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Abstract

An accurate abstractive summary of a doc-
ument should contain all its salient infor-
mation and should be logically entailed by
the input document. We improve these
important aspects of abstractive summa-
rization via multi-task learning with the
auxiliary tasks of question generation and
entailment generation, where the former
teaches the summarization model how to
look for salient questioning-worthy de-
tails, and the latter teaches the model
how to rewrite a summary which is a
directed-logical subset of the input doc-
ument. We also propose novel multi-
task architectures with high-level (seman-
tic) layer-specific sharing across multi-
ple encoder and decoder layers of the
three tasks, as well as soft-sharing mech-
anisms (and show performance ablations
and analysis examples of each contribu-
tion). Overall, we achieve statistically sig-
nificant improvements over the state-of-
the-art on both the CNN/DailyMail and
Gigaword datasets, as well as on the DUC-
2002 transfer setup. We also present sev-
eral quantitative and qualitative analysis
studies of our model’s learned saliency
and entailment skills.

1 Introduction

Abstractive summarization is the challenging
NLG task of compressing and rewriting a docu-
ment into a short, relevant, salient, and coherent
summary. It has numerous applications such as
summarizing storylines, event understanding, etc.
As compared to extractive or compressive sum-
marization (Jing and McKeown, 2000; Knight and

∗ Equal contribution.

Marcu, 2002; Clarke and Lapata, 2008; Filippova
et al., 2015; Henß et al., 2015), abstractive sum-
maries are based on rewriting as opposed to se-
lecting. Recent end-to-end, neural sequence-to-
sequence models and larger datasets have allowed
substantial progress on the abstractive task, with
ideas ranging from copy-pointer mechanism and
redundancy coverage, to metric reward based re-
inforcement learning (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017).

Despite these strong recent advancements, there
is still a lot of scope for improving the summary
quality generated by these models. A good rewrit-
ten summary is one that contains all the salient
information from the document, is logically fol-
lowed (entailed) by it, and avoids redundant infor-
mation. The redundancy aspect was addressed by
coverage models (Suzuki and Nagata, 2016; Chen
et al., 2016; Nallapati et al., 2016; See et al., 2017),
but we still need to teach these models about how
to better detect salient information from the in-
put document, as well as about better logically-
directed natural language inference skills.

In this work, we improve abstractive text sum-
marization via soft, high-level (semantic) layer-
specific multi-task learning with two relevant aux-
iliary tasks. The first is that of document-to-
question generation, which teaches the summa-
rization model about what are the right questions
to ask, which in turn is directly related to what the
salient information in the input document is. The
second auxiliary task is a premise-to-entailment
generation task to teach it how to rewrite a sum-
mary which is a directed-logical subset of (i.e.,
logically follows from) the input document, and
contains no contradictory or unrelated informa-
tion. For the question generation task, we use the
SQuAD dataset (Rajpurkar et al., 2016), where
we learn to generate a question given a sentence
containing the answer, similar to the recent work
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by Du et al. (2017). Our entailment generation
task is based on the recent SNLI classification
dataset and task (Bowman et al., 2015), converted
to a generation task (Pasunuru and Bansal, 2017).

Further, we also present novel multi-task learn-
ing architectures based on multi-layered encoder
and decoder models, where we empirically show
that it is substantially better to share the higher-
level semantic layers between the three afore-
mentioned tasks, while keeping the lower-level
(lexico-syntactic) layers unshared. We also ex-
plore different ways to optimize the shared pa-
rameters and show that ‘soft’ parameter sharing
achieves higher performance than hard sharing.

Empirically, our soft, layer-specific sharing
model with the question and entailment genera-
tion auxiliary tasks achieves statistically signif-
icant improvements over the state-of-the-art on
both the CNN/DailyMail and Gigaword datasets.
It also performs significantly better on the DUC-
2002 transfer setup, demonstrating its strong gen-
eralizability as well as the importance of auxiliary
knowledge in low-resource scenarios. We also re-
port improvements on our auxiliary question and
entailment generation tasks over their respective
previous state-of-the-art. Moreover, we signif-
icantly decrease the training time of the multi-
task models by initializing the individual tasks
from their pretrained baseline models. Finally, we
present human evaluation studies as well as de-
tailed quantitative and qualitative analysis studies
of the improved saliency detection and logical in-
ference skills learned by our multi-task model.

2 Related Work

Automatic text summarization has been progres-
sively improving over the time, initially more fo-
cused on extractive and compressive models (Jing
and McKeown, 2000; Knight and Marcu, 2002;
Clarke and Lapata, 2008; Filippova et al., 2015;
Kedzie et al., 2015), and moving more towards
compressive and abstractive summarization based
on graphs and concept maps (Giannakopoulos,
2009; Ganesan et al., 2010; Falke and Gurevych,
2017) and discourse trees (Gerani et al., 2014),
syntactic parse trees (Cheung and Penn, 2014;
Wang et al., 2013), and Abstract Meaning Repre-
sentations (AMR) (Liu et al., 2015; Dohare and
Karnick, 2017). Recent work has also adopted
machine translation inspired neural seq2seq mod-
els for abstractive summarization with advances

in hierarchical, distractive, saliency, and graph-
attention modeling (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016; Chen et al.,
2016; Tan et al., 2017). Paulus et al. (2018)
and Henß et al. (2015) incorporated recent ad-
vances from reinforcement learning. Also, See
et al. (2017) further improved results via pointer-
copy mechanism and addressed the redundancy
with coverage mechanism.

Multi-task learning (MTL) is a useful paradigm
to improve the generalization performance of a
task with related tasks while sharing some com-
mon parameters/representations (Caruana, 1998;
Argyriou et al., 2007; Kumar and Daumé III,
2012). Several recent works have adopted MTL
in neural models (Luong et al., 2016; Misra
et al., 2016; Hashimoto et al., 2017; Pasunuru and
Bansal, 2017; Ruder et al., 2017; Kaiser et al.,
2017). Moreover, some of the above works have
investigated the use of shared vs unshared sets of
parameters. On the other hand, we investigate the
importance of soft parameter sharing and high-
level versus low-level layer-specific sharing.

Our previous workshop paper (Pasunuru et al.,
2017) presented some preliminary results for
multi-task learning of textual summarization with
entailment generation. This current paper has
several major differences: (1) We present ques-
tion generation as an additional effective auxil-
iary task to enhance the important complemen-
tary aspect of saliency detection; (2) Our new
high-level layer-specific sharing approach is sig-
nificantly better than alternative layer-sharing ap-
proaches (including the decoder-only sharing by
Pasunuru et al. (2017)); (3) Our new soft shar-
ing parameter approach gives stat. significant
improvements over hard sharing; (4) We pro-
pose a useful idea of starting multi-task mod-
els from their pretrained baselines, which sig-
nificantly speeds up our experiment cycle1; (5)
For evaluation, we show diverse improvements
of our soft, layer-specific MTL model (over
state-of-the-art pointer+coverage baselines) on the
CNN/DailyMail, Gigaword, as well as DUC
datasets; we also report human evaluation plus
analysis examples of learned saliency and entail-
ment skills; we also report improvements on the
auxiliary question and entailment generation tasks
over their respective previous state-of-the-art.

1About 4-5 days for Pasunuru et al. (2017) approach vs.
only 10 hours for us. This will allow the community to try
many more multi-task training and tuning ideas faster.
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In our work, we use a question generation task
to improve the saliency of abstractive summariza-
tion in a multi-task setting. Using the SQuAD
dataset (Rajpurkar et al., 2016), we learn to gen-
erate a question given the sentence containing the
answer span in the comprehension (similar to Du
et al. (2017)). For the second auxiliary task of en-
tailment generation, we use the generation version
of the RTE classification task (Dagan et al., 2006;
Lai and Hockenmaier, 2014; Jimenez et al., 2014;
Bowman et al., 2015). Some previous work has
explored the use of RTE for redundancy detec-
tion in summarization by modeling graph-based
relationships between sentences to select the most
non-redundant sentences (Mehdad et al., 2013;
Gupta et al., 2014), whereas our approach is based
on multi-task learning.

3 Models

First, we introduce our pointer+coverage baseline
model and then our two auxiliary tasks: question
generation and entailment generation (and finally
the multi-task learning models in Sec. 4).

3.1 Baseline Pointer+Coverage Model
We use a sequence-attention-sequence model with
a 2-layer bidirectional LSTM-RNN encoder and
a 2-layer uni-directional LSTM-RNN decoder,
along with Bahdanau et al. (2015) style attention.
Let x = {x1, x2, ..., xm} be the source document
and y = {y1, y2, ..., yn} be the target summary.
The output summary generation vocabulary dis-
tribution conditioned over the input source doc-
ument is Pv(y|x; θ) =

∏n
t=1 pv(yt|y1:t−1, x; θ).

Let the decoder hidden state be st at time step t
and let ct be the context vector which is defined as
a weighted combination of encoder hidden states.
We concatenate the decoder’s (last) RNN layer
hidden state st and context vector ct and apply a
linear transformation, and then project to the vo-
cabulary space by another linear transformation.
Finally, the conditional vocabulary distribution at
each time step t of the decoder is defined as:

pv(yt|y1:t−1, x; θ) = sfm(Vp(Wf [st; ct]+bf )+bp)
(1)

where, Wf , Vp, bf , bp are trainable parameters,
and sfm(·) is the softmax function.

Pointer-Generator Networks Pointer mecha-
nism (Vinyals et al., 2015) helps in directly copy-
ing the words from the source sequence during tar-
get sequence generation, which is a good fit for a

task like summarization. Our pointer mechanism
approach is similar to See et al. (2017), who use
a soft switch based on the generation probability
pg = σ(Wgct+Ugst+Vgewt−1+bg), where σ(·) is
a sigmoid function, Wg, Ug, Vg and bg are param-
eters learned during training. ewt−1 is the previous
time step output word embedding. The final word
distribution is Pf (y) = pg ·Pv(y)+(1−pg)·Pc(y),
where Pv vocabulary distribution is as shown in
Eq. 1, and copy distribution Pc is based on the at-
tention distribution over source document words.

Coverage Mechanism Following previous
work (See et al., 2017), coverage helps alleviate
the issue of word repetition while generating
long summaries. We maintain a coverage vector
ĉt =

∑t−1
t=0 αt that sums over all of the previous

time steps attention distributions αt, and this is
added as input to the attention mechanism. Cov-
erage loss is Lcov(θ) =

∑
t

∑
imin(αt,i, ĉt,i).

Finally, the total loss is a weighted combination
of cross-entropy loss and coverage loss:

L(θ) = − logPf (y) + λLcov(θ) (2)

where λ is a tunable hyperparameter.

3.2 Two Auxiliary Tasks

Despite the strengths of the strong model de-
scribed above with attention, pointer, and cover-
age, a good summary should also contain max-
imal salient information and be a directed log-
ical entailment of the source document. We
teach these skills to the abstractive summarization
model via multi-task training with two related aux-
iliary tasks: question generation task and entail-
ment generation.

Question Generation The task of question gen-
eration is to generate a question from a given in-
put sentence, which in turn is related to the skill
of being able to find the important salient infor-
mation to ask questions about. First the model
has to identify the important information present
in the given sentence, then it has to frame (gener-
ate) a question based on this salient information,
such that, given the sentence and the question, one
has to be able to predict the correct answer (salient
information in this case). A good summary should
also be able to find and extract all the salient
information in the given source document, and
hence we incorporate such capabilities into our ab-
stractive text summarization model by multi-task
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learning it with a question generation task, shar-
ing some common parameters/representations (see
more details in Sec. 4). For setting up the ques-
tion generation task, we follow Du et al. (2017)
and use the SQuAD dataset to extract sentence-
question pairs. Next, we use the same sequence-
to-sequence model architecture as our summariza-
tion model. Note that even though our question
generation task is generating one question at a
time2, our multi-task framework (see Sec. 4) is set
up in such a way that the sentence-level knowledge
from this auxiliary task can help the document-
level primary (summarization) task to generate
multiple salient facts – by sharing high-level se-
mantic layer representations. See Sec. 7 and Ta-
ble 10 for a quantitative evaluation showing that
the multi-task model can find multiple (and more)
salient phrases in the source document. Also see
Sec. 7 (and supp) for challenging qualitative ex-
amples where baseline and SotA models only re-
cover a small subset of salient information but our
multi-task model with question generation is able
to detect more of the important information.

Entailment Generation The task of entailment
generation is to generate a hypothesis which is
entailed by (or logically follows from) the given
premise as input. In summarization, the gen-
eration decoder also needs to generate a sum-
mary that is entailed by the source document,
i.e., does not contain any contradictory or unre-
lated/extraneous information as compared to the
input document. We again incorporate such infer-
ence capabilities into the summarization model via
multi-task learning, sharing some common repre-
sentations/parameters between our summarization
and entailment generation model (more details in
Sec. 4). For this task, we use the entailment-
labeled pairs from the SNLI dataset (Bowman
et al., 2015) and set it up as a generation task
(using the same strong model architecture as our
abstractive summarization model). See Sec. 7
and Table 9 for a quantitative evaluation showing
that the multi-task model is better entailed by the
source document and has fewer extraneous facts.
Also see Sec. 7 and supplementary for qualitative
examples of how our multi-task model with the
entailment auxiliary task is able to generate more
logically-entailed summaries than the baseline and

2We also tried to generate all the questions at once from
the full document, but we obtained low accuracy because of
this task’s challenging nature and overall less training data.
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Figure 1: Overview of our multi-task model with
parallel training of three tasks: abstractive sum-
mary generation (SG), question generation (QG),
and entailment generation (EG). We share the
‘blue’ color representations across all the three
tasks, i.e., second layer of encoder, attention pa-
rameters, and first layer of decoder.

SotA models, which instead produce extraneous,
unrelated words not present (in any paraphrased
form) in the source document.

4 Multi-Task Learning

We employ multi-task learning for parallel train-
ing of our three tasks: abstractive summariza-
tion, question generation, and entailment genera-
tion. In this section, we describe our novel layer-
specific, soft-sharing approaches and other multi-
task learning details.

4.1 Layer-Specific Sharing Mechanism

Simply sharing all parameters across the related
tasks is not optimal, because models for differ-
ent tasks have different input and output distribu-
tions, esp. for low-level vs. high-level parameters.
Therefore, related tasks should share some com-
mon representations (e.g., high-level information),
as well as need their own individual task-specific
representations (esp. low-level information). To
this end, we allow different components of model
parameters of related tasks to be shared vs. un-
shared, as described next.
Encoder Layer Sharing: Belinkov et al. (2017)
observed that lower layers (i.e., the layers closer
to the input words) of RNN cells in a seq2seq
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machine translation model learn to represent word
structure, while higher layers (farther from input)
are more focused on high-level semantic mean-
ings (similar to findings in the computer vision
community for image features (Zeiler and Fergus,
2014)). We believe that while textual summa-
rization, question generation, and entailment gen-
eration have different training data distributions
and low-level representations, they can still benefit
from sharing their models’ high-level components
(e.g., those that capture the skills of saliency and
inference). Thus, we keep the lower-level layer
(i.e., first layer closer to input words) of the 2-
layer encoder of all three tasks unshared, while we
share the higher layer (second layer in our model
as shown in Fig. 1) across the three tasks.
Decoder Layer Sharing: Similarly for the de-
coder, lower layers (i.e., the layers closer to the
output words) learn to represent word structure
for generation, while higher layers (farther from
output) are more focused on high-level semantic
meaning. Hence, we again share the higher level
components (first layer in the decoder far from
output as show in Fig. 1), while keeping the lower
layer (i.e., second layer) of decoders of all three
tasks unshared.
Attention Sharing: As described in Sec. 3.1, the
attention mechanism defines an attention distribu-
tion over high-level layer encoder hidden states
and since we share the second, high-level (seman-
tic) layer of all the encoders, it is intuitive to share
the attention parameters as well.

4.2 Soft vs. Hard Parameter Sharing
Hard-sharing: In the most common multi-task
learning hard-sharing approach, the parameters to
be shared are forced to be the same. As a result,
gradient information from multiple tasks will di-
rectly pass through shared parameters, hence forc-
ing a common space representation for all the re-
lated tasks. Soft-sharing: In our soft-sharing
approach, we encourage shared parameters to be
close in representation space by penalizing their
l2 distances. Unlike hard sharing, this approach
gives more flexibility for the tasks by only loosely
coupling the shared space representations. We
minimize the following loss function for the pri-
mary task in soft-sharing approach:

L(θ) = − logPf (y)+λLcov(θ)+γ‖θs−ψs‖ (3)

where γ is a hyperparameter, θ represents the pri-
mary summarization task’s full parameters, while

θs and ψs represent the shared parameter subset
between the primary and auxiliary tasks.

4.3 Fast Multi-Task Training

During multi-task learning, we alternate the mini-
batch optimization of the three tasks, based on a
tunable ‘mixing ratio’ αs : αq : αe; i.e., optimiz-
ing the summarization task for αs mini-batches
followed by optimizing the question generation
task for αq mini-batches, followed by entailment
generation task for αe mini-batches (and for 2-
way versions of this, we only add one auxiliary
task at a time). We continue this process until all
the models converge. Also, importantly, instead
of training from scratch, we start the primary task
(summarization) from a 90%-converged model of
its baseline to make the training process faster. We
observe that starting from a fully-converged base-
line makes the model stuck in a local minimum.
In addition, we also start all auxiliary models
from their 90%-converged baselines, as we found
that starting the auxiliary models from scratch
has a chance to pull the primary model’s shared
parameters towards randomly-initialized auxiliary
model’s shared parameters.

5 Experimental Setup

Datasets: We use CNN/DailyMail dataset (Her-
mann et al., 2015; Nallapati et al., 2016) and
Gigaword (Rush et al., 2015) datasets for sum-
marization, and the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015)
and the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) datasets for our
entailment and question generation tasks, resp.
We also show generalizability/transfer results on
DUC-2002 with our CNN/DM trained models.
Supplementary contains dataset details.
Evaluation Metrics: We use the standard
ROUGE evaluation package (Lin, 2004) for re-
porting the results on all of our summarization
models. Following previous work (Chopra et al.,
2016; Nallapati et al., 2016), we use ROUGE
full-length F1 variant for all our results. Fol-
lowing See et al. (2017), we also report ME-
TEOR (Denkowski and Lavie, 2014) using the
MS-COCO evaluation script (Chen et al., 2015).
Human Evaluation Criteria: We used Amazon
MTurk to perform human evaluation of summary
relevance and readability. We selected human an-
notators that were located in the US, had an ap-
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Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
PREVIOUS WORK

Seq2Seq(50k vocab) (See et al., 2017) 31.33 11.81 28.83 12.03
Pointer (See et al., 2017) 36.44 15.66 33.42 15.35
Pointer+Coverage (See et al., 2017) ? 39.53 17.28 36.38 18.72
Pointer+Coverage (See et al., 2017) † 38.82 16.81 35.71 18.14

OUR MODELS
Two-Layer Baseline (Pointer+Coverage) ⊗ 39.56 17.52 36.36 18.17
⊗ + Entailment Generation 39.84 17.63 36.54 18.61
⊗ + Question Generation 39.73 17.59 36.48 18.33
⊗ + Entailment Gen. + Question Gen. 39.81 17.64 36.54 18.54

Table 1: CNN/DailyMail summarization results. ROUGE scores are full length F-1 (as previous work).
All the multi-task improvements are statistically significant over the state-of-the-art baseline.

Models R-1 R-2 R-L
PREVIOUS WORK

ABS+ (Rush et al., 2015) 29.76 11.88 26.96
RAS-El (Chopra et al., 2016) 33.78 15.97 31.15
lvt2k (Nallapati et al., 2016) 32.67 15.59 30.64
Pasunuru et al. (2017) 32.75 15.35 30.82

OUR MODELS
2-Layer Pointer Baseline ⊗ 34.26 16.40 32.03
⊗ + Entailment Generation 35.45 17.16 33.19
⊗ + Question Generation 35.48 17.31 32.97
⊗ + Entailment + Question 35.98 17.76 33.63

Table 2: Summarization results on Gigaword.
ROUGE scores are full length F-1.

proval rate greater than 95%, and had at least
10,000 approved HITs. For the pairwise model
comparisons discussed in Sec. 6.2, we showed the
annotators the input article, the ground truth sum-
mary, and the two model summaries (randomly
shuffled to anonymize model identities) – we then
asked them to choose the better among the two
model summaries or choose ‘Not-Distinguishable’
if both summaries are equally good/bad. In-
structions for relevance were defined based on
the summary containing salient/important infor-
mation from the given article, being correct
(i.e., avoiding contradictory/unrelated informa-
tion), and avoiding redundancy. Instructions for
readability were based on the summary’s fluency,
grammaticality, and coherence.

Training Details All our soft/hard and layer-
specific sharing decisions were made on the val-
idation/development set. Details of RNN hidden
state sizes, Adam optimizer, mixing ratios, etc. are
provided in the supplementary for reproducibility.

6 Results

6.1 Summarization (Primary Task) Results
Pointer+Coverage Baseline We start from the
strong model of See et al. (2017).3 Table 1 shows

3We use two layers so as to allow our high- versus low-
level layer sharing intuition. Note that this does not increase

that our baseline model performs better than or
comparable to See et al. (2017).4 On Gigaword
dataset, our baseline model (with pointer only,
since coverage not needed for this single-sentence
summarization task) performs better than all pre-
vious works, as shown in Table 2.

Multi-Task with Entailment Generation We
first perform multi-task learning between ab-
stractive summarization and entailment genera-
tion with soft-sharing of parameters as discussed
in Sec. 4. Table 1 and Table 2 shows that this
multi-task setting is better than our strong base-
line models and the improvements are statistically
significant on all metrics5 on both CNN/DailyMail
(p < 0.01 in ROUGE-1/ROUGE-L/METEOR and
p < 0.05 in ROUGE-2) and Gigaword (p < 0.01
on all metrics) datasets, showing that entailment
generation task is inducing useful inference skills
to the summarization task (also see analysis exam-
ples in Sec. 7).

Multi-Task with Question Generation For
multi-task learning with question generation,
the improvements are statistically significant in
ROUGE-1 (p < 0.01), ROUGE-L (p < 0.05), and
METEOR (p < 0.01) for CNN/DailyMail and in
all metrics (p < 0.01) for Gigaword, compared
to the respective baseline models. Also, Sec. 7
presents quantitative and qualitative analysis of
this model’s improved saliency.6

the parameter size much (23M versus 22M for See et al.
(2017)).

4As mentioned in the github for See et al. (2017), their
publicly released pretrained model produces the lower scores
that we represent by † in Table 1.

5Stat. significance is computed via bootstrap test (Noreen,
1989; Efron and Tibshirani, 1994) with 100K samples.

6In order to verify that our improvements were from the
auxiliary tasks’ specific character/capabilities and not just
due to adding more data, we separately trained word em-
beddings on each auxiliary dataset (i.e., SNLI and SQuAD)
and incorporated them into the summarization model. We
found that both our 2-way multi-task models perform sig-
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Models Relevance Readability Total
MTL VS. BASELINE

MTL wins 43 40 83
Baseline wins 22 24 46
Non-distinguish. 35 36 71

MTL VS. SEE ET AL. (2017)
MTL wins 39 33 72
See (2017) wins 29 38 67
Non-distinguish. 32 29 61

Table 3: CNN/DM Human Evaluation: pairwise
comparison between our 3-way multi-task (MTL)
model w.r.t. our baseline and See et al. (2017).

Models Relevance Readability Total
MTL wins 33 32 65
Baseline wins 22 22 44
Non-distinguish. 45 46 91

Table 4: Gigaword Human Evaluation: pairwise
comparison between our 3-way multi-task (MTL)
model w.r.t. our baseline.

Multi-Task with Entailment and Question Gen-
eration Finally, we perform multi-task learning
with all three tasks together, achieving the best of
both worlds (inference skills and saliency). Ta-
ble 1 and Table 2 show that our full multi-task
model achieves the best scores on CNN/DailyMail
and Gigaword datasets, and the improvements
are statistically significant on all metrics on
both CNN/DailyMail (p < 0.01 in ROUGE-
1/ROUGE-L/METEOR and p < 0.02 in ROUGE-
2) and Gigaword (p < 0.01 on all metrics). Fi-
nally, our 3-way multi-task model (with both en-
tailment and question generation) outperforms the
publicly-available pretrained result (†) of the pre-
vious SotA (See et al., 2017) with stat. signifi-
cance (p < 0.01), as well the higher-reported re-
sults (?) on ROUGE-1/ROUGE-2 (p < 0.01).

6.2 Human Evaluation
We also conducted a blind human evaluation on
Amazon MTurk for relevance and readability,
based on 100 samples, for both CNN/DailyMail
and Gigaword (see instructions in Sec. 5). Table. 3
shows the CNN/DM results where we do pairwise
comparison between our 3-way multi-task model’s
output summaries w.r.t. our baseline summaries
and w.r.t. See et al. (2017) summaries. As shown,
our 3-way multi-task model achieves both higher
relevance and higher readability scores w.r.t. the
baseline. W.r.t. See et al. (2017), our MTL model
is higher in relevance scores but a bit lower in

nificantly better than these models using the auxiliary word-
embeddings, suggesting that merely adding more data in not
enough.

Models R-1 R-2 R-L
See et al. (2017) 34.30 14.25 30.82
Baseline 35.96 15.91 32.92
Multi-Task (EG + QG) 36.73 16.15 33.58

Table 5: ROUGE F1 scores on DUC-2002.

readability scores (and is higher in terms of total
aggregate scores). One potential reason for this
lower readability score is that our entailment gen-
eration auxiliary task encourages our summariza-
tion model to rewrite more and to be more abstrac-
tive than See et al. (2017) – see abstractiveness re-
sults in Table 11.

We also show human evaluation results on the
Gigaword dataset in Table 4 (again based on pair-
wise comparisons for 100 samples), where we see
that our MTL model is better than our state-of-the-
art baseline on both relevance and readability.7

6.3 Generalizability Results (DUC-2002)

Next, we also tested our model’s generalizabil-
ity/transfer skills, where we take the models
trained on CNN/DailyMail and directly test them
on DUC-2002. We take our baseline and 3-
way multi-task models, plus the pointer-coverage
model from See et al. (2017).8 We only re-
tune the beam-size for each of these three mod-
els separately (based on DUC-2003 as the vali-
dation set).9 As shown in Table 5, our multi-
task model achieves statistically significant im-
provements over the strong baseline (p < 0.01
in ROUGE-1 and ROUGE-L) and the pointer-
coverage model from See et al. (2017) (p < 0.01
in all metrics). This demonstrates that our model
is able to generalize well and that the auxiliary
knowledge helps more in low-resource scenarios.

6.4 Auxiliary Task Results

In this section, we discuss the individual/separated
performance of our auxiliary tasks.

Entailment Generation We use the same archi-
tecture as described in Sec. 3.1 with pointer mech-

7Note that we did not have output files of any previous
work’s model on Gigaword; however, our baseline is already
a strong state-of-the-art model as shown in Table 2.

8We use the publicly-available pretrained model from See
et al. (2017)’s github for these DUC transfer results, which
produces the † results in Table 1. All other comparisons and
analysis in our paper are based on their higher ? results.

9We follow previous work which has shown that larger
beam values are better and feasible for DUC corpora. How-
ever, our MTL model still achieves stat. significant improve-
ments (p < 0.01 in all metrics) over See et al. (2017) without
beam retuning (i.e., with beam = 4).
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Models M C R B
Pasunuru&Bansal (2017) 29.6 117.8 62.4 40.6
Our 1-layer pointer EG 32.4 139.3 65.1 43.6
Our 2-layer pointer EG 32.3 140.0 64.4 43.7

Table 6: Performance of our pointer-based entail-
ment generation (EG) models compared with pre-
vious SotA work. M, C, R, B are short for Meteor,
CIDEr-D, ROUGE-L, and BLEU-4, resp.

Models M C R B
Du et al. (2017) 15.2 - 38.0 10.8
Our 1-layer pointer QG 15.4 75.3 36.2 9.2
Our 2-layer pointer QG 17.5 95.3 40.1 13.8

Table 7: Performance of our pointer-based ques-
tion generation (QG) model w.r.t. previous work.

anism, and Table 6 compares our model’s perfor-
mance to Pasunuru and Bansal (2017). Our pointer
mechanism gives a performance boost, since the
entailment generation task involves copying from
the given premise sentence, whereas the 2-layer
model seems comparable to the 1-layer model.
Also, the supplementary shows some output ex-
amples from our entailment generation model.

Question Generation Again, we use same ar-
chitecture as described in Sec. 3.1 along with
pointer mechanism for the task of question gen-
eration. Table 7 compares the performance of our
model w.r.t. the state-of-the-art Du et al. (2017).
Also, the supplementary shows some output ex-
amples from our question generation model.

7 Ablation and Analysis Studies

Soft-sharing vs. Hard-sharing As described in
Sec. 4.2, we choose soft-sharing over hard-sharing
because of the more expressive parameter shar-
ing it provides to the model. Empirical results in
Table. 8 prove that soft-sharing method is statis-
tically significantly better than hard-sharing with
p < 0.001 in all metrics.10

Comparison of Different Layer-Sharing Meth-
ods We also conducted ablation studies among
various layer-sharing approaches. Table 8 shows
results for soft-sharing models with decoder-only
sharing (D1+D2; similar to Pasunuru et al. (2017))
as well as lower-layer sharing (encoder layer 1
+ decoder layer 2, with and without attention
shared). As shown, our final model (high-level
semantic layer sharing E2+Attn+D1) outperforms

10In the interest of space, most of the analyses are shown
for CNN/DailyMail experiments, but we observed similar
trends for the Gigaword experiments as well.

Models R-1 R-2 R-L M
Final Model 39.81 17.64 36.54 18.54

SOFT-VS.-HARD SHARING
Hard-sharing 39.51 17.44 36.33 18.21

LAYER SHARING METHODS
D1+D2 39.62 17.49 36.44 18.34
E1+D2 39.51 17.51 36.37 18.15
E1+Attn+D2 39.32 17.36 36.11 17.88

Table 8: Ablation studies comparing our final
multi-task model with hard-sharing and different
alternative layer-sharing methods. Here E1, E2,
D1, D2, Attn refer to parameters of the first/second
layer of encoder/decoder, and attention parame-
ters. Improvements of final model upon ablation
experiments are all stat. signif. with p < 0.05.

Models Average Entailment Probability
Baseline 0.907
Multi-Task (EG) 0.912

Table 9: Entailment classification results of our
baseline vs. EG-multi-task model (p < 0.001).

these alternate sharing methods in all metrics with
statistical significance (p < 0.05).11

Quantitative Improvements in Entailment
We employ a state-of-the-art entailment clas-
sifier (Chen et al., 2017), and calculate the
average of the entailment probability of each of
the output summary’s sentences being entailed
by the input source document. We do this for
output summaries of our baseline and 2-way-EG
multi-task model (with entailment generation).
As can be seen in Table 9, our multi-task model
improves upon the baseline in the aspect of being
entailed by the source document (with statistical
significance p < 0.001). Further, we use the
Named Entity Recognition (NER) module from
CoreNLP (Manning et al., 2014) to compute the
number of times the output summary contains
extraneous facts (i.e., named entities as detected
by the NER system) that are not present in the
source documents, based on the intuition that
a well-entailed summary should not contain
unrelated information not followed from the
input premise. We found that our 2-way MTL
model with entailment generation reduces this
extraneous count by 17.2% w.r.t. the baseline.
The qualitative examples below further discuss
this issue of generating unrelated information.

Quantitative Improvements in Saliency Detec-
tion For our saliency evaluation, we used the

11Note that all our soft and layer sharing decisions were
strictly made on the dev/validation set (see Sec. 5).
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Models Average Match Rate
Baseline 27.75 %
Multi-Task (QG) 28.06 %

Table 10: Saliency classification results of our
baseline vs. QG-multi-task model (p < 0.01).

Models 2-gram 3-gram 4-gram
See et al. (2017) 2.24 6.03 9.72
MTL (3-way) 2.84 6.83 10.66

Table 11: Abstractiveness: novel n-gram percent.

answer-span prediction classifier from Pasunuru
and Bansal (2018) trained on SQuAD (Rajpurkar
et al., 2016) as the keyword detection classifier.
We then annotate the ground-truth and model sum-
maries with this keyword classifier and compute
the % match, i.e., how many salient words from
the ground-truth summary were also generated in
the model summary. The results are shown in Ta-
ble 10, where the 2-way-QG MTL model (with
question generation) versus baseline improvement
is stat. significant (p < 0.01). Moreover, we
found 93 more cases where our 2-way-QG MTL
model detects 2 or more additional salient key-
words than the pointer baseline model (as opposed
to vice versa), showing that sentence-level ques-
tion generation task is helping the document-level
summarization task in finding more salient terms.

Qualitative Examples on Entailment and
Saliency Improvements Fig. 2 presents an
example of output summaries generated by See
et al. (2017), our baseline, and our 3-way multi-
task model. See et al. (2017) and our baseline
models generate phrases like “john hartson”
and “hampden injustice” that don’t appear in
the input document, hence they are not entailed
by the input.12 Moreover, both models missed
salient information like “josh meekings”, “leigh
griffiths”, and “hoops”, that our multi-task model
recovers.13 Hence, our 3-way multi-task model
generates summaries that are both better at logical
entailment and contain more salient information.
We refer to supplementary Fig. 3 for more de-
tails and similar examples for separated 2-way
multi-task models (supplementary Fig. 1, Fig. 2).

Abstractiveness Analysis As suggested in See
et al. (2017), we also compute the abstractiveness
score as the number of novel n-grams between the

12These extra, non-entailed unrelated/contradictory infor-
mation are not present at all in any paraphrase form in the
input document.

13We consider the fill-in-the-blank highlights annotated by
human on CNN/DailyMail dataset as salient information.

Input Document: celtic have written to the scottish football association in order to gain an ‘ under-
standing óf the refereeing decisions during their scottish cup semi-final defeat by inverness on sunday
. the hoops were left outraged by referee steven mclean ś failure to award a penalty or red card for a
clear handball in the box by josh meekings to deny leigh griffith ś goal-bound shot during the first-half
. caley thistle went on to win the game 3-2 after extra-time and denied rory delia ś men the chance
to secure a domestic treble this season . celtic striker leigh griffiths has a goal-bound shot blocked
by the outstretched arm of josh meekings . celtic ś adam matthews -lrb- right -rrb- slides in with a
strong challenge on nick ross in the scottish cup semi-final . ‘ given the level of reaction from our sup-
porters and across football , we are duty bound to seek an understanding of what actually happened
, ćeltic said in a statement . they added , ‘ we have not been given any other specific explanation
so far and this is simply to understand the circumstances of what went on and why such an obvious
error was made . h́owever , the parkhead outfit made a point of congratulating their opponents , who
have reached the first-ever scottish cup final in their history , describing caley as a ‘ fantastic club
ánd saying ‘ reaching the final is a great achievement . ćeltic had taken the lead in the semi-final
through defender virgil van dijk ś curling free-kick on 18 minutes , but were unable to double that lead
thanks to the meekings controversy . it allowed inverness a route back into the game and celtic had
goalkeeper craig gordon sent off after the restart for scything down marley watkins in the area . greg
tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for john
guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven
scored the winner on 117 minutes , breaking thousands of celtic hearts . celtic captain scott brown
-lrb- left -rrb- protests to referee steven mclean but the handball goes unpunished . griffiths shows off
his acrobatic skills during celtic ś eventual surprise defeat by inverness . celtic pair aleksandar tonev
-lrb- left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .
Ground-truth: celtic were defeated 3-2 after extra-time in the scottish cup semi-final .

leigh griffiths had a goal-bound shot blocked by a clear handball. however, no action was taken

against offender josh meekings . the hoops have written the sfa for an ’understanding’ of the
decision .
See et al. (2017): john hartson was once on the end of a major hampden injustice while playing
for celtic . but he can not see any point in his old club writing to the scottish football association over
the latest controversy at the national stadium . hartson had a goal wrongly disallowed for offside
while celtic were leading 1-0 at the time but went on to lose 3-2 .
Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading
1-0 at the time but went on to lose 3-2 . some fans have questioned how referee steven mclean and
additional assistant alan muir could have missed the infringement .

Multi-task: celtic have written to the scottish football association in order to gain an ‘ understand-
ing ’ of the refereeing decisions . the hoops were left outraged by referee steven mclean ’s failure

to award a penalty or red card for a clear handball in the box by josh meekings . celtic striker

leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .

Figure 3: Example of summaries generated by See et al. (2017), our baseline, and 3-way multi-task model
with summarization and both entailment generation and question generation. The boxed-red highlighted
words/phrases are not present in the input source document in any paraphrasing form. All the unboxed-
green highlighted words/phrases correspond to the salient information. See detailed discussion in Fig.
1 and Fig. 2 above. As shown, the outputs from See et al. (2017) and the baseline both include non-
entailed words/phrases (e.g. “john hartson”), as well as they missed salient information (“hoops”, “josh
meekings”, “leigh griffiths”) in their output summaries. Our multi-task model, however, manages to
accomplish both, i.e., cover more salient information and also avoid unrelated information.

Figure 2: Example summary from our 3-
way MTL model. The boxed-red high-
lights are extraneously-generated words not
present/paraphrased in the input document. The
unboxed-green highlights show salient phrases.

model output summary and source document. As
shown in Table 11, our multi-task model (EG +
QG) is more abstractive than See et al. (2017).

8 Conclusion

We presented a multi-task learning approach to
improve abstractive summarization by incorporat-
ing the ability to detect salient information and to
be logically entailed by the document, via ques-
tion generation and entailment generation auxil-
iary tasks. We propose effective soft and high-
level (semantic) layer-specific parameter sharing
and achieve significant improvements over the
state-of-the-art on two popular datasets, as well as
a generalizability/transfer DUC-2002 setup.
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task grouping and overlap in multi-task learning. In
ICML.

Alice Lai and Julia Hockenmaier. 2014. Illinois-lh: A
denotational and distributional approach to seman-
tics. Proc. SemEval, 2:5.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
workshop, volume 8.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In NAACL: HLT, pages 1077–1086.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Yashar Mehdad, Giuseppe Carenini, Frank W Tompa,
and Raymond T Ng. 2013. Abstractive meeting
summarization with entailment and fusion. In Proc.
of the 14th European Workshop on Natural Lan-
guage Generation, pages 136–146.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch networks for
multi-task learning. In CVPR, pages 3994–4003.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In CoNLL.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Ramakanth Pasunuru and Mohit Bansal. 2017. Multi-
task video captioning with video and entailment
generation. In ACL.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In NAACL.

Ramakanth Pasunuru, Han Guo, and Mohit Bansal.
2017. Towards improving abstractive summariza-
tion via entailment generation. In NFiS@EMNLP.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Sogaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks.
CoRR, abs/1705.08142.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In EMNLP.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Jun Suzuki and Masaaki Nagata. 2016. Rnn-based
encoder-decoder approach with word frequency es-
timation. In EACL.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In ACL.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In NIPS, pages 2692–2700.

Lu Wang, Hema Raghavan, Vittorio Castelli, Radu Flo-
rian, and Claire Cardie. 2013. A sentence com-
pression based framework to query-focused multi-
document summarization. In ACL.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Eu-
ropean conference on computer vision, pages 818–
833. Springer.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

