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Abstract

We introduce a neural reading comprehen-
sion model that integrates external com-
monsense knowledge, encoded as a key-
value memory, in a cloze-style setting.
Instead of relying only on document-to-
question interaction or discrete features as
in prior work, our model attends to rel-
evant external knowledge and combines
this knowledge with the context represen-
tation before inferring the answer. This al-
lows the model to attract and imply knowl-
edge from an external knowledge source
that is not explicitly stated in the text,
but that is relevant for inferring the an-
swer. Our model improves results over a
very strong baseline on a hard Common
Nouns dataset, making it a strong competi-
tor of much more complex models. By
including knowledge explicitly, our model
can also provide evidence about the back-
ground knowledge used in the RC process.

1 Introduction

Reading comprehension (RC) is a language under-
standing task similar to question answering, where
a system is expected to read a given passage of text
and answer questions about it. Cloze-style reading
comprehension is a task setting where the question
is formed by replacing a token in a sentence of the
story with a placeholder (left part of Figure 1).

In contrast to many previous complex models
(Weston et al., 2015; Dhingra et al., 2017; Cui
et al., 2017; Munkhdalai and Yu, 2016; Sordoni
et al., 2016) that perform multi-turn reading of a
story and a question before inferring the correct
answer, we aim to tackle the cloze-style RC task in
a way that resembles how humans solve it: using,
in addition, background knowledge. We develop
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and	  prepared	  for	  his	  long	  trip..
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Figure 1: Cloze-style reading comprehension with
external commonsense knowledge.

a neural model for RC that can successfully deal
with tasks where most of the information to infer
answers from is given in the document (story), but
where additional information is needed to predict
the answer, which can be retrieved from a knowl-
edge base and added to the context representations
explicitly.1 An illustration is given in Figure 1.

Such knowledge may be commonsense knowl-
edge or factual background knowledge about enti-
ties and events that is not explicitly expressed but
can be found in a knowledge base such as Con-
ceptNet (Speer et al., 2017), BabelNet (Navigli
and Ponzetto, 2012), Freebase (Tanon et al., 2016)
or domain-specific KBs collected with Informa-
tion Extraction approaches (Fader et al., 2011;
Mausam et al., 2012; Bhutani et al., 2016). Thus,
we aim to define a neural model that encodes pre-
selected knowledge in a memory, and that learns to
include the available knowledge as an enrichment
to the context representation.

The main difference of our model to prior
state-of-the-art is that instead of relying only on
document-to-question interaction or discrete fea-
tures while performing multiple hops over the doc-
ument, our model (i) attends to relevant selected

1‘Context representation’ refers to a vector representa-
tion computed from textual information only (i.e., document
(story) or question).
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external knowledge and (ii) combines this knowl-
edge with the context representation before infer-
ring the answer, in a single hop. This allows
the model to explicitly imply knowledge that is
not stated in the text, but is relevant for inferring
the answer, and that can be found in an external
knowledge source. Moreover, by including knowl-
edge explicitly, our model provides evidence and
insight about the used knowledge in the RC.

Our main contributions are: (i) We develop
a method for integrating knowledge in a simple
but effective reading comprehension model (AS
Reader, Kadlec et al. (2016)) and improve its re-
sults significantly whereas other models employ
features or multiple hops. (ii) We examine two
sources of common knowledge: WordNet (Miller
et al., 1990) and ConceptNet (Speer et al., 2017)
and show that this type of knowledge is important
for answering common nouns questions and also
improves slightly the performance for named enti-
ties.

(iii) We show that knowledge facts can be added
directly to the text-only representation, enrich-
ing the neural context encoding. (iv) We demon-
strate the effectiveness of the injected knowledge
by case studies and data statistics in a qualitative
evaluation study.

2 Reading Comprehension with
Background Knowledge Sources

In this work, we examine the impact of using ex-
ternal knowledge as supporting information for the
task of cloze style reading comprehension.

We build a system with two modules. The first,
Knowledge Retrieval, performs fact retrieval and
selects a number of facts f1, ..., fp that might be
relevant for connecting story, question and can-
didate answers. The second, main module, the
Knowledgeable Reader, is a knowledge-enhanced
neural module. It uses the input of the story con-
text tokens d1..m, the question tokens q1..n, the set
of answer candidates a1..k and a set of ‘relevant’
background knowledge facts f1..p in order to se-
lect the right answer. To include external knowl-
edge for the RC task, we encode each fact f1..p
and use attention to select the most relevant among
them for each token in the story and question.
We expect that enriching the text with additional
knowledge about the mentioned concepts will im-
prove the prediction of correct answers in a strong
single-pass system. See Figure 1 for illustration.

2.1 Knowledge Retrieval

In our experiments we use knowledge from the
Open Mind Common Sense (OMCS, Singh et al.
(2002)) part of ConceptNet, a crowd-sourced re-
source of commonsense knowledge with a total of
∼630k facts. Each fact fi is represented as a triple
fi=(subject, relation, object), where subject and
object can be multi-word expressions and relation
is a relation type. An example is: ([bow]subj ,
[IsUsedFor]rel, [hunt, animals]obj)

We experiment with three set-ups: using (i)
all facts from OMCS that pertain to Concept-
Net, referred to as CN5All, (ii) using all facts
from CN5All excluding some WordNet relations
referred to as CN5Sel(ected) (see Section 3), and
using (iii) facts from OMCS that have source set
to WordNet (CN5WN3).

Retrieving relevant knowledge. For each in-
stance (D, Q, A1..10) we retrieve relevant com-
monsense background facts. We first retrieve facts
that contain lemmas that can be looked up via to-
kens contained in any D(ocument), Q(uestion) or
A(nswer candidates). We add a weight value for
each node: 4, if it contains a lemma of a candi-
date token from A; 3, if it contains a lemma from
the tokens of Q; and 2 if it contains a lemma from
the tokens of D. The selected weights are chosen
heuristically such that they model relative fact im-
portance in different interactions as A+A > A+Q
> A+D>D+Q>D+D. We weight the fact triples
that contain these lemmas as nodes, by summing
the weights of the subject and object arguments.
Next, we sort the knowledge triples by this overall
weight value. To limit the memory of our model,
we run experiments with different sizes of the top
number of facts (P ) selected from all instance fact
candidates, P ∈ {50, 100, 200}. As additional re-
trieval limitation, we force the number of facts per
answer candidate to be the same, in order to avoid
a frequency bias for an answer candidate that ap-
pears more often in the knowledge source. Thus, if
we select the maximum 100 facts for each task in-
stance and we have 10 answer candidates ai=1..10,
we retrieve the top 10 facts for each candidate ai
that has either a subject or an object lemma for a
token in ai. If the same fact contains lemmas of
two candidates ai and aj (j > i), we add the fact
once for ai and do not add the same fact again for
aj . If several facts have the same weight, we take
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Figure 2: The Knowledgeable Reader combines
plain context & enhanced (context + knowledge)
repres. of D and Q and retrieved knowledge from
the explicit memory with the Key-Value approach.

the first in the order of the list2, i.e., the order of
retrieval from the database. If one candidate has
less than 10 facts, the overall fact candidates for
the sample will be less than the maximum (100).

2.2 Neural Model: Extending the Attention
Sum Reader with a Knowledge Memory

We implement our Knowledgeable Reader (Kn-
Reader) using as a basis the Attention Sum Reader
as one of the strongest core models for single-hop
RC. We extend it with a knowledge fact memory
that is filled with pre-selected facts. Our aim is to
examine how adding commonsense knowledge to
a simple yet effective model can improve the RC
process and to show some evidence of that by at-
tending on the incorporated knowledge facts. The
model architecture is shown in Figure 2.

Base Attention Model. The Attention-Sum
Reader (Kadlec et al., 2016), our base model for
RC reads the input of story tokens d1..n, the ques-
tion tokens q1..m, and the set of candidates a1..10
that occur in the story text. The model calcu-
lates the attention between the question represen-
tation rq and the story token context encodings
of the candidate tokens a1..10 and sums the atten-
tion scores for the candidates that appear multiple
times in the story. The model selects as answer the
candidate that has the highest attention score.

Word Embeddings Layer. We represent input
document and question tokens w by looking up
their embedding representations ei = Emb(wi),
where Emb is an embedding lookup function. We
apply dropout (Srivastava et al., 2014) with keep

2We also experimented with re-ranking the facts with the
same weight sums using tf-idf but we did not notice a differ-
ence in performance.

probability p = 0.8 to the output of the embed-
dings lookup layer.

Context Representations. To represent the
document and question contexts, we first encode
the tokens with a Bi-directional GRU (Gated Re-
current Unit) (Chung et al., 2014) to obtain con-
text-encoded representations for document (cctxd1..n

)
and question (cctxq1..m) encoding:

cctxd1..n = BiGRU ctx(ed1..n) ∈ Rn×2h (1)

cctxq1..m = BiGRU ctx(eq1..m) ∈ Rm×2h (2)

, where di and qi denote the ith token of a text
sequence d (document) and q (question), respec-
tively, n and m is the size of d and q and h the
output hidden size (256) of a single GRU unit.
BiGRU is defined in (3), with ei a word embed-
ding vector

BiGRU ctx(ei, hiprev) =
[
−−−→
GRU(ei,

−−−→
hiprev),

←−−−
GRU(ei,

←−−−
hiprev)]

(3)

, where hiprev = [
−−−→
hiprev ,

←−−−
hiprev ], and

−−−→
hiprev

and
←−−−
hiprev are the previous hidden states of the

forward and backward layers. Below we use
BiGRU ctx(ei) without the hidden state, for short.

Question Query Representation. For the
question we construct a single vector representa-
tion rctxq by retrieving the token representation at
the placeholder (XXXX) index pl (cf. Figure 2):

rctxq = cctxqi..m [pl] ∈ R2h (4)

where [pl] is an element pickup operation.
Our question vector representation is different

from the original AS Reader that builds the ques-
tion by concatenating the last states of a for-
ward and backward layer [

−−−→
GRU(em),

←−−−
GRU(e1)].

We changed the original representation as we ob-
served some very long questions and in this way
aim to prevent the context encoder from ’forget-
ting’ where the placeholder is.

Answer Prediction: Qctx to Dctx Attention.
In order to predict the correct answer to the given
question, we rank the given answer candidates
a1..aL according to the normalized attention sum
score between the context (ctx) representation of
the question placeholder rctxq and the representa-
tion of the candidate tokens in the document:

P (ai|q, d) = softmax(
∑

αij ) (5)

αij = Att(rctxq , cctxdj
), i ∈ [1..L] (6)
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, where j is an index pointer from the list of in-
dices that point to the candidate ai token occur-
rences in the document context representation cd.
Att is a dot product.

Enriching Context Representations with
Knowledge (Context+Knowledge). To en-
hance the representation of the context, we add
knowledge, retrieved as a set of knowledge facts.

Knowledge Encoding. For each instance in
the dataset, we retrieve a number of relevant facts
(cf. Section 2.1). Each retrieved fact is represented
as a triple f = (wsubj

1..Lsubj
, wrel

0 , wobj
1..Lobj

), where

wsubj
1..Lsubj

and wobj
1..Lobj

are a multi-word expres-
sions representing the subject and object with se-
quence lengths Lsubj and Lobj , and wrel

0 is a word
token corresponding to a relation.3 As a result
of fact encoding, we obtain a separate knowledge
memory for each instance in the data.

To encode the knowledge we use a BiGRU to
encode the triple argument tokens into the follow-
ing context-encoded representations:

fsubjlast = BiGRU(Emb(wsubj
1..Lsubj

), 0) (7)

f rellast = BiGRU(Emb(wrel
0 ), fsubjlast ) (8)

fobjlast = BiGRU(Emb(wobj
1..Lsubj

), f rellast) (9)

, where fsubjlast , f rellast, f
obj
last are the final hidden

states of the context encoder BiGRU , that are
also used as initial representations for the encod-
ing of the next triple attribute in left-to-right order.
See Supplement for comprehensive visualizations.
The motivation behind this encoding is: (i) We
encode the knowledge fact attributes in the same
vector space as the plain tokens; (ii) we preserve
the triple directionality; (iii) we use the relation
type as a way of filtering the subject information
to initialize the object.

Querying the Knowledge Memory. To en-
rich the context representation of the document
and question tokens with the facts collected in
the knowledge memory, we select a single sum of
weighted fact representations for each token using
Key-Value retrieval (Miller et al., 2016). In our
model the key Mk(ey)

i can be either fsubjlast or fobjlast

and the value Mv(alue)
i is fobjlast.

For each context-encoded token cctxsi (s = d, q;
i the token index) we attend over all knowledge

3The 0 in wrel
0 indicates that we encode the relation as a

single relation type word. Ex. /r/IsUsedFor.

memory keys Mk
i in the retrieved P knowledge

facts. We use an attention function Att, scale the
scalar attention value using softmax, multiply it
with the value representation Mv

i and sum the re-
sult into a single vector value representation cknsi :

cknsi =
∑

softmax(Att(cctx,Mk
1..P ))

TMv
1..P

(10)
Att is a dot product, but it can be replaced with

another attention function. As a result of this op-
eration, the context token representation cctxsi and
the corresponding retrieved knowledge cknsi are in
the same vector space ∈ R2h.

Combine Context and Knowledge (ctx+kn).
We combine the original context token representa-
tion cctxsi , with the acquired knowledge representa-
tion cknsi to obtain cctx+kn

si :

cctx+kn
si = γcctxsi + (1− γ)cknsi (11)

, where γ = 0.5. We keep γ static but it can be
replaced with a gating function.

Answer Prediction: Qctx(+kn) to Dctx(+kn).
To rank answer candidates a1..aL we use attention
sum similar to Eq.5 over an attention αensemble

ij
that combines attentions between context (ctx)
and context+knowledge (ctx+kn) representations
of the question (rctx(+kn)

q ) and candidate token oc-
currences aij in the document cctx(+kn)

dj
:

P (ai|q, d) = softmax(
∑

αensemble
ij ) (12)

αensemble
ij =

W1Att(r
ctx
q , cctxdj

)

+W2Att(r
ctx
q , cctx+kn

dj
)

+W3Att(r
ctx+kn
q , cctxdj

)

+W4Att(r
ctx+kn
q , cctx+kn

dj
)

(13)

, where j is an index pointer from the list of
indices that point to the candidate ai token oc-
currences in the document context representation
c
ctx(+kn)
d . W1..4 are scalar weights initialized with
1.0 and optimized during training.4 We pro-
pose the combination of ctx and ctx + kn atten-
tions because our task does not provide supervi-
sion whether the knowledge is needed or not.

4An example for learned W1..4 is (2.13, 1.41, 1.49, 1.84)
in setting (CBT CN, CN5Sel, Subj-Obj as k-v, 50 facts).
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CN NE
Train 120,769 / 470 108,719 / 433

Dev 2,000 / 448 2,000 / 412
Test 2,500 / 461 2,500 / 424

Vocab 53,185 53,063

Table 1: Characteristics of Children Book Test
datasets. CN: Common Nouns, NE: Named En-
tities. Cells for Train, Dev, Test show overall num-
bers of examples and average story size in tokens.

3 Data and Task Description

We experiment with knowledge-enhanced cloze-
style reading comprehension using the Common
Nouns and Named Entities partitions of the Chil-
dren’s Book Test (CBT) dataset (Hill et al., 2015).

In the CBT cloze-style task a system is asked to
read a children story context of 20 sentences. The
following 21st sentence involves a placeholder to-
ken that the system needs to predict, by choosing
from a given set of 10 candidate words from the
document. An example with suggested external
knowledge facts is given in Figure 1. While in
its Common Nouns setup, the task can be consid-
ered as a language modeling task, Hill et al. (2015)
show that humans can answer the questions with-
out the full context with an accuracy of only 64.4%
and a language model alone with 57.7%. By con-
trast, the human performance when given the full
context is at 81.6%. Since the best neural model
(Munkhdalai and Yu, 2016) achieves only 72.0%
on the task, we hypothesize that the task itself can
benefit from external knowledge. The characteris-
tics of the data are shown in Table 1.

Other popular cloze-style datasets such as
CNN/Daily Mail (Hermann et al., 2015) or Who-
DidWhat (Onishi et al., 2016) are mainly focu-
sed on finding Named Entities where the benefit
of adding commonsense knowledge (as we show
for the NE part of CBT) would be more limited.

Knowledge Source. As a source of common-
sense knowledge we use the Open Mind Com-
mon Sense part of ConceptNet 5.0 that contains
630k fact triples. We refer to this entire source as
CN5All. We conduct experiments with subparts of
this data: CN5WN3 which is the WordNet 3 part of
CN5All (213k triples) and CN5Sel, which excludes
the following WordNet relations: RelatedTo, IsA,
Synonym, SimilarTo, HasContext.

4 Related Work

Cloze-Style Reading Comprehension. Follow-
ing the original MCTest (Richardson et al., 2013)
dataset multiple-choice version of cloze-style RC)
recently several large-scale, automatically gener-
ated datasets for cloze-style reading comprehen-
sion gained a lot of attention, among others the
‘CNN/Daily Mail’ (Hermann et al., 2015; On-
ishi et al., 2016) and the Children’s Book Test
(CBTest) data set (Hill et al., 2015). Early work in-
troduced simple but good single turn models (Her-
mann et al., 2015; Kadlec et al., 2016; Chen et al.,
2016), that read the document once with the ques-
tion representation ‘in mind’ and select an answer
from a given set of candidates. More complex
models (Weston et al., 2015; Dhingra et al., 2017;
Cui et al., 2017; Munkhdalai and Yu, 2016; Sor-
doni et al., 2016) perform multi-turn reading of the
story context and the question, before inferring the
correct answer or use features (GA Reader, Dhin-
gra et al. (2017). Performing multiple hops and
modeling a deeper relation between question and
document was further developed by several mod-
els (Seo et al., 2017; Xiong et al., 2016; Wang
et al., 2016, 2017; Shen et al., 2016) on another
generation of RC datasets, e.g. SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2017) or
TriviaQA (Joshi et al., 2017).

Integrating Background Knowledge in Neural
Models. Integrating background knowledge in a
neural model was proposed in the neural-checklist
model by Kiddon et al. (2016) for text genera-
tion of recipes. They copy words from a list of
ingredients instead of inferring the word from a
global vocabulary. Ahn et al. (2016) proposed a
language model that copies fact attributes from
a topic knowledge memory. The model predicts
a fact in the knowledge memory using a gating
mechanism and given this fact, the next word to
be selected is copied from the fact attributes. The
knowledge facts are encoded using embeddings
obtained using TransE (Bordes et al., 2013). Yang
et al. (2017) extended a seq2seq model with atten-
tion to external facts for dialogue and recipe gen-
eration and a co-reference resolution-aware lan-
guage model. A similar model was adopted by He
et al. (2017) for answer generation in dialogue. In-
corporating external knowledge in a neural model
has proven beneficial for several other tasks: Yang
and Mitchell (2017) incorporated knowledge di-
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rectly into the LSTM cell state to improve event
and entity extraction. They used knowledge em-
beddings trained on WordNet (Miller et al., 1990)
and NELL (Mitchell et al., 2015) using the BILIN-
EAR (Yang et al., 2014) model.

Work similar to ours is by Long et al. (2017),
who have introduced a new task of Rare Entity
Prediction. The task is to read a paragraph from
WikiLinks (Singh et al., 2012) and to fill a blank
field in place of a missing entity. Each miss-
ing entity is characterized with a short description
derived from Freebase, and the system needs to
choose one from a set of pre-selected candidates
to fill the field. While the task is superficially sim-
ilar to cloze-style reading comprehension, it dif-
fers considerably: first, when considering the text
without the externally provided entity information,
it is clearly ambiguous. In fact, the task is more
similar to Entity Linking tasks in the Knowledge
Base Population (KBP) tracks at TAC 2013-2017,
which aim at detecting specific entities from Free-
base. Our work, by contrast, examines the impact
of injecting external knowledge in a reading com-
prehension, or NLU task, where the knowledge
is drawn from a commonsense knowledge base,
ConceptNet in our case. Another difference is
that in their setup, the reference knowledge for the
candidates is explicitly provided as a single, fixed
set of knowledge facts (the entity description), en-
coded in a single representation. In our work, we
are retrieving (typically) distinct sets of knowl-
edge facts that might (or might not) be relevant for
understanding the story and answering the ques-
tion. Thus, in our setup, we crucially depend on
the ability of the attention mechanism to retrieve
relevant pieces of knowledge. Our aim is to exam-
ine to what extent commonsense knowledge can
contribute to and improve the cloze-style RC task,
that in principle is supposed to be solvable without
explicitly given additional knowledge. We show
that by integrating external commonsense knowl-
edge we achieve clear improvements in reading
comprehension performance over a strong base-
line, and thus we can speculate that humans, when
solving this RC task, are similarly using common-
sense knowledge as implicitly understood back-
ground knowledge.

Recent unpublished work in Weissenborn et al.
(2017) is driven by similar intentions. The au-
thors exploit knowledge from ConceptNet to im-
prove the performance of a reading comprehen-

sion model, experimenting on the recent SQuAD
(Rajpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017) datasets. While the source of the back-
ground knowledge is the same, the way of inte-
grating this knowledge into the model and task is
different. (i) We are using attention to select un-
ordered fact triples using key-value retrieval and
(ii) we integrate the knowledge that is consid-
ered relevant explicitly for each token in the con-
text. The model of Weissenborn et al. (2017), by
contrast, explicitly reads the acquired additional
knowledge sequentially after reading the docu-
ment and question, but transfers the background
knowledge implicitly, by refining the word embed-
dings of the words in the document and the ques-
tion with the words from the supporting knowl-
edge that share the same lemma. In contrast to
the implicit knowledge transfer of Weissenborn
et al. (2017), our explicit attention over exter-
nal knowledge facts can deliver insights about the
used knowledge and how it interacts with specific
context tokens (see Section 6).

5 Experiments and Results

We perform quantitative analysis through experi-
ments. We study the impact of the used knowl-
edge and different model components that employ
the external knowledge. Some of the experiments
below focus only on the Common Nouns (CN)
dataset, as it has been shown to be more challeng-
ing than Named Entities (NE) in prior work.

5.1 Model Parameters
We experiment with different model parameters.

Number of facts. We explore different sizes of
knowledge memories, in terms of number of ac-
quired facts. If not stated otherwise, we use 50
facts per example.

Key-Value Selection Strategy. We use two
strategies for defining key and value (Key/Value):
Subj/Obj and Obj/Obj, where Subj and Obj are the
subject and object attributes in the fact triples and
they are selected as Key and Value for the KV
memory (see Section 2.2, Querying the Knowl-
edge Memory). If not stated otherwise, we use the
Subj/Obj strategy.

Answer Selection Components. If not stated
otherwise, we use ensemble attention αensemble

(combinations of ctx and ctx+kn) to rank the an-
swers. We call this our Full model (see Sec. 2.2).
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Source Dev Test
CN5All 71.40 66.72
CN5WN3 (WN3) 70.70 68.48
CN5Sel(ected) 71.85 67.64

Table 2: Results with different knowledge sources,
for CBT-CN (Full model, 50 facts).

# facts 50 100 200 500
Dev 71.85 71.35 71.40 71.20
Test 67.64 67.44 68.12 67.24

Table 3: Results for CBT (CN) with different num-
bers of facts. (Full model, CN5Sel)

Hyper-parameters. For our experiments we use
pre-trained Glove (Pennington et al., 2014) em-
beddings, BiGRU with hidden size 256, batch
size of 64 and learning reate of 0.001 as they were
shown (Kadlec et al., 2016) to perform good on
the AS Reader.

5.2 Empirical Results

We perform experiments with the different model
parameters described above. We report accuracy
on the Dev and Test and use the results on Dev set
for pruning the experiments.

Knowledge Sources. We experiment with dif-
ferent configuration of ConceptNet facts (see Sec-
tion 3). Results on the CBT CN dataset are shown
in Table 2. CN5Sel works best on the Dev set but
CN5WN3 works much better on Test. Further ex-
periments use the CN5Sel setup.

Number of facts. We further experiment with
different numbers of facts on the Common Nouns
dataset (Table 3). The best result on the Dev set is
for 50 facts so we use it for further experiments.

Component ablations. We ensemble the atten-
tions from different combinations of the inter-
action between the question and document con-
text (ctx) representations and context+knowledge
(ctx+kn) representations in order to infer the right
answer (see Section 2.2, Answer Ranking).

Table 4 shows that the combination of differ-
ent interactions between ctx and ctx+kn represen-
tations leads to clear improvement over the w/o
knowledge setup, in particular for the Common
Nouns dataset. We also performed ablations for
a model with 100 facts (see Supplement).

Key-Value Selection Strategy. Table 5 shows
that for the NE dataset, the two strategies perform

NE CN
Drepr to Qrepr interaction Dev Test Dev Test
Dctx, Qctx (w/o know) 75.50 70.30 68.20 64.80
Dctx+kn, Qctx+kn 76.45 69.68 70.85 66.32
Dctx, Qctx+kn 77.10 69.72 70.80 66.32
Dctx+kn, Qctx 75.65 70.88 71.20 67.96
Full model 76.80 70.24 71.85 67.64
w/o Dctx, Qctx 75.95 70.24 70.65 67.12
w/o Dctx+kn, Qctx+kn 76.20 69.80 70.75 67.00
w/o Dctx, Qctx+kn 76.55 70.52 71.75 66.32
w/o Dctx+kn, Qctx 76.05 70.84 70.80 66.80

Table 4: Results for different combinations of in-
teractions between document (D) and question (Q)
context (ctx) and context + knowledge (ctx+kn)
representations. (CN5Sel, 50 facts)

NE CN
Key/Value Dev Test Dev Test
Subj/Obj 76.65 71.52 71.85 67.64
Obj/Obj 76.70 71.28 71.25 67.48

Table 5: Results for key-value knowledge retrieval
and integration. (CN5Sel, 50 facts). Subj/Obj
means: we attend over the fact subject (Key) and
take the weighted fact object as value (Value).

NE CN
Models dev test dev test

Human (ctx + q) - 81.6 - 81.6
Single interaction

LSTMs (ctx + q) (Hill et al., 2015) 51.2 41.8 62.6 56.0
AS Reader 73.8 68.6 68.8 63.4
AS Reader (our impl) 75.5 70.3 68.2 64.8
KnReader (ours) 77.4 71.4 71.8 67.6

Multiple interactions
MemNNs (Weston et al., 2015) 70.4 66.6 64.2 63.0
EpiReader (Trischler et al., 2016) 74.9 69.0 71.5 67.4
GA Reader (Dhingra et al., 2017) 77.2 71.4 71.6 68.0
IAA Reader (Sordoni et al., 2016) 75.3 69.7 72.1 69.2
AoA Reader (Cui et al., 2017) 75.2 68.6 72.2 69.4
GA Reader (+feat) 77.8 72.0 74.4 70.7
NSE (Munkhdalai and Yu, 2016) 77.0 71.4 74.3 71.9

Table 6: Comparison of KnReader to existing end-
to-end neural models on the benchmark datasets.

equally well on the Dev set, whereas the Subj/Obj
strategy works slightly better on the Test set. For
Common Nouns, Subj/Obj is better.

Comparison to Previous Work. Table 6 com-
pares our model (Knowledgeable Reader) to pre-
vious work on the CBT datasets. We show the
results of our model with the settings that per-
formed best on the Dev sets of the two datasets
NE and CN: for NE, (Dctx+kn, Qctx) with 100
facts; for CN the Full model with 50 facts, both
with CN5Sel.

Note that our work focuses on the impact of
external knowledge and employs a single inter-



828

action (single-hop) between the document context
and the question so we primarily compare to and
aim at improving over similar models. KnReader
clearly outperforms prior single-hop models on
both datasets. While we do not improve over the
state of the art, our model stands well among other
models that perform multiple hops. In the Supple-
ment we also give comparison to ensemble models
and some models that use re-ranking strategies.

6 Discussion and Analysis

6.1 Analysis of the empirical results.

Our experiments examined key parameters of the
KnReader. As expected, injection of background
knowledge yields only small improvements over
the baseline model for Named Entities. However,
on this dataset our single-hop model is competitive
to most multi-hop neural architectures.

The integration of knowledge clearly helps for
the Common Nouns task. The impact of knowl-
edge sources (Table 2) is different on the Dev and
Test sets which indicates that either the model or
the data subsets are sensitive to different knowl-
edge types and retrieved knowledge. Table 5
shows that attending over the Subj of the knowl-
edge triple is slightly better than Obj. This shows
that using a Key-Value memory is valuable. A rea-
son for lower performance of Obj/Obj is that the
model picks facts that are similar to the candidate
tokens, not adding much new information. From
the empirical results we see that training and eval-
uation with less facts is slightly better. We hypoth-
esize that this is related to the lack of supervision
on the retrieved and attended knowledge.

6.2 Interpreting Component Importance

Figure 3 shows the impact on prediction accu-
racy of individual components of the Full model,
including the interaction between D and Q with
ctx or ctx + kn (w/o ctx-only). The values for
each component are obtained from the attention
weights, without retraining the model. The differ-
ence between blue (left) and orange (right) values
indicates how much the module contributes to the
model. Interestingly, the ranking of the contribu-
tion (Dctx, Qctx+kn > Dctx+kn, Qctx > Dctx+kn,
Qctx+kn) corresponds to the component impor-
tance ablation on the Dev set, lines 5-8, Table 4.

0
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250

Subj/Obj,	  50	  facts

incorrect	  -‐>	  correct

0

50

100

150

200

250

Obj/Obj,	  50	  facts

correct	  -‐>	  incorrect

Figure 3: # of items with reversed prediction
(±correct) for each combination of (ctx+kn, ctx)
for Q and D. We report the number of wrong
→ correct (blue) and correct → wrong (orange)
changes when switching from score w/o knowl-
edge to score w/ knowledge. The best model type
is Ensemble. (Full model w/o Dctx, Qctx).

6.3 Qualitative Data Investigation

We will use the attention values of the interactions
between Dctx(+kn) and Qctx(+kn) and attentions
to facts from each candidate token and the ques-
tion placeholder to interpret how knowledge is em-
ployed to make a prediction for a single example.

Method: Interpreting Model Components.
We manually inspect examples from the evalu-
ation sets where KnReader improves prediction
(blue (left) category, Fig. 3) or makes the predic-
tion worse (orange (right) category, Fig. 3). Figure
4 shows the question with placeholder, followed
by answer candidates and their associated atten-
tion weights as assigned by the model w/o knowl-
edge. The matrix shows selected facts and their as-
signed weights for the question and the candidate
tokens. Finally, we show the attention weights de-
termined by the knowledge-enhanced D to Q inter-
actions. The attention to the correct answer (head)
is low when the model considers the text alone
(w/o knowledge). When adding retrieved knowl-
edge to theQ only (row ctx, ctx+kn) and to both
Q and D (row ctx + kn, ctx + kn) the score im-
proves, while when adding knowledge to D alone
(row ctx+ kn, ctx) the score remains ambiguous.
The combined score Ensemble (see Eq. 13) then
takes the final decision for the answer. In this ex-
ample, the question can be answered without the
story. The model tries to find knowledge that is
related to eyes. The fact eyes /r/PartOf head is
not contained in the retrieved knowledge but in-
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bird head legs sides wood
Dctx, Qctx (w/o know) 0.00 0.26 0.40 0.33 0.02

Q: UNK_59 did not say anything ; but when the other two had
passed on she bent down to the bird , brushed aside the

feathers from his xxxxx , and kissed his closed eyes gently
.

0.0
0.4

Q

bi
rd

he
ad

le
gs

si
de

s

w
oo

d

bird /r/PartOf bird

beak /r/PartOf bird

wing /r/PartOf bird

a bird /r/UsedFor testing air
in a mine

bird /r/CapableOf head south

a bird /r/CapableOf sing to
other birds

head /r/PartOf animal

basilar artery /r/PartOf head

ear /r/PartOf head

porch /r/PartOf house

a bird /r/HasA two legs

wood /r/Antonym fire

spite /r/DistinctFrom like

wood /r/AtLocation a fire

wood /r/DistinctFrom carpet

0.2

0.4

0.6

0.8

bird head legs sides wood
Ensemble

Dctx + kn, Qctx

        Dctx + kn, Qctx + kn

Dctx, Qctx + kn

0.02 0.70 0.12 0.05 0.02
0.01 0.36 0.37 0.23 0.03
0.07 0.68 0.19 0.02 0.01
0.01 0.83 0.13 0.01 0.00

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 4: Interpreting the components of Kn-
Reader. Adding knowledge to Q and D increases
the score for the correct answer. Results for top
5 candidates are shown. (Full model, CN data,
CN5Sel, Subj/Obj, 50 facts)

stead the model selects the fact ear /r/PartOf head
which receives the highest attention from Q. The
weighted Obj representation (head) is added to the
question with the highest weight, together with an-
imal and bird from the next highly weighted facts
This results in a high score for theQctx toDctx+kn

interaction with candidate head. See Supplement
for more details.

Using the method described above, we analyze
several example cases (presented in Supplement)
that highlight different aspects of our model. Here
we summarize our observations.

(i.) Answer prediction from Q or Q+D. In
both human and machine RC, questions can be an-
swered based on the question alone (Figure 4) or
jointly with the story context (Case 2, Suppl.). We
show that empirically, enriching the question with
knowledge is crucial for the first type, while en-
richment of Q and D is required for the second.

(ii.) Overcoming frequency bias.. We show

that when appropriate knowledge is available and
selected, the model is able to correct a frequency
bias towards an incorrect answer (Cases 1 and 3).

(iii.) Providing appropriate knowledge. We
observe a lack of knowledge regarding events (e.g.
take off vs. put on clothes, Case 2; climb up, Case
5). Nevertheless relevant knowledge from CN5
can help predicting infrequent candidates (Case 2).

(iv.) Knowledge, Q and D encoding. The con-
text encoding of facts allows the model to detect
knowledge that is semantically related, but not sur-
face near to phrases in Q and D (Case 2). The
model finds facts to non-trivial paraphrases (e.g.
undressed–naked, Case 2).

7 Conclusion and Future Work

We propose a neural cloze-style reading com-
prehension model that incorporates external com-
monsense knowledge, building on a single-turn
neural model. Incorporating external knowledge
improves its results with a relative error rate re-
duction of 9% on Common Nouns, thus the model
is able to compete with more complex RC mod-
els. We show that the types of knowledge con-
tained in ConceptNet are useful. We provide quan-
titative and qualitative evidence of the effective-
ness of our model, that learns how to select rel-
evant knowledge to improve RC. The attractive-
ness of our model lies in its transparency and flex-
ibility: due to the attention mechanism, we can
trace and analyze the facts considered in answer-
ing specific questions. This opens up for deeper
investigation and future improvement of RC mod-
els in a targeted way, allowing us to investigate
what knowledge sources are required for different
data sets and domains. Since our model directly
integrates background knowledge with the docu-
ment and questioncontext representations, it can
be adapted to very different task settings where
we have a pair of two arguments (i.e. entailment,
question answering, etc.) In future work, we will
investigate even tighter integration of the attended
knowledge and stronger reasoning methods.
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Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
908–918. Association for Computational Linguis-
tics.
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