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Abstract

We introduce Picturebook, a large-scale
lookup operation to ground language via
‘snapshots’ of our physical world accessed
through image search. For each word in
a vocabulary, we extract the top-k im-
ages from Google image search and feed
the images through a convolutional net-
work to extract a word embedding. We
introduce a multimodal gating function
to fuse our Picturebook embeddings with
other word representations. We also intro-
duce Inverse Picturebook, a mechanism to
map a Picturebook embedding back into
words. We experiment and report results
across a wide range of tasks: word simi-
larity, natural language inference, seman-
tic relatedness, sentiment/topic classifica-
tion, image-sentence ranking and machine
translation. We also show that gate acti-
vations corresponding to Picturebook em-
beddings are highly correlated to human
judgments of concreteness ratings.

1 Introduction

Constructing grounded representations of natu-
ral language is a promising step towards achiev-
ing human-like language learning. In recent years,
a large amount of research has focused on in-
tegrating vision and language to obtain visually
grounded word and sentence representations. One
source of grounding, which has been utilized in
existing work, is image search engines. Search
engines allow us to obtain correspondences be-
tween language and images that are far less re-
stricted than existing multimodal datasets which
typically have restricted vocabularies. While true
natural language understanding may require fully

*Both authors contributed equally to this work.

embodied cognition, search engines allow us to
get a form of quasi-grounding from high-coverage
‘snapshots’ of our physical world provided by the
interaction of millions of users.

One place to incorporate grounding is in the
lookup table that maps tokens to vectors. The
dominant approach to learning distributed word
representations is through indexing a learned ma-
trix. While immensely successful, this lookup op-
eration is typically learned through co-occurrence
objectives or a task-dependent reward signal. A
very different way to obtain word embeddings is
to aggregate features obtained by using the word
as a query for an image search engine. This in-
volves retrieving the top-k images from a search
engine, running those through a convolutional net-
work and aggregating the results. These word em-
beddings are grounded via the retrieved images.
While several authors have considered this ap-
proach, it has been largely limited to a few thou-
sand queries and only a small number of tasks.

In this paper we introduce Picturebook embed-
dings produced by image search using words as
queries. Picturebook embeddings are obtained
through a convolutional network trained with a
semantic ranking objective on a proprietary im-
age dataset with over 100+ million images (Wang
et al., 2014). Using Google image search, a Pic-
turebook embedding for a word is obtained by
concatenating the k-feature vectors of our convo-
lutional network on the top-k retrieved search re-
sults. The main contributions of our work are as
follows:

• We obtain Picturebook embeddings for the 2.2
million words that occur in the Glove vocabu-
lary (Pennington et al., 2014) 1, allowing each
word to have a Glove embedding and a par-
allel grounded word representation. This col-
lection of word representations that we visually
1Common Crawl, 840B tokens
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ground via image search is 2-3 orders of magni-
tude larger than prior work.

• We introduce a multimodal gating mechanism
to selectively choose between Glove and Pic-
turebook embeddings in a task-dependent way.
We apply our approach to over a dozen datasets
and several different tasks: word similarity, sen-
tence relatedness, natural language inference,
topic/sentiment classification, image sentence
ranking and Machine Translation (MT).

• We introduce Inverse Picturebook to perform
the inverse lookup operation. Given a Pic-
turebook embedding, we find the closest words
which would generate the embedding. This is
useful for generative modelling tasks.

• We perform an extensive analysis of our gating
mechanism, showing that the gate activations
for Picturebook embeddings are highly corre-
lated with human judgments of concreteness.
We also show that Picturebook gate activations
are negatively correlated with image dispersion
(Kiela et al., 2014), indicating that our model
selectively chooses between word embeddings
based on their abstraction level.

• We highlight the importance of the convolu-
tional network used to extract embeddings. In
particular, networks trained with semantic la-
bels result in better embeddings than those
trained with visual labels, even when evaluating
similarity on concrete words.

2 Related Work

The use of image search for obtaining word rep-
resentations is not new. Table 1 illustrates ex-
isting methods that utilize image search and the
tasks considered in their work. There has also
been other work using other image sources such
as ImageNet (Kiela and Bottou, 2014; Collell and
Moens, 2016) over the WordNet synset vocabu-
lary, and using Flickr photos and captions (Joulin
et al., 2016). Our approach differs from the above
methods in three main ways: a) we obtain search-
grounded representations for over 2 million words
as opposed to a few thousand, b) we apply our rep-
resentations to a higher diversity of tasks than pre-
viously considered, and c) we introduce a multi-
modal gating mechanism that allows for a more
flexible integration of features than mere concate-
nation.

Our work also relates to existing multimodal
models combining different representations of the
data (Hill and Korhonen, 2014). Various work has

Method tasks

(Bergsma and Durme, 2011) bilingual lexicons
(Bergsma and Goebel, 2011) lexical preference
(Kiela et al., 2014) word similarity
(Kiela et al., 2015a) lexical entailment detection
(Kiela et al., 2015b) bilingual lexicons
(Shutova et al., 2016) metaphor identification
(Bulat et al., 2015) predicting property norms
(Kiela, 2016) toolbox
(Vulic et al., 2016) bilingual lexicons
(Kiela et al., 2016) word similarity
(Anderson et al., 2017) decoding brain activity
(Glavas et al., 2017) semantic text similarity
(Bhaskar et al., 2017) abstract vs concrete nouns
(Hartmann and Sogaard, 2017) bilingual lexicons
(Bulat et al., 2017) decoding brain activity

Table 1: Existing methods that use image search
for grounding and their corresponding tasks.

also fused text-based representations with image-
based representations (Bruni et al., 2014; Lazari-
dou et al., 2015; Chrupala et al., 2015; Mao et al.,
2016; Silberer et al., 2017; Kiela et al., 2017;
Collell et al., 2017; Zablocki et al., 2018) and
representations derived from a knowledge-graph
(Thoma et al., 2017). More recently, gating-based
approaches have been developed for fusing tra-
ditional word embeddings with visual represen-
tations. Arevalo et al. (2017) introduce a gat-
ing mechanism inspired by the LSTM while Kiela
et al. (2018) describe an asymmetric gate that al-
lows one modality to ‘attend’ to the other. The
work that most closely matches ours is that of
Wang et al. (2018) who also consider fusing Glove
embeddings with visual features. However, their
analysis is restricted to word similarity tasks and
they require text-to-image regression to obtain vi-
sual embeddings for unseen words, due to the use
of ImageNet. The use of image search allows us to
obtain visual embeddings for a virtually unlimited
vocabulary without needing a mapping function.

3 Picturebook Embeddings

Our Picturebook embeddings ground language us-
ing the ‘snapshots’ returned by an image search
engine. Given a word (or phrase), we image search
for the top-k images and extract the images. We
then pass each image through a CNN trained with
a semantic ranking objective to extract its em-
bedding. Our Picturebook embeddings reflect the
search rankings by concatenating the individual
embeddings in the order of the search results. We
can perform all of these operations offline to con-
struct a matrix Ep representing the Picturebook
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embeddings over a vocabulary.

3.1 Inducing Picturebook Embeddings

The convolutional network used to obtain Pic-
turebook embeddings is based off of Wang et al.
(2014). Let pi, p+i , p

�
i denote a triplet of query,

positive and negative images, respectively. We de-
fine the following hinge loss for a given triplet as
follows:

l(pi, p
+
i , p

�
i ) =

max{0, g +D(f(pi), f(p
+
i ))�D(f(pi), f(p

�
i ))}
(1)

where f(pi) represents the embedding of image
pi, D(·, ·) is the Euclidean distance and g is a mar-
gin (gap) hyperparameter. Suppose we have avail-
able pairwise relevance scores ri,j = r(pi, pj) in-
dicating the similarity of images pi and pj . The
objective function that is optimized is given by:

min
X

i

⇠i + �kWk22

s.t. :l(pi, p
+
i , p

�
i )  ⇠i

8pi, p+i , p
�
i such that r(pi, p+i ) > r(pi, p

�
i )
(2)

where ⇠i are slack variables and W is a vector
of the network’s model parameters. The model is
trained end-to-end using a proprietary dataset with
100+ million images. We refer the reader to Wang
et al. (2014) for additional details of training, in-
cluding the specifics of the architecture used.

After the model is trained, we can use the con-
volutional network as a feature extractor for im-
ages by computing an embedding vector f(p) for
an image p. Suppose we would like to obtain a
Picturebook embedding for a given word w. We
first perform an image search with query w to ob-
tain a ranked list of images pw1 , . . . , p

w
k . The Pic-

turebook embedding for a word w is then repre-
sented as:

ep(w) = [f(pw1 ); f(p
w
2 ); . . . ; f(p

w
k )] (3)

namely, the concatenation of the feature vectors
in ranked order. In our model, each embedding
results in a 64-dimensional vector with the final
Picturebook embedding being 64 ⇤ k dimensions.
Most of our experiments use k = 10 images re-
sulting in a word embedding size of 640. To ob-
tain the full collection of embeddings, we run the
full Glove vocabulary (2.2M words) through im-
age search to obtain a corresponding Picturebook
embedding to each word in the Glove vocabulary.

3.2 Visual vs Semantic Similarity

The training procedure is heavily influenced by
the choice of similarity function ri,j . We consider
two types of image similarity: visual and seman-
tic. As an example, an image of a blue car would
have high visual similarity to other blue cars but
would have higher semantic similarity to cars of
the same make, independent of color. In our ex-
periments we consider two types of Picturebook
embedding: one trained through optimizing for vi-
sual similarity and another for semantic similarity.
As we will show in our experiments, the semantic
Picturebook embeddings result in representations
that are more useful for natural language process-
ing tasks than the visual embeddings.

3.3 Multimodal Fusion Gating

Picturebook embeddings on their own are likely to
be useful for representing concrete words but it is
not clear whether they will be of benefit for ab-
stract words. Consequently, we would like to fuse
our Picturebook embeddings with other sources of
information, for example Glove embeddings (Pen-
nington et al., 2014) or randomly initialized em-
beddings that will be trained. Let eg = eg(w) be
our other embedding (i.e., Glove) for a word w
and ep = ep(w) be our Picturebook embedding.
We fuse our embeddings using a multimodal gat-
ing mechanism:

g = �(eg, ep) (4)
e = g � �(eg) + (1� g)�  (ep) (5)

where � is a 1 hidden layer DNN with ReLU ac-
tivations and sigmoid outputs, � and  are 1 hid-
den layer DNNs with ReLU activations and tanh
outputs. The gating DNN � allows the model to
learn how visual a word is as a function of its
input ep and eg. Similar gating mechanisms can
be found in LSTMs (Hochreiter and Schmidhu-
ber, 1997) and other multimodal models (Arevalo
et al., 2017; Wang et al., 2018; Kiela et al., 2018).
On some experiments we found it beneficial to in-
clude a skip connection from the hidden layer of
�. We chose this form of fusion over other ap-
proaches, such as CCA variants and metric learn-
ing methods, to allow for easier interpretability
and analysis. We leave comparison of alternative
fusion strategies for future work.

3.4 Contextual Gating

The gating described above is non-contextual, in
the sense that each embedding computes a gate
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value independent of the context the words oc-
cur in. In some cases it may be beneficial to
use contextual gates that are aware of the sen-
tence that words appear in to decide how to weight
Glove and Picturebook embeddings. For contex-
tual gates, we use the same approach as above ex-
cept we replace the controller �(eg, ep) with in-
puts that have been fed through a bidirectional-
LSTM, e.g. �(BiLSTM(eg),BiLSTM(ep)). We
experiment with contextual gating for all experi-
ments that use a bidirectional-LSTM encoder.

3.5 Inverse Picturebook

Picturebook embeddings can be seen as a form of
implicit image search: given a word (or phrase),
image search the word query and concatenate the
embeddings of the images produced by a CNN.
Up until now, we have only discussed scenarios
where we have a word and we want to perform
this implicit search operation. In generative mod-
elling problems (i.e., MT), we want to perform the
opposite operation. Given a Picturebook embed-
ding, we want to find the closest word or phrase
aligned to the representation. For example, given
the word ‘bicycle’ in English and its Picturebook
embedding, we want to find the closest French
word that would generate this representation (i.e.,
‘vélo’). We want to perform this inverse image
search operation given its Picturebook embedding.

We introduce a differentiable mechanism which
allows us to align words across source and target
languages in the Picturebook embedding domain.
Let h be our internal representation of our model
(i.e., seq2seq decoder state), and ei be the i-th
word embedding from our Picturebook embedding
matrix Ep:

p(yi|h) =
exp(hh, eii)P
j exp(hh, eji)

(6)

Given a representation h, Equation 6 simply finds
the most similar word in the embedding space.
This can be easily implemented by setting the out-
put softmax matrix as the transpose of the Picture-
book embedding matrix Ep. In practice, we find
adding additional parameters helps with learning:

p(yi|h) =
exp(hh, ei + e0ii+ bi)P
j exp(hh, ej + e0ji+ bj)

(7)

where e0i is a trainable weight vector per word and
bi is a trainable bias per word. A similar technique
to tie the softmax matrix as the transpose of the
embedding matrix can be found in language mod-
elling (Press and Wolf, 2017; Inan et al., 2017).

4 Experiments

To evaluate the effectiveness of our embeddings,
we perform both quantitative and qualitative eval-
uation across a wide range of natural language
processing tasks. Hyperparameter details of each
experiment are included in the appendix. Since the
use of Picturebook embeddings adds extra param-
eters to our models, we include a baseline for each
experiment (either based on Glove or learned em-
beddings) that we extensively tune. In most exper-
iments, we end up with baselines that are stronger
than what has previously been reported.

4.1 Nearest neighbours

In order to get a sense of the representations our
model learns, we first compute nearest neighbour
results of several words, shown in Table 2. These
results can be interpreted as follows: the words
that appear as neighbours are those which have se-
mantically similar images to that of the query. Of-
ten this captures visual similarity as well. Some
words capture multimodality, such as ‘deep’ refer-
ring both to deep sea as well as to AI. Searching
for cities returns cities which have visually simi-
lar characteristics. Words like ‘sun’ also return the
corresponding word in different languages, such
as ‘Sol’ in Spanish and ‘Soleil’ in French. Finally,
it’s worth highlighting that the most frequent asso-
ciation of a word may not be what is represented
in image search results. For example, the word
‘is’ returns words related to terrorists and ISIS and
‘it’ returns words related to scary and clowns due
to the 2017 film of the same name. We also re-
port nearest neighbour examples across languages
in Appendix A.1.

4.2 Word similarity

Our first quantitative experiment aims to deter-
mine how well Picturebook embeddings capture
word similarity. We use the SimLex-999 dataset
(Hill et al., 2015) and report results across 9 cat-
egories: all (the whole evaluation), adjectives,
nouns, verbs, concreteness quartiles and the hard-
est 333 pairs. For the concreteness quartiles,
the first quartile corresponds to the most abstract
words, while the last corresponds to the most
concrete words. The hardest pairs are those for
which similarity is difficult to distinguish from re-
latedness. This is an interesting category since
image-based word embeddings are perhaps less
likely to confuse similarity with relatedness than
distributional-based methods. For Glove, scores
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language deep network Melbourne association sun life not

interdisciplinary deepest internet Austin inclusion prominence praising Nosign
languages deep-sea cyberspace Raleigh committees Sol rejoicing prohibited

literacy manta networks Cincinnati social Soleil freedom Forbidden
sociology depths blueprints Yokohama groupe Sole glorifying no

multilingual Jarvis connectivity Cleveland members Venere worshipping no-fly
inclusion cyber interconnections Tampa participation Marte healed forbid

communications AI blueprint Pittsburgh personnel eclipses praise 10
linguistics hackers AI Boston involvement Venus healing prohibiting

values restarting interconnected Rochester staffing eclipse trust forbidden
user-generated diver tech Frankfurt meetings fireballs happiness Stop

Table 2: Nearest neighbours of words. Results are retrieved over the 100K most frequent words.

Model all adjs nouns verbs conc-q1 conc-q2 conc-q3 conc-q4 hard

Glove 40.8 62.2 42.8 19.6 43.3 41.6 42.3 40.2 27.2
Picturebook 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8
Glove + Picturebook 45.5 46.2 52.1 22.8 36.7 41.7 50.4 57.3 32.5

Picturebook (Visual) 31.3 11.1 38.8 20.4 13.9 26.1 38.7 47.7 23.9
Picturebook (Semantic) 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8

Picturebook (1) 24.5 2.6 33.5 12.1 4.7 17.8 32.8 47.8 13.6
Picturebook (2) 28.4 6.5 38.9 9.0 5.0 21.3 34.3 55.1 15.7
Picturebook (3) 30.3 11.9 41.9 3.1 2.6 24.3 37.5 58.3 18.4
Picturebook (5) 34.4 6.8 44.5 18.0 9.0 27.9 42.8 58.3 25.9
Picturebook (10) 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8

Table 3: SimLex-999 results (Spearman’s ⇢). Best results overall are bolded. Best results per section
are underlined. Bracketed numbers signify the number of images used. Some rows are copied across
sections for ease of reading.

are computed via cosine similarity. For computing
a score between 2 word pairs with Picturebook, we
set s(w(1), w(2)) = �mini,j d(e

(1)
i , e(2)j ). 2 That

is, the score is minus the smallest cosine distance
between all pairs of images of the two words. Note
that this reduces to negative cosine distance when
using only 1 image per word. We also report re-
sults combining Glove and Picturebook by sum-
ming their two independent similarity scores. By
default, we use 10 images for each embedding us-
ing the semantic convolutional network.

Table 3 displays our results, from which sev-
eral observations can be made. First, we observe
that combining Glove and Picturebook leads to
improved similarity across most categories. For
adjectives and the most abstract category, Glove
performs significantly better, while for the most
concrete category Picturebook is significantly bet-
ter. This result confirms that Glove and Picture-
book capture very different properties of words.
Next we observe that the performance of Picture-
book gets progressively better across each con-
creteness quartile rating, with a 20 point improve-
ment over Glove for the most concrete category.

2We found scoring all pairs of images to outperform scor-
ing only the corresponding equally ranked image.

For the hardest subset of words, Picturebook per-
forms slightly better than Glove while Glove per-
forms better across all pairs. We also compare to
a convolutional network trained with visual sim-
ilarity. We observe a performance difference be-
tween our visual and semantic embeddings: on all
categories except verbs, the semantic embeddings
outperform visual ones, even on the most concrete
categories. This indicates the importance of the
type of similarity used for training the model. Fi-
nally we note that adding more images nearly con-
sistently improves similarity scores across cate-
gories. Kiela et al. (2016) showed that after 10-20
images, performance tends to saturate. All sub-
sequent experiments use 10 images with semantic
Picturebook.

4.3 Sentential Inference and Relatedness

We next consider experiments on 3 pairwise pre-
diction datasets: SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2017) and SICK
(Marelli et al., 2014). The first two are natural lan-
guage inference tasks and the third is a sentence
semantic relatedness task. We explore the use of
two types of sentential encoders: Bag-of-Words
(BoW) and BiLSTM-Max (Conneau et al., 2017a).
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Model SNLI MultiNLI SICK Relatedness

dev test dev-mat dev-mis test-p test-s test-mse

Glove (bow) 85.2 84.2 70.5 69.9 86.8 79.8 25.2
Picturebook (bow) 84.0 83.8 67.9 67.1 85.8 79.3 27.0
Glove + Picturebook (bow) 86.2 85.2 71.3 70.9 87.2 80.9 24.4

BiLSTM-Max (Conneau et al., 2017a) 85.0 84.5
Glove 86.8 86.3 74.1 74.5

Picturebook 85.2 85.1 70.7 70.3
Glove + Picturebook 86.7 86.1 73.7 73.7
Glove + Picturebook + Contextual Gating 86.9 86.5 74.2 74.4

Table 4: Classification accuracies are reported for SNLI and MulitNLI. For SICK we report Pearson,
Spearman and MSE. Higher is better for all metrics except MSE. Best results overall per column are
bolded. Best results per section are underlined.

Three sets of features are used: Glove only, Pic-
turebook only and Glove + Picturebook. For the
latter, we use multimodal gating for all encoders
and contextual gating in the BiLSTM-Max model.
For SICK, we follow previous work and report av-
erage results across 5 runs (Tai et al., 2015). Due
to the small size of the dataset, we only experiment
with BoW on SICK. The full details of hyperpa-
rameters are discussed in Appendix B.

Table 4 displays our results. For BoW mod-
els, adding Picturebook embeddings to Glove re-
sults in significant gains across all three tasks. For
BiLSTM-Max, our contextual gating sets a new
state-of-the-art on SNLI sentence encoding meth-
ods (methods without interaction layers), outper-
forming the recently proposed methods of Im and
Cho (2017); Shen et al. (2018). It is worth not-
ing the effect that different encoders have when
using our embeddings. While non-contextual gat-
ing is sufficient to improve bag-of-words methods,
with BiLSTM-Max it slightly hurts performance
over the Glove baseline. Adding contextual gating
was necessary to improve over the Glove baseline
on SNLI. Finally we note the strength of our own
Glove baseline over the reported results of Con-
neau et al. (2017a), from which we improve on
their accuracy from 85.0 to 86.8 on the develop-
ment set. 3

4.4 Sentiment and Topic Classification

Our next set of experiments aims to determine how
well Picturebook embeddings do on tasks that are
primarily non-visual, such as topic and sentiment
classification. We experiment with 7 datasets pro-
vided by Zhang et al. (2015) and compare bag-of-
words models against n-gram baselines provided

3All reported results on SNLI are available at https:
//nlp.stanford.edu/projects/snli/

by the authors as well as fastText (Joulin et al.,
2017). Hyperparameter details are reported in Ap-
pendix B.

Our experimental results are provided in Table
5. Perhaps unsurprisingly, adding Picturebook to
Glove matches or only slightly improves on 5 out
of 7 tasks and obtains a lower result on AG News
and Yahoo. Our results show that Picturebook em-
beddings, while minimally aiding in performance,
can perform reasonably well on their own - out-
performing the n-gram baselines of (Zhang et al.,
2015) on 5 out of 7 tasks and the unigram fastText
baseline on all 7 tasks. This result shows that our
embeddings are able to work as a general text em-
bedding, though they typically lag behind Glove.
We note that the best performing methods on these
tasks are based on convolutional neural networks
(Conneau et al., 2017b).

4.5 Image-Sentence Ranking

We next consider experiments that map images
and sentences into a common vector space for re-
trieval. Here, we utilize VSE++ (Faghri et al.,
2017) as our base model and evaluate on the
COCO dataset (Lin et al., 2014). VSE++ improves
over the original CNN-LSTM embedding method
of Kiros et al. (2015a) by using hard negatives in-
stead of summing over contrastive examples. We
re-implement their model with 2 modifications: 1)
we replace the unidirectional LSTM encoder with
a BiLSTM-Max sentence encoder and 2) we use
Inception-V3 (Szegedy et al., 2016) as our CNN
instead of ResNet 152 (He et al., 2016). As in pre-
vious work, we report the mean Recall@K (R@K)
and the median rank over 1000 images and 5000
sentences. Full details of the hyperparameters are
in Appendix B.

Table 6 displays our results on this task.

https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
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Model AG DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

BoW (Zhang et al., 2015) 88.8 96.6 92.2 58.0 68.9 54.6 90.4
ngrams (Zhang et al., 2015) 92.0 98.6 95.6 56.3 68.5 54.3 92.0
ngrams TFIDF (Zhang et al., 2015) 92.4 98.7 95.4 54.8 68.5 52.4 91.5
fastText (Joulin et al., 2017) 91.5 98.1 93.8 60.4 72.0 55.8 91.2
fastText-bigram (Joulin et al., 2017) 92.5 98.6 95.7 63.9 72.3 60.2 94.6

Glove (bow) 94.0 98.6 94.4 61.7 74.1 58.5 93.2
Picturebook (bow) 92.8 98.5 94.4 61.6 73.3 57.8 92.9
Glove + Picturebook (bow) 93.9 98.6 94.5 61.9 73.8 58.7 93.2

Table 5: Test accuracy [%] on topic and sentiment classification datasets. Best results per dataset are
bolded, best results per section are underlined. We compare directly against other bag of ngram baselines.

Image Annotation Image Search
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

VSE++ (Faghri et al., 2017) 64.6 95.7 1 52.0 92.0 1

Glove 64.6 88.9 95.5 1 53.7 86.5 94.4 1
Picturebook 62.4 90.2 95.3 1 54.2 86.4 94.3 1
Glove + Picturebook 61.8 89.2 95.0 1 54.1 86.7 94.7 1
Glove + Picturebook + Contextual Gating 63.4 90.3 96.5 1 55.2 87.2 94.4 1

Table 6: COCO test-set results for image-sentence retrieval experiments. Our models use VSE++. R@K
is Recall@K (high is good). Med r is the median rank (low is good).

Our Glove baseline was able to match or out-
perform the reported results in Faghri et al.
(2017) with the exception of Recall@10 for im-
age annotation, where it performs slightly worse.
Glove+Picturebook improves over the Glove base-
line for image search but falls short on image an-
notation. However, using contextual gating re-
sults in improvements over the baseline on all met-
rics except R@1 for image annotation. Our re-
ported results have been recently outperformed by
Gu et al. (2018); Huang et al. (2018b); Lee et al.
(2018), which are more sophisticated methods that
incorporate generative modelling, reinforcement
learning and attention.

4.6 Machine Translation

We experiment with the Multi30k (Elliott et al.,
2016, 2017) dataset for MT. We compare our
Picturebook models with other text-only non-
ensembled models on the Flickr Test2016, Flickr
Test2017 and MSCOCO test sets from Caglayan
et al. (2017), the winner of the WMT 17 Mul-
timodal Machine Translation competition (Elliott
et al., 2017). We use the standard seq2seq
(Sutskever et al., 2015) with content-based atten-
tion (Bahdanau et al., 2015) model and we de-
scribe our hyperparmeters in Appendix B.

Table 7 summarizes our English ! German
results and Table 8 summarizes our English !
French results. We find our models to perform
better in BLEU than METEOR relatively com-

pared to (Caglayan et al., 2017). We believe this
is due to the fact we did not use Byte Pair En-
coding (BPE) (Sennrich et al., 2016), and ME-
TEOR captures word stemming (Denkowski and
Lavie, 2014). This is also highlighted where our
French models perform better than our German
models relatively, due to the compounding nature
of German words. Since seq2seq MT models are
typically trained without Glove embeddings, we
also did not use Glove embeddings for this task,
but rather we combine randomly initialized learn-
able embeddings with the fixed Picturebook em-
beddings. We find the gating mechanism not to
help much with the MT task since the trainable
embeddings are free to change their norm magni-
tudes. We did not experiment with regularizing the
norm of the embeddings. On the English ! Ger-
man tasks, we find our Picturebook model to per-
form on average 0.8 BLEU or 0.7 METEOR over
our baseline. On the German task, compared to the
previously best published results (Caglayan et al.,
2017) we do better in BLEU but slightly worse in
METEOR. We suspect this is due to the fact that
we did not use BPE. On the English ! French
task, the Picturebook models do on average 1.2
BLEU better or 1.0 METEOR over our baseline.

We also report results for the IWSLT 2014
German-English task (Cettolo et al., 2014) in Ta-
ble 9. Compared to our baseline, we report a
gain of 0.3 and 1.1 BLEU for German ! En-
glish and English ! German respectively. We
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Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

BPE (Caglayan et al., 2017) 38.1 57.3 30.8 51.6 26.4 46.8

Baseline 38.9 56.5 32.6 50.7 26.8 45.4
Picturebook 39.6 56.9 31.8 50.1 27.7 45.8
Picturebook + Inverse Picturebook 40.2 57.2 32.3 50.7 27.8 46.3
Picturebook + Inverse Picturebook + Gating 40.0 57.3 33.0 51.1 27.9 46.5

Table 7: Machine Translation results on the Multi30k English ! German task. We note that our models
do not use BPE, and we perform better in BLEU relative to METEOR.

Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

BPE (Caglayan et al., 2017) 52.5 69.6 50.4 67.5 41.2 61.3

Baseline 60.7 74.1 52.3 67.4 42.8 60.6
Picturebook 61.0 74.2 52.4 67.5 43.1 61.0
Picturebook + Inverse Picturebook 61.8 75.0 52.6 67.7 42.8 61.2
Picturebook + Inverse Picturebook + Gating 62.1 75.2 53.6 68.4 43.8 61.6

Table 8: Machine Translation results on the Multi30k English ! French task.

report new state-of-the-art results for the English
! German task at 25.4 BLEU, while our Ger-
man ! English model achieves 29.6 BLEU which
is slightly behind the recently proposed Neural
Phrase-based Machine Translation (NPMT) model
at 29.9 (Huang et al., 2018a). We note that the
NPMT is not a seq2seq model and can be aug-
mented with our Picturebook embeddings. We
also note that our models may not be directly com-
parable to previously published seq2seq models
from (Wiseman and Rush, 2016; Bahdanau et al.,
2017) since we used a deeper encoder and decoder.

4.7 Limitations

We explored the use of Picturebook for larger
machine translation tasks, including the popular
WMT14 benchmarks. For these tasks, we found
that models that incorporate Picturebook led to
faster convergence. However, we were not able to
improve upon BLEU scores from equivalent mod-
els that do not use Picturebook. This indicates
that while our embeddings are useful for smaller
MT experiments, further research is needed on
how to best incorporate grounded representations
in larger translation tasks.

4.8 Gate Analysis

In this section we perform an extensive analy-
sis of the gating mechanism for models trained
across datasets used in our experiments. In our
first experiment, we aim to determine how well

gate activations correlate to a) human judgments
of concreteness and b) image dispersion (Kiela
et al., 2014). For concreteness ratings, we use the
dataset of Brysbaert et al. (2013) which provides
ratings for 40,000 English lemmas. Image disper-
sion is the average distance between all pairs of
images returned from a search query. It was shown
in Kiela et al. (2014) that abstract words tend to
have higher dispersion ratings, due to having much
higher variety in the types of images returned from
a query. On the other hand, low dispersion ratings
were more associated with concrete words. For
each word, we compute the mean gate activation
value for Picturebook embeddings. 4 For con-
creteness ratings, we take the intersection of words
that have ratings with the dataset vocabulary. We
then compute the Spearman correlation of mean
gate activations with a) concreteness ratings and
b) image dispersion scores.

Table 10 illustrates the result of this analysis.
We observe that gates have high correlations with
concreteness ratings and strong negative correla-
tions with image dispersion scores. Moreover, this
result holds true across all datasets, even those that
are not inherently visual. These results provide ev-
idence that our gating mechanism actively prefers
Glove embeddings for abstract words and Picture-
book embeddings for concrete words. Appendix
A contains examples of words that most strongly
activate Glove and Picturebook gates.

4We only consider non-contextualized gates.
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Model DE ! EN BLEU EN ! DE BLEU

MIXER (Ranzato et al., 2016) 21.8
Beam Search Optimization (Wiseman and Rush, 2016) 25.5
Actor-Critic + Log Likelihood (Bahdanau et al., 2017) 28.5
Neural Phrase-based Machine Translation (Huang et al., 2018a) 29.9 25.1

Baseline 29.3 24.3
Picturebook 29.6 25.4

Table 9: Machine Translation results on the IWSLT 2014 German-English task.

Rank SNLI MultiNLI COCO AG-News DBpedia Yelp Amazon

ccorr disp ccorr disp ccorr disp ccorr disp ccorr disp ccorr disp ccorr disp

top-1% 73 -41 39 -27 53 -22 60 -16 56 -30 47 -28 32 -17
top-10% 54 -39 48 -34 34 -23 52 -24 54 -32 49 -26 50 -30
all 35 -30 30 -27 21 -16 36 -17 39 -30 24 -20 33 -31

Table 10: Correlations (rounded, x100) of mean Picturebook gate activations to human judgements of
concreteness ratings (ccorr) and image dispersion (disp) within the specified most frequent words.

(a) SNLI (b) MultiNLI (c) AG-News

Figure 1: POS analysis. Top bar for each tag is Glove, bottom is Picturebook. Tags are sorted by Glove
frequencies. Results taken over the top 100 mean activation values within the 10K most frequent words.

Finally we analyze the parts-of-speech (POS)
of the highest activated words. These results are
shown in Figure 1. The highest scoring Pic-
turebook words are almost all singular and plural
nouns (NN / NNS). We also observe tags which
are exclusively Glove oriented, namely adverbs
(RB), prepositions (IN) and determiners (DT).

5 Conclusion

Traditionally, word representations have been built
on co-occurrences of neighbouring words; and
such representations only make use of the statis-
tics of the text distribution. Picturebook embed-
dings offer an alternative approach to constructing
word representations grounded in image search
engines. In this work we demonstrated that Pic-
turebook complements traditional embeddings on
a wide variety of tasks. Through the use of mul-
timodal gating, our models lead to interpretable
weightings of abstract vs concrete words. In fu-
ture work, we would like to explore other aspects

of search engines for language grounding as well
as the effect these embeddings may have on learn-
ing generic sentence representations (Kiros et al.,
2015b; Hill et al., 2016; Conneau et al., 2017a;
Logeswaran and Lee, 2018). Recently, contextu-
alized word representations have shown promis-
ing improvements when combined with existing
embeddings (Melamud et al., 2016; Peters et al.,
2017; McCann et al., 2017; Peters et al., 2018).
We expect that integrating Picturebook with these
embeddings to lead to further performance im-
provements as well.
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