the senti-
ment polarity of a detected/attended context word
is conditioned on the target and cannot be directly
inferred from the context word alone, unlike “ex-
cellent” and “ridiculous”. To address this prob-
lem, we propose target-sensitive memory networks
(TMNs), which can capture the sentiment interac-
tion between targets and contexts. We present sev-
eral approaches to implementing TMNs and ex-
perimentally evaluate their effectiveness.

2 Memory Network for ASC

This section describes our basic memory network
for ASC, also as a background knowledge. It
does not include the proposed target-sensitive sen-
timent solutions, which are introduced in Sec-
tion 4. The model design follows previous stud-
ies (Sukhbaatar et al., 2015; Tang et al., 2016) ex-
cept that a different attention alignment function is
used (shown in Eq. 1). Their original models will
be compared in our experiments as well. The def-
initions of related notations are given in Table 1.

t a target word, t ∈ RV ×1

vt target embedding of t, vt ∈ Rd×1

xi a context word in a sentence, xi ∈ RV ×1

mi, ci input, output context embedding
of word xi, and mi, ci ∈ Rd×1

V number of words in vocabulary
d vector/embedding dimension
A input embedding matrix A ∈ Rd×V

C output embedding matrix C ∈ Rd×V

α attention distribution in a sentence
αi attention of context word i, αi ∈ (0, 1)
o output representation, o ∈ Rd×1

K number of sentiment classes
s sentiment score, s ∈ RK×1

y sentiment probability

Table 1: Definition of Notations

Input Representation: Given a target aspect t,
an embedding matrix A is used to convert t into
a vector representation, vt (vt = At). Similarly,
each context word (non-aspect word in a sentence)
xi ∈ {x1, x2, ...xn} is also projected to the con-
tinuous space stored in memory, denoted by mi

(mi = Axi) ∈ {m1,m2, ...mn}. Here n is the
number of words in a sentence and i is the word
position/index. Both t and xi are one-hot vectors.
For an aspect expression with multiple words, its
aspect representation vt is the averaged vector of
those words (Tang et al., 2016).

Attention: Attention can be obtained based on
the above input representation. Specifically, an at-
tention weight αi for the context word xi is com-
puted based on the alignment function:

αi = softmax(vTt Mmi) (1)

where M ∈ Rd×d is the general learning ma-
trix suggested by Luong et al. (2015). In this
manner, attention α = {α1, α2, ..αn} is rep-
resented as a vector of probabilities, indicating
the weight/importance of context words towards a
given target. Note that αi ∈ (0, 1) and

∑
i
αi = 1.
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Output Representation: Another embedding
matrixC is used for generating the individual (out-
put) continuous vector ci (ci = Cxi) for each con-
text word xi. A final response/output vector o is
produced by summing over these vectors weighted
with the attention α, i.e., o =

∑
i
αici.

Sentiment Score (or Logit): The aspect sen-
timent scores (also called logits) for positive,
neutral, and negative classes are then calculated,
where a sentiment-specific weight matrix W ∈
RK×d is used. The sentiment scores are repre-
sented in a vector s ∈ RK×1, whereK is the num-
ber of (sentiment) classes, which is 3 in ASC.

s =W (o+ vt) (2)

The final sentiment probability y is produced with
a softmax operation, i.e., y = softmax(s).

3 Problem of the above Model for
Target-Sensitive Sentiment

This section analyzes the problem of target-
sensitive sentiment in the above model. The anal-
ysis can be generalized to many existing MNs as
long as their improvements are on attention α only.
We first expand the sentiment score calculation
from Eq. 2 to its individual terms:

s =W (o+ vt) =W (
∑
i

αici + vt)

= α1Wc1 + α2Wc2 + ...αnWcn +Wvt

(3)

where “+” denotes element-wise summation. In
Eq. 3, αiWci can be viewed as the individual sen-
timent logit for a context word and Wvt is the
sentiment logit of an aspect. They are linearly
combined to determine the final sentiment score s.
This can be problematic in ASC. First, an aspect
word often expresses no sentiment, for example,
“screen”. However, if the aspect term vt is sim-
ply removed from Eq. 3, it also causes the prob-
lem that the model cannot handle target-dependent
sentiment. For instance, the sentences (3) and (4)
in Section 1 will then be treated as identical if
their aspect words are not considered. Second, if
an aspect word is considered and it directly bears
some positive or negative sentiment, then when an
aspect word occurs with different context words
for expressing opposite sentiments, a contradic-
tion can be resulted from them, especially in the
case that the context word is a target-sensitive sen-
timent word. We explain it as follows.

Let us say we have two target words price and
resolution (denoted as p and r). We also have
two possible context words “high” and “low” (de-
noted as h and l). As these two sentiment words
can modify both aspects, we can construct four
snippets “high price”, “low price”, “high resolu-
tion” and “low resolution”. Their sentiments are
negative, positive, positive, and negative respec-
tively. Let us set W to R1×d so that s becomes a
1-dimensional sentiment score indicator. s > 0
indicates a positive sentiment and s < 0 indi-
cates a negative sentiment. Based on the above
example snippets or phrases we have four corre-
sponding inequalities: (a) W (αhch + vp) < 0, (b)
W (αlcl+ vp) > 0, (c) W (αhch+ vr) > 0 and (d)
W (αlcl + vr) < 0. We can drop all α terms here
as they all equal to 1, i.e., they are the only context
word in the snippets to attend to (the target words
are not contexts). From (a) and (b) we can infer
(e) Wch < −Wvp < Wcl. From (c) and (d) we
can infer (f) Wcl < −Wvr < Wch. From (e) and
(f) we have (g) Wch < Wcl < Wch, which is a
contradiction.

This contradiction means that MNs cannot learn
a set of parameters W and C to correctly clas-
sify the above four snippets/sentences at the same
time. This contradiction also generalizes to real-
world sentences. That is, although real-world
review sentences are usually longer and contain
more words, since the attention mechanism makes
MNs focus on the most important sentiment con-
text (the context with high αi scores), the problem
is essentially the same. For example, in sentences
(2) and (3) in Section 1, when price is targeted,
the main attention will be placed on “high”. For
MNs, these situations are nearly the same as that
for classifying the snippet “high price”. We will
also show real examples in the experiment section.

One may then ask whether improving attention
can help address the problem, as αi can affect the
final results by adjusting the sentiment effect of the
context word via αiWci. This is unlikely, if not
impossible. First, notice that αi is a scalar ranging
in (0,1), which means it essentially assigns higher
or lower weight to increase or decrease the senti-
ment effect of a context word. It cannot change the
intrinsic sentiment orientation/polarity of the con-
text, which is determined by Wci. For example,
if Wci assigns the context word “high” a positive
sentiment (Wci > 0), αi will not make it negative
(i.e., αiWci < 0 cannot be achieved by chang-
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ing αi). Second, other irrelevant/unimportant con-
text words often carry no or little sentiment infor-
mation, so increasing or decreasing their weights
does not help. For example, in the sentence “the
price is high”, adjusting the weights of context
words “the” and “is” will neither help solve the
problem nor be intuitive to do so.

4 The Proposed Approaches

This section introduces six (6) alternative target-
sensitive memory networks (TMNs), which all can
deal with the target-sensitive sentiment problem.
Each of them has its characteristics.

Non-linear Projection (NP): This is the first
approach that utilizes a non-linear projection to
capture the interplay between an aspect and its
context. Instead of directly following the common
linear combination as shown in Eq. 3, we use a
non-linear projection (tanh) as the replacement to
calculate the aspect-specific sentiment score.

s =W · tanh(
∑
i

αici + vt) (4)

As shown in Eq. 4, by applying a non-linear pro-
jection over attention-weighted ci and vt, the con-
text and aspect information are coupled in a way
that the final sentiment score cannot be obtained
by simply summing their individual contributions
(compared with Eq. 3). This technique is also in-
tuitive in neural networks. However, notice that
by using the non-linear projection (or adding more
sophisticated hidden layers) over them in this way,
we sacrifice some interpretability. For example,
we may have difficulty in tracking how each indi-
vidual context word (ci) affects the final sentiment
score s, as all context and target representations
are coupled. To avoid this, we can use the follow-
ing five alternative techniques.

Contextual Non-linear Projection (CNP):
Despite the fact that it also uses the non-linear pro-
jection, this approach incorporates the interplay
between a context word and the given target into
its (output) context representation. We thus name
it Contextual Non-linear Projection (CNP).

s =W
∑
i

αi · tanh(ci + vt) (5)

From Eq. 5, we can see that this approach can keep
the linearity of attention-weighted context aggre-
gation while taking into account the aspect infor-
mation with non-linear projection, which works

in a different way compared to NP. If we define
c̃i = tanh(ci + vt), c̃i can be viewed as the
target-aware context representation of context xi
and the final sentiment score is calculated based
on the aggregation of such c̃i. This could be a
more reasonable way to carry the aspect informa-
tion rather than simply summing the aspect repre-
sentation (Eq. 3).

However, one potential disadvantage is that this
setting uses the same set of vector representa-
tions (learned by embeddings C) for multiple pur-
poses, i.e., to learn output (context) representa-
tions and to capture the interplay between contexts
and aspects. This may degenerate its model per-
formance when the computational layers in mem-
ory networks (called “hops”) are deep, because
too much information is required to be encoded
in such cases and a sole set of vectors may fail to
capture all of it.

To overcome this, we suggest the involvement
of an additional new set of embeddings/vectors,
which is exclusively designed for modeling the
sentiment interaction between an aspect and its
context. The key idea is to decouple different
functioning components with different representa-
tions, but still make them work jointly. The fol-
lowing four techniques are based on this idea.

Interaction Term (IT): The third approach is to
formulate explicit target-context sentiment inter-
action terms. Different from the targeted-context
detection problem which is captured by atten-
tion (discussed in Section 1), here the target-
context sentiment (TCS) interaction measures the
sentiment-oriented interaction effect between tar-
gets and contexts, which we refer to as TCS inter-
action (or sentiment interaction) for short in the
rest of this paper. Such sentiment interaction is
captured by a new set of vectors, and we thus also
call such vectors TCS vectors.

s =
∑
i

αi(Wsci + wI〈di, dt〉) (6)

In Eq. 6, Ws ∈ RK×d and wI ∈ RK×1 are used
instead of W in Eq. 3. Ws models the direct sen-
timent effect from ci while wI works with di and
dt together for learning the TCS interaction. di
and dt are TCS vector representations of context
xi and aspect t, produced from a new embedding
matrix D, i.e., di = Dxi, dt = Dt (D ∈ Rd×V

and di, dt ∈ Rd×1).
Unlike input and output embeddings A and C,

D is designed to capture the sentiment interac-
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tion. The vectors fromD affect the final sentiment
score through wI〈di, dt〉, where wI is a sentiment-
specific vector and 〈di, dt〉 ∈ R denotes the dot
product of the two TCS vectors di and dt. Com-
pared to the basic MNs, this model can better cap-
ture target-sensitive sentiment because the inter-
actions between a context word h and different
aspect words (say, p and r) can be different, i.e.,
〈dh, dp〉 6= 〈dh, dr〉.

The key advantage is that now the sentiment ef-
fect is explicitly dependent on its target and con-
text. For example, 〈dh, dp〉 can help shift the final
sentiment to negative and 〈dh, dr〉 can help shift
it to positive. Note that α is still needed to con-
trol the importance of different contexts. In this
manner, targeted-context detection (attention) and
TCS interaction are jointly modeled and work to-
gether for sentiment inference. The proposed tech-
niques introduced below also follow this core idea
but with different implementations or properties.
We thus will not repeat similar discussions.

Coupled Interaction (CI): This proposed tech-
nique associates the TCS interaction with an ad-
ditional set of context representation. This rep-
resentation is for capturing the global correlation
between context and different sentiment classes.

s =
∑
i

αi(Wsci +WI〈di, dt〉ei) (7)

Specifically, ei is another output representation for
xi, which is coupled with the sentiment interaction
factor 〈di, dt〉. For each context word xi, ei is gen-
erated as ei = Exi whereE ∈ Rd×V is an embed-
ding matrix. 〈di, dt〉 and ei function together as a
target-sensitive context vector and are used to pro-
duce sentiment scores with WI (WI ∈ RK×d).

Joint Coupled Interaction (JCI): A natural
variant of the above model is to replace ei with
ci, which means to learn a joint output representa-
tion. This can also reduce the number of learning
parameters and simplify the CI model.

s =
∑
i

αi(Wsci +WI〈di, dt〉ci) (8)

Joint Projected Interaction (JPI): This model
also employs a unified output representation like
JCI, but a context output vector ci will be projected
to two different continuous spaces before senti-
ment score calculation. To achieve the goal, two
projection matrices W1, W2 and the non-linear
projection function tanh are used. The intuition is

that, when we want to reduce the (embedding) pa-
rameters and still learn a joint representation, two
different sentiment effects need to be separated in
different vector spaces. The two sentiment effects
are modeled as two terms:

s =
∑
i

αiWJ tanh(W1ci)

+
∑
i

αiWJ〈di, dt〉 tanh(W2ci)
(9)

where the first term can be viewed as learn-
ing target-independent sentiment effect while the
second term captures the TCS interaction. A
joint sentiment-specific weight matrix WJ(WJ ∈
RK×d) is used to control/balance the interplay be-
tween these two effects.

Discussions: (a) In IT, CI, JCI, and JPI, their
first-order terms are still needed, because not in
all cases sentiment inference needs TCS interac-
tion. For some simple examples like “the battery is
good”, the context word “good” simply indicates
clear sentiment, which can be captured by their
first-order term. However, notice that the mod-
eling of second-order terms offers additional help
in both general and target-sensitive scenarios. (b)
TCS interaction can be calculated by other model-
ing functions. We have tried several methods and
found that using the dot product 〈di, dt〉 or dTi Wdt
(with a projection matrix W ) generally produces
good results. (c) One may ask whether we can use
fewer embeddings or just use one universal em-
bedding to replace A, C and D (the definition of
D can be found in the introduction of IT). We have
investigated them as well. We found that merging
A and C is basically workable. But merging D
and A/C produces poor results because they es-
sentially function with different purposes. While
A and C handle targeted-context detection (atten-
tion), D captures the TCS interaction. (d) Except
NP, we do not apply non-linear projection to the
sentiment score layer. Although adding non-linear
transformation to it may further improve model
performance, the individual sentiment effect from
each context will become untraceable, i.e., losing
some interpretability. In order to show the effec-
tiveness of learning TCS interaction and for anal-
ysis purpose, we do not use it in this work. But
it can be flexibly added for specific tasks/analyses
that do not require strong interpretability.

Loss function: The proposed models are all
trained in an end-to-end manner by minimizing the
cross entropy loss. Let us denote a sentence and a
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target aspect as x and t respectively. They appear
together in a pair format (x, t) as input and all such
pairs construct the dataset H . g(x,t) is a one-hot
vector and gk(x,t) ∈ {0, 1} denotes a gold senti-
ment label, i.e., whether (x, t) shows sentiment k.
yx,t is the model-predicted sentiment distribution
for (x, t). ykx,t denotes its probability in class k.
Based on them, the training loss is constructed as:

loss = −
∑

(x,t)∈H

∑
k∈K

gk(x,t) log y
k
(x,t) (10)

5 Related Work

Aspect sentiment classification (ASC) (Hu and
Liu, 2004), which is different from document or
sentence level sentiment classification (Pang et al.,
2002; Kim, 2014; Yang et al., 2016), has recently
been tackled by neural networks with promising
results (Dong et al., 2014; Nguyen and Shirai,
2015) (also see the survey (Zhang et al., 2018)).
Later on, the seminal work of using attention
mechanism for neural machine translation (Bah-
danau et al., 2015) popularized the application of
the attention mechanism in many NLP tasks (Her-
mann et al., 2015; Cho et al., 2015; Luong et al.,
2015), including ASC.

Memory networks (MNs) (Weston et al., 2015;
Sukhbaatar et al., 2015) are a type of neural mod-
els that involve such attention mechanisms (Bah-
danau et al., 2015), and they can be applied to
ASC. Tang et al. (2016) proposed an MN vari-
ant to ASC and achieved the state-of-the-art per-
formance. Another common neural model using
attention mechanism is the RNN/LSTM (Wang
et al., 2016).

As discussed in Section 1, the attention mech-
anism is suitable for ASC because it effectively
addresses the targeted-context detection problem.
Along this direction, researchers have studied
more sophisticated attentions to further help the
ASC task (Chen et al., 2017; Ma et al., 2017; Liu
and Zhang, 2017). Chen et al. (2017) proposed to
use a recurrent attention mechanism. Ma et al.
(2017) used multiple sets of attentions, one for
modeling the attention of aspect words and one
for modeling the attention of context words. Liu
and Zhang (2017) also used multiple sets of at-
tentions, one obtained from the left context and
one obtained from the right context of a given tar-
get. Notice that our work does not lie in this direc-
tion. Our goal is to solve the target-sensitive sen-

timent and to capture the TCS interaction, which
is a different problem. This direction is also finer-
grained, and none of the above works addresses
this problem. Certainly, both directions can im-
prove the ASC task. We will also show in our ex-
periments that our work can be integrated with an
improved attention mechanism.

To the best of our knowledge, none of the ex-
isting studies addresses the target-sensitive senti-
ment problem in ASC under the purely data-driven
and supervised learning setting. Other concepts
like sentiment shifter (Polanyi and Zaenen, 2006)
and sentiment composition (Moilanen and Pul-
man, 2007; Choi and Cardie, 2008; Socher et al.,
2013) are also related, but they are not learned
automatically and require rule/patterns or external
resources (Liu, 2012). Note that our approaches
do not rely on handcrafted patterns (Ding et al.,
2008; Wu and Wen, 2010), manually compiled
sentiment constraints and review ratings (Lu et al.,
2011), or parse trees (Socher et al., 2013).

6 Experiments

We perform experiments on the datasets of Se-
mEval Task 2014 (Pontiki et al., 2014), which
contain online reviews from domain Laptop and
Restaurant. In these datasets, aspect sentiment
polarities are labeled. The training and test sets
have also been provided. Full statistics of the
datasets are given in Table 2.

Dataset Positive Neutral Negative
Train Test Train Test Train Test

Restaurant 2164 728 637 196 807 196
Laptop 994 341 464 169 870 128

Table 2: Statistics of Datasets

6.1 Candidate Models for Comparison
MN: The classic end-to-end memory net-
work (Sukhbaatar et al., 2015).
AMN: A state-of-the-art memory network used
for ASC (Tang et al., 2016). The main difference
from MN is in its attention alignment function,
which concatenates the distributed representations
of the context and aspect, and uses an additional
weight matrix for attention calculation, following
the method introduced in (Bahdanau et al., 2015).
BL-MN: Our basic memory network presented in
Section 2, which does not use the proposed tech-
niques for capturing target-sensitive sentiments.
AE-LSTM: RNN/LSTM is another popular
attention based neural model. Here we compare



963

with a state-of-the-art attention-based LSTM for
ASC, AE-LSTM (Wang et al., 2016).
ATAE-LSTM: Another attention-based LSTM
for ASC reported in (Wang et al., 2016).
Target-sensitive Memory Networks (TMNs):
The six proposed techniques, NP, CNP, IT, CI,
JCI, and JPI give six target-sensitive memory
networks.

Note that other non-neural network based mod-
els like SVM and neural models without atten-
tion mechanism like traditional LSTMs have been
compared and reported with inferior performance
in the ASC task (Dong et al., 2014; Tang et al.,
2016; Wang et al., 2016), so they are excluded
from comparisons here. Also, note that non-neural
models like SVMs require feature engineering to
manually encode aspect information, while this
work aims to improve the aspect representation
learning based approaches.

6.2 Evaluation Measure
Since we have a three-class classification task
(positive, negative and neutral) and the classes are
imbalanced as shown in Table 2, we use F1-score
as our evaluation measure. We report both F1-
Macro over all classes and all individual class-
based F1 scores. As our problem requires fine-
grained sentiment interaction, the class-based F1
provides more indicative information. In addition,
we report the accuracy (same as F1-Micro), as it is
used in previous studies. However, we suggest us-
ing F1-score because accuracy biases towards the
majority class.

6.3 Training Details
We use the open-domain word embeddings1 for
the initialization of word vectors. We initialize
other model parameters from a uniform distribu-
tion U (-0.05, 0.05). The dimension of the word
embedding and the size of the hidden layers are
300. The learning rate is set to 0.01 and the
dropout rate is set to 0.1. Stochastic gradient de-
scent is used as our optimizer. The position encod-
ing is also used (Tang et al., 2016). We also com-
pare the memory networks in their multiple com-
putational layers version (i.e., multiple hops) and
the number of hops is set to 3 as used in the men-
tioned previous studies. We implemented all mod-
els in the TensorFlow environment using same in-
put, embedding size, dropout rate, optimizer, etc.

1https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

so as to test our hypotheses, i.e., to make sure the
achieved improvements do not come from else-
where. Meanwhile, we can also report all evalua-
tion measures discussed above2. 10% of the train-
ing data is used as the development set. We report
the best results for all models based on their F-1
Macro scores.

6.3.1 Result Analysis

The classification results are shown in Table 3.
Note that the candidate models are all based on
classic/standard attention mechanism, i.e., without
sophisticated or multiple attentions involved. We
compare the 1-hop and 3-hop memory networks
as two different settings. The top three F1-Macro
scores are marked in bold. Based on them, we
have the following observations:

1. Comparing the 1-hop memory networks (first
nine rows), we see significant performance
gains achieved by CNP, CI, JCI, and JPI on
both datasets, where each of them has p <
0.01 over the strongest baseline (BL-MN)
from paired t-test using F1-Macro. IT also
outperforms the other baselines while NP has
similar performance to BL-MN. This indi-
cates that TCS interaction is very useful, as
BL-MN and NP do not model it.

2. In the 3-hop setting, TMNs achieve much
better results on Restaurant. JCI, IT, and CI
achieve the best scores, outperforming the
strongest baseline AMN by 2.38%, 2.18%,
and 2.03%. On Laptop, BL-MN and most
TMNs (except CNP and JPI) perform sim-
ilarly. However, BL-MN performs poorly
on Restaurant (only better than two models)
while TMNs show more stable performance.

3. Comparing all TMNs, we see that JCI works
the best as it always obtains the top-three
scores on two datasets and in two settings. CI
and JPI also perform well in most cases. IT,
NP, and CNP can achieve very good scores in
some cases but are less stable. We also ana-
lyzed their potential issues in Section 4.

4. It is important to note that these improve-
ments are quite large because in many cases
sentiment interactions may not be necessary
(like sentence (1) in Section 1). The overall
good results obtained by TMNs demonstrate
their capability of handling both general and
target-sensitive sentiments, i.e., the proposed

2Most related studies report accuracy only.
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Restaurant Laptop
Model Macro Neg. Neu. Pos. Micro Model Macro Neg. Neu. Pos. Micro

MN 58.91 57.07 36.81 82.86 71.52 MN 56.16 47.06 45.81 75.63 61.91
AMN 63.82 61.76 43.56 86.15 75.68 AMN 60.01 52.67 47.89 79.48 66.14

BL-MN 64.34 61.96 45.86 85.19 75.30 BL-MN 62.89 57.16 49.51 81.99 68.90
NP 64.62 64.89 43.21 85.78 75.93 NP 62.63 56.43 49.62 81.83 68.65

CNP 65.58 62.97 47.65 86.12 75.97 CNP 64.38 57.92 53.23 81.98 69.62
IT 65.37 65.22 44.44 86.46 76.98 IT 63.07 57.01 50.62 81.58 68.38
CI 66.78 65.49 48.32 86.51 76.96 CI 63.65 57.33 52.60 81.02 68.65
JCI 66.21 65.74 46.23 86.65 77.16 JCI 64.19 58.49 53.69 80.40 68.42
JPI 66.58 65.44 47.60 86.71 76.96 JPI 64.53 58.62 51.71 83.25 70.06

AE-LSTM 66.45 64.22 49.40 85.73 76.43 AE-LSTM 62.45 55.26 50.35 81.74 68.50
ATAE-LSTM 65.41 66.19 43.34 86.71 76.61 ATAE-LSTM 59.41 55.27 42.15 80.81 67.40

MN (hops) 62.68 60.35 44.57 83.11 72.86 MN (hops) 60.61 55.59 45.94 80.29 66.61
AMN (hops) 66.46 65.57 46.64 87.16 77.27 AMN (hops) 65.16 60.00 52.56 82.91 70.38

BL-MN (hops) 65.71 63.83 46.91 86.39 76.45 BL-MN (hops) 67.11 63.10 54.53 83.69 72.15
NP (hops) 65.98 64.18 47.86 85.90 75.73 NP (hops) 67.79 63.17 56.27 83.92 72.43

CNP (hops) 66.87 65.32 49.07 86.22 76.65 CNP (hops) 64.85 58.84 53.29 82.43 70.25
IT (hops) 68.64 67.11 51.47 87.33 78.55 IT (hops) 66.23 61.43 53.69 83.57 71.37
CI (hops) 68.49 64.83 53.03 87.60 78.69 CI (hops) 66.79 61.80 55.30 83.26 71.67
JCI (hops) 68.84 66.28 52.06 88.19 78.79 JCI (hops) 67.23 61.08 57.49 83.11 71.79
JPI (hops) 67.86 66.72 49.63 87.24 77.95 JPI (hops) 65.16 59.01 54.25 82.20 70.18

Table 3: Results of all models on two datasets. Top three F1-Macro scores are marked in bold. The first
nine models are 1-hop memory networks. The last nine models are 3-hop memory networks.

techniques do not bring harm while capturing
additional target-sensitive signals.

5. Micro-F1/accuracy is greatly affected by the
majority class, as we can see the scores from
Pos. and Micro are very consistent. TMNs, in
fact, effectively improve the minority classes,
which are reflected in Neg. and Neu., for
example, JCI improves BL-MN by 3.78% in
Neg. on Restaurant. This indicates their use-
fulness of capturing fine-grained sentiment
signals. We will give qualitative examples in
next section to show their modeling superior-
ity for identifying target-sensitive sentiments.

Restaurant
Model Macro Neg. Neu. Pos. Micro
TRMN 69.00 68.66 50.66 87.70 78.86
RMN 67.48 66.48 49.11 86.85 77.14

Laptop
Model Macro Neg. Neu. Pos. Micro
TRMN 68.18 62.63 57.37 84.30 72.92
RMN 67.17 62.65 55.31 83.55 72.07

Table 4: Results with Recurrent Attention

Integration with Improved Attention: As dis-
cussed, the goal of this work is not for learn-
ing better attention but addressing the target-
sensitive sentiment. In fact, solely improving at-
tention does not solve our problem (see Sections 1
and 3). However, better attention can certainly
help achieve an overall better performance for the
ASC task, as it makes the targeted-context detec-
tion more accurate. Here we integrate our pro-

posed technique JCI with a state-of-the-art sophis-
ticated attention mechanism, namely, the recurrent
attention framework, which involves multiple at-
tentions learned iteratively (Kumar et al., 2016;
Chen et al., 2017). We name our model with this
integration as Target-sensitive Recurrent-attention
Memory Network (TRMN) and the basic memory
network with the recurrent attention as Recurrent-
attention Memory Network (RMN). Their results
are given in Table 4. TRMN achieves significant
performance gain with p < 0.05 in paired t-test.

6.4 Effect of TCS Interaction for Identifying
Target-Sensitive Sentiment

We now give some real examples to show the
effectiveness of modeling TCS interaction for
identifying target-sensitive sentiments, by com-
paring a regular MN and a TMN. Specifically,
BL-MN and JPI are used. Other MNs/TMNs
have similar performances to BL-MN/JPI qual-
itatively, so we do not list all of them here.
For BL-MN and JPI, their sentiment scores
of a single context word i are calculated by
αiWci (from Eq. 3) and αiWJ tanh(W1ci) +
αiWJ〈di, dt〉tanh(W2ci) (from Eq. 9), each of
which results in a 3-dimensional vector.
Illustrative Examples: Table 5 shows two records
in Laptop. In record 1, to identify the senti-
ment of target price in the presented sentence, the
sentiment interaction between the context word
“higher” and the target word price is the key. The
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Record 1 Record 2
Sentence Price was higher when purchased on MAC.. Sentence (MacBook) Air has higher resolution..
Target Price Sentiment Negative Target Resolution Sentiment Positive
Result Sentiment Logits on context “higher” Result Sentiment Logits on context “higher”

TMN Negative Neutral Positive TMN Negative Neutral Positive
0.2663 (Correct) -0.2604 -0.0282 -0.4729 -0.3949 0.9041 (Correct)

MN Negative Neutral Positive MN Negative Neutral Positive
0.3641 (Correct) -0.3275 -0.0750 0.2562 (Wrong) -0.2305 - 0.0528

Table 5: Sample Records and Model Comparison between MN and TMN

specific sentiment scores of the word “higher” to-
wards negative, neutral and positive classes in both
models are reported. We can see both models
accurately assign the highest sentiment scores to
the negative class. We also observe that in MN
the negative score (0.3641) in the 3-dimension
vector {0.3641,−0.3275,−0.0750} calculated by
αiWci is greater than neutral (−0.3275) and pos-
itive (−0.0750) scores. Notice that αi is always
positive (ranging in (0, 1)), so it can be inferred
that the first value in vector Wci is greater than
the other two values. Here ci denotes the vec-
tor representation of “higher” so we use chigher to
highlight it and we have {Wchigher}Negative >
{Wchigher}Neutral/Positive as an inference.

In record 2, the target is resolution and its sen-
timent is positive in the presented sentence. Al-
though we have the same context word “higher”,
different from record 1, it requires a positive sen-
timent interaction with the current target. Look-
ing at the results, we see TMN assigns the high-
est sentiment score of word “higher” to positive
class correctly, whereas MN assigns it to neg-
ative class. This error is expected if we con-
sider the above inference {Wchigher}Negative >
{Wchigher}Neutral/Positive in MN. The cause
of this unavoidable error is that Wci is
not conditioned on the target. In contrast,
WJ〈di, ·dt〉tanh(W2ci) can change the sentiment
polarity with the aspect vector dt encoded. Other
TMNs also achieve it (like WI〈di, dt〉ci in JCI).

One may notice that the aspect information (vt)
is actually also considered in the form of αiWci+
Wvt in MNs and wonder whether Wvt may help
address the problem given different vt. Let us as-
sume it helps, which means in the above exam-
ple an MN makes Wvresolution favor the positive
class and Wvprice favor the negative class. But
then we will have trouble when the context word
is “lower”, where it requires Wvresolution to favor
the negative class and Wvprice to favor the posi-
tive class. This contradiction reflects the theoreti-
cal problem discussed in Section 3.

Other Examples: We also found other interesting
target-sensitive sentiment expressions like “large
bill” and “large portion”, “small tip” and “small
portion” from Restaurant. Notice that TMNs
can also improve the neutral sentiment (see Ta-
ble 3). For instance, TMN generates a sentiment
score vector of the context “over” for target as-
pect price: {0.1373, 0.0066, -0.1433} (negative)
and for target aspect dinner: {0.0496, 0.0591, -
0.1128} (neutral) accurately. But MN produces
both negative scores {0.0069, 0.0025, -0.0090}
(negative) and {0.0078, 0.0028, -0.0102} (nega-
tive) for the two different targets. The latter one in
MN is incorrect.

7 Conclusion and Future Work

In this paper, we first introduced the target-
sensitive sentiment problem in ASC. After that,
we discussed the basic memory network for ASC
and analyzed the reason why it is incapable of cap-
turing such sentiment from a theoretical perspec-
tive. We then presented six techniques to construct
target-sensitive memory networks. Finally, we re-
ported the experimental results quantitatively and
qualitatively to show their effectiveness.

Since ASC is a fine-grained and complex task,
there are many other directions that can be further
explored, like handling sentiment negation, better
embedding for multi-word phrase, analyzing sen-
timent composition, and learning better attention.
We believe all these can help improve the ASC
task. The work presented in this paper lies in the
direction of addressing target-sensitive sentiment,
and we have demonstrated the usefulness of cap-
turing this signal. We believe that there will be
more effective solutions coming in the near future.
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