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Abstract

We introduce a novel graph-based frame-
work for abstractive meeting speech sum-
marization that is fully unsupervised and
does not rely on any annotations. Our
work combines the strengths of multiple
recent approaches while addressing their
weaknesses. Moreover, we leverage recent
advances in word embeddings and graph
degeneracy applied to NLP to take exterior
semantic knowledge into account, and to
design custom diversity and informative-
ness measures. Experiments on the AMI
and ICSI corpus show that our system im-
proves on the state-of-the-art. Code and
data are publicly available!, and our sys-
tem can be interactively tested?.

1 Introduction

People spend a lot of their time in meetings. The
ubiquity of web-based meeting tools and the rapid
improvement and adoption of Automatic Speech
Recognition (ASR) is creating pressing needs for
effective meeting speech summarization mecha-
nisms.

Spontaneous multi-party meeting speech tran-
scriptions widely differ from traditional docu-
ments. Instead of grammatical, well-segmented
sentences, the input is made of often ill-formed
and ungrammatical text fragments called utter-
ances. On top of that, ASR transcription and seg-
mentation errors inject additional noise into the in-
put.

In this paper, we combine the strengths of
6 approaches that had previously been applied
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to 3 different tasks (keyword extraction, multi-
sentence compression, and summarization) into
a unified, fully unsupervised end-to-end meeting
speech summarization framework that can gener-
ate readable summaries despite the noise inherent
to ASR transcriptions. We also introduce some
novel components. Our method reaches state-of-
the-art performance and can be applied to lan-
guages other than English in an almost out-of-the-
box fashion.

2 Framework Overview

As illustrated in Figure 1, our system is made of 4
modules, briefly described in what follows.

2. Utterance
Community Detection

I

3. Multi-Sentence Compression|

Transcription 1. Text Preprocessing |

Word Graph

Automatic Speech Rccognmonl Building
Edge Weight
Assignment

Path Selection &

s - 4. Budgeted Reranking
ummary 4 »

Figure 1: Overarching system pipeline.

The first module pre-processes text. The goal of
the second Community Detection step is to group
together the utterances that should be summarized
by a common abstractive sentence (Murray et al.,
2012). These utterances typically correspond to a
topic or subtopic discussed during the meeting. A
single abstractive sentence is then separately gen-
erated for each community, using an extension of
the Multi-Sentence Compression Graph (MSCG)
of Filippova (2010). Finally, we generate a sum-
mary by selecting the best elements from the set
of abstractive sentences under a budget constraint.
We cast this problem as the maximization of a cus-
tom submodular quality function.
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Note that our approach is fully unsupervised
and does not rely on any annotations. Our in-
put simply consists in a list of utterances without
any metadata. All we need in addition to that is
a part-of-speech tagger, a language model, a set
of pre-trained word vectors, a list of stopwords
and fillerwords, and optionally, access to a lexical
database such as WordNet. Our system can work
out-of-the-box in most languages for which such
resources are available.

3 Related Work and Contributions

As detailed below, our framework combines the
strengths of 6 recent works. It also includes novel
components.

3.1 Multi-Sentence Compression Graph
(MSCG) (Filippova, 2010)

Description: a fully unsupervised, simple ap-
proach for generating a short, self-sufficient sen-
tence from a cluster of related, overlapping sen-
tences. As shown in Figure 5, a word graph is con-
structed with special edge weights, the K -shortest
weighted paths are then found and re-ranked with
a scoring function, and the best path is used as
the compression. The assumption is that redun-
dancy alone is enough to ensure informativeness
and grammaticality.

Limitations: despite making great strides and
showing promising results, Filippova (2010) re-
ported that 48% and 36% of the generated sen-
tences were missing important information and
were not perfectly grammatical.

Contributions: to respectively improve informa-
tiveness and grammaticality, we combine ideas
found in Boudin and Morin (2013) and Mehdad
et al. (2013), as described next.

3.2 More informative MSCG (Boudin and
Morin, 2013)

Description: same task and approach as in Filip-
pova (2010), except that a word co-occurrence net-
work is built from the cluster of sentences, and that
the PageRank scores of the nodes are computed in
the manner of Mihalcea and Tarau (2004). The
scores are then injected into the path re-ranking
function to favor informative paths.

Limitations: PageRank is not state-of-the-art in
capturing the importance of words in a document.
Grammaticality is not considered.

Contributions: we take grammaticality into ac-
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count as explained in subsection 3.4. We also
follow recent evidence (Tixier et al., 2016a)
that spreading influence, as captured by graph
degeneracy-based measures, is better correlated
with “keywordedness” than PageRank scores, as
explained in the next subsection.

3.3 Graph-based word importance scoring
(Tixier et al., 2016a)

Word co-occurrence network. As shown in Fig-
ure 2, we consider a word co-occurrence network
as an undirected, weighted graph constructed by
sliding a fixed-size window over text, and where
edge weights represent co-occurrence counts (Tix-
ier et al., 2016b; Mihalcea and Tarau, 2004).
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Figure 2: Word co-occurrence graph example, for the input
text shown in Figure 5.

Important words are influential nodes. In social
networks, it was shown that influential spreaders,
that is, those individuals that can reach the largest
part of the network in a given number of steps,
are better identified via their core numbers rather
than via their PageRank scores or degrees (Kitsak
et al., 2010). See Figure 3 for the intuition. Sim-
ilarly, in NLP, Tixier et al. (2016a) have shown
that keywords are better identified via their core
numbers rather than via their TextRank scores, that
is, keywords are influencers within their word co-
occurrence network.

Graph degeneracy (Seidman, 1983). Let
G(V, E) be an undirected, weighted graph with
n = |V| nodes and m = |E| edges. A k-core
of G is a maximal subgraph of GG in which ev-
ery vertex v has at least weighted degree k. As
shown in Figures 3 and 4, the k-core decomposi-
tion of G forms a hierarchy of nested subgraphs
whose cohesiveness and size respectively increase
and decrease with k. The higher-level cores can
be viewed as a filtered version of the graph that



excludes noise. This property is highly valuable
when dealing with graphs constructed from noisy
text, like utterances. The core number of a node is
the highest order of a core that contains this node.

Figure 3: k-core decomposition. The blue and the yel-
low nodes have same degree and similar PageRank numbers.
However, the blue node is a much more influential spreader
as it is strategically placed in the core of the network, as cap-
tured by its higher core number.

The CoreRank number of a node (Tixier et al.,
2016a; Bae and Kim, 2014) is defined as the sum
of the core numbers of its neighbors. As shown
in Figure 4, CoreRank more finely captures the
structural position of each node in the graph than
raw core numbers. Also, stabilizing scores across
node neighborhoods enhances the inherent noise
robustness property of graph degeneracy, which is
desirable when working with noisy speech-to-text
output.

@ Core number ¢ = 1@ Core number ¢ =2 @ Core number ¢ =3

Figure 4: Value added by CoreRank: while nodes * and *x
have the same core number (=2), node x has a greater Cor-
eRank score (3+2+2=7 vs 2+2+1=5), which better reflects its
more central position in the graph.

Time complexity. Building a graph-of-words
is O(nW), and computing the weighted k-core
decomposition of a graph requires O(m log(n))
(Batagelj and Zaversnik, 2002). For small pieces
of text, this two step process is so affordable that it
can be used in real-time (Meladianos et al., 2017).
Finally, computing CoreRank scores can be done
with only a small overhead of O(n), provided that

666

the graph is stored as a hash of adjacency lists.
Getting the CoreRank numbers from scratch for
a community of utterances is therefore very fast,
especially since typically in this context, n ~ 10
and m ~ 100.

3.4 Fluency-aware, more abstractive MSCG
(Mehdad et al., 2013)

Description: a supervised end-to-end framework
for abstractive meeting summarization. Commu-
nity Detection is performed by (1) building an ut-
terance graph with a logistic regression classifier,
and (2) applying the CONGA algorithm. Then,
before performing sentence compression with the
MSCG, the authors also (3) build an entailment
graph with a SVM classifier in order to eliminate
redundant and less informative utterances. In ad-
dition, the authors propose the use of WordNet
(Miller, 1995) during the MSCG building phase
to capture lexical knowledge between words and
thus generate more abstractive compressions, and
of a language model when re-ranking the shortest
paths, to favor fluent compressions.

Limitations: this effort was a significant advance,
as it was the first application of the MSCG to the
meeting summarization task, to the best of our
knowledge. However, steps (1) and (3) above
are complex, based on handcrafted features, and
respectively require annotated training data in the
form of links between human-written abstractive
sentences and original utterances and multiple
external datasets (e.g., from the Recognizing
Textual Entailment Challenge). Such annotations
are costly to obtain and very seldom available in
practice.

Contributions: while we retain the use of WordNet
and of a language model, we show that, without
deteriorating the quality of the results, steps (1)
and (2) above (Community Detection) can be
performed in a much more simple, completely un-
supervised way, and that step (3) can be removed.
That is, the MSCG is powerful enough to remove
redundancy and ensure informativeness, should
proper edge weights and path re-ranking function
be used.

In addition to the aforementioned contributions,
we also introduce the following novel components
into our abstractive summarization pipeline:

e we inject global exterior knowledge into the
edge weights of the MSCG, by using the Word At-
traction Force of Wang et al. (2014), based on



distance in the word embedding space,

e we add a diversity term to the path re-ranking
function, that measures how many unique clusters
in the embedding space are visited by each path,

o rather than using all the abstractive sentences
as the final summary like in Mehdad et al. (2013),
we maximize a custom submodular function to se-
lect a subset of abstractive sentences that is near-
optimal given a budget constraint (summary size).
A brief background of submodularity in the con-
text of summarization is provided next.

3.5 Submodularity for summarization (Lin
and Bilmes, 2010; Lin, 2012)

Selecting an optimal subset of abstractive sen-
tences from a larger set can be framed as a bud-
geted submodular maximization task:

argmax f(5)| ch <B (1)

Ses seS

where .S is a summary, ¢, is the cost (word count)
of sentence s, B is the desired summary size in
words (budget), and f is a summary quality scor-
ing set function, which assigns a single numeric
score to a summary S.

This combinatorial optimization task is NP-
hard. However, near-optimal performance can be
guaranteed with a modified greedy algorithm (Lin
and Bilmes, 2010) that iteratively selects the sen-
tence s that maximizes the ratio of quality function
gain to scaled cost f(SUs)—f(S)/cr (where S is the
current summary and r > 0 is a scaling factor).

In order for the performance guarantees to hold
however, f has to be submodular and monotone
non-decreasing. Our proposed f is described in
subsection 4.4.

4 Our Framework

We detail next each of the four modules in our ar-
chitecture (shown in Figure 1).

4.1 Text preprocessing

We adopt preprocessing steps tailored to the char-
acteristics of ASR transcriptions. Consecutive re-
peated unigrams and bigrams are reduced to single
terms. Specific ASR tags, such as {vocalsound},
{pause}, and {gap} are filtered out. In addition,
filler words, such as uh-huh, okay, well, and by the
way are also discarded. Consecutive stopwords at
the beginning and end of utterances are stripped.
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In the end, utterances that contain less than 3 non-
stopwords are pruned out. The surviving utter-
ances are used for the next steps.

4.2 Utterance community detection

The goal here is to cluster utterances into commu-
nities that should be summarized by a common ab-
stractive sentence.

We initially experimented with techniques cap-
italizing on word vectors, such as k-means and hi-
erarchical clustering based on the Euclidean dis-
tance or the Word Mover’s Distance (Kusner et al.,
2015). We also tried graph-based approaches,
such as community detection in a complete graph
where nodes are utterances and edges are weighted
based on the aforementioned distances.

Best results were obtained, however, with a sim-
ple approach in which utterances are projected
into the vector space and assigned standard TF-
IDF weights. Then, the dimensionality of the
utterance-term matrix is reduced with Latent Se-
mantic Analysis (LSA), and finally, the k-means
algorithm is applied. Note that LSA is only used
here, during the utterance community detection
phase, to remove noise and stabilize clustering.
We do not use a topic graph in our approach.

We think using word embeddings was not ef-
fective, because in meeting speech, as opposed to
traditional documents, participants tend to use the
same term to refer to the same thing throughout
the entire conversation, as noted by Riedhammer
et al. (2010), and as verified in practice. This is
probably why, for clustering utterances, capturing
synonymy is counterproductive, as it artificially
reduces the distance between every pair of utter-
ances and blurs the picture.

4.3 Multi-Sentence Compression

The following steps are performed separately for
each community.

Word importance scoring

From a processed version of the community (stem-
ming and stopword removal), we construct an
undirected, weighted word co-occurrence network
as described in subsection 3.3. We use a sliding
window of size W = 6 not overspanning utter-
ances. Note that stemming is performed only here,
and for the sole purpose of building the word co-
occurrence network.

We then compute the CoreRank numbers of the
nodes as described in subsection 3.3.



Figure 5: Compressed sentence (in bold
red) generated by our multi-sentence com-
pression graph (MSCG) for a 3-utterance
community from meeting IS1009b of the
AMI corpus. Using Filippova (2010)’s
weighting and re-ranking scheme here
would have selected another path: design
different remotes for different people bit of
it’s from their tend to for ti. Note that the
compressed sentence does not appear in the
initial set of utterances, and is compact and
grammatical, despite the redundancy, tran-
scription and segmentation errors of the in-
put. The abstractive and robust nature of
the MSCG makes it particularly well-suited
to the meeting domain.

we

remote
having

all which

the
is
different

We finally reweigh the CoreRank scores, in-
dicative of word importance within a given com-
munity, with a quantity akin to an Inverse Docu-
ment Frequency, where communities serve as doc-
uments and the full meeting as the collection. We
thus obtain something equivalent to the TW-IDF
weighting scheme of Rousseau and Vazirgiannis
(2013), where the CoreRank scores are the term
weights TW:

TW-IDF(t,d,D) =TW(t,d) x IDF(t,D)
(2)

where ¢ is a term belonging to community d,
and D is the set of all utterance communities. We
compute the IDF as IDF(t,D) = 1 + log|Pl/Dy,
where |D| is the number of communities and D;
the number of communities containing .

The intuition behind this reweighing scheme is
that a term should be considered important within
a given meeting if it has a high CoreRank score
within its community and if the number of com-
munities in which the term appears is relatively
small.

Word graph building

The backbone of the graph is laid out as a directed
sequence of nodes corresponding to the words
in the first utterance, with special START and
END nodes at the beginning and at the end (see
Figure 5). Edge direction follows the natural flow
of text. Words from the remaining utterances are
then iteratively added to the graph (between the
START and END nodes) based on the following
rules:

a
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flies
like

that generally we can design a remote which is mean
need for people bit of it's from their tend to for ti

design different remotes for different people like for
each to be the that will be big buttons
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we doubt like with it because flies that if we des_i#n of
remote having all the different features for different
ﬁﬁgglgiﬁre designing three different remotes for
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668

different

remotes
three

f three differentcategories.
or

desi

lesigning Shopte
for different
are END.

buttonf"
to

for people

bit
tend

of their

like its from big
be

will
each
that

be the

1) if the word is a non-stopword, the word is
mapped onto an existing node if it has the same
lowercased form and the same part-of-speech tag?.
In case of multiple matches, we check the imme-
diate context (the preceding and following words
in the utterance and the neighboring nodes in the
graph), and we pick the node with the largest con-
text overlap or which has the greatest number of
words already mapped to it (when no overlap).
When there is no match, we use WordNet as de-
scribed in Appendix A.

2) if the word is a stopword and there is a
match, it is mapped only if there is an overlap
of at least one non-stopword in the immediate
context. Otherwise, a new node is created.

Finally, note that any two words appearing within
the same utterance cannot be mapped to the same
node. This ensures that every utterance is a loop-
less path in the graph. Of course, there are many
more paths in the graphs than original utterances.

Edge Weight Assignment

Once the word graph is constructed, we assign
weights to its edges as:

w'(pi, pj)

3
w//(pivpj) ( )

w” (pi,p;) =

where p; and p; are two neighbors in the MSCG.
As detailed next, those weights combine local co-
occurrence statistics (numerator) with global exte-
rior knowledge (denominator). Note that the lower

3
We used NLTK’s averaged perceptron tagger, available at: http://www.nltk.
org/api/nltk.tag.html#module-nltk.tag.perceptron
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Figure 6: t-SNE visualization (Maaten and Hin-
ton, 2008) of the Google News vectors of the
words in the utterance community shown in Fig-
ure 5. Arrows join the words in the best com-
pression path shown in Figure 5. Movements in =~ %1
the embedding space, as measured by the num-
ber of unique clusters covered by the path (here,
6/11), provide a sense of the diversity of the
compressed sentence, as formalized in Equation
10 =100

200 1

-2004

the weight of an edge, the better.
Local co-occurrence statistics.
We use Filippova (2010)’s formula:

o) — Fp) + 1)

2Pt pypyep G (P, piy pj)

4)

where f(p;) is the number of words mapped to
node p; in the MSCG G/, and diff (P, p;, p;) ! is
the inverse of the distance between p; and p; in a
path P (in number of hops). This weighting func-
tion favors edges between infrequent words that
frequently appear close to each other in the text
(the lower, the better).

Global exterior knowledge.
We introduce a second term based on the Word At-
traction Force score of Wang et al. (2014):

Pi;pPj

where dp, . is the Euclidean distance between the
words mapped to p; and p; in a word embedding
space*. This component favor paths going through
salient words that have high semantic similarity
(the higher, the better). The goal is to ensure read-
ability of the compression, by avoiding to generate
a sentence jumping from one word to a completely
unrelated one.

Path re-ranking

As in Boudin and Morin (2013), we use a short-
est weighted path algorithm to find the K paths
between the START and END symbols having the
lowest cumulative edge weight:

|P|-1
W(P) = Z w” (pi, pit1) (6)

=1

4
GoogleNews vectors https://code.google.com/archive/p/word2vec

-100 0 100 200 300

Where |P| is the number of nodes in the path.
Paths having less than z words or that do not con-
tain a verb are filtered out (z is a tuning parame-
ter). However, unlike in Boudin and Morin (2013),
we rerank the K best paths with the following
novel weighting scheme (the lower, the better),
and the path with the lowest score is used as the
compression:

W(P)

score(P) = 15 B (P) x C(P) x D(P)

(N

The denominator takes into account the length of
the path, and its fluency (F'), coverage (C), and
diversity (D). F, C, and D are detailed in what
follows.

Fluency. We estimate the grammaticality of a
path with an n-gram language model. In our ex-
periments, we used a trigram model®:

F(P) = Zyjl IOgPT(pi|p§:7lz+1) 8)
#n-gram
where |P| denote path length, and p; and
#n-gram are respectively the words and number
of n-grams in the path.
Coverage. We reward the paths that visit impor-
tant nouns, verbs and adjectives:

> pep TW-IDF ()
#D;

where #p; is the number of nouns, verbs and ad-
jectives in the path. The TW-IDF scores are com-
puted as explained in subsection 4.3.

Diversity. We cluster all words from the MSCG
in the word embedding space by applying the k-
means algorithm. We then measure the diversity of
the vocabulary contained in a path as the number

C(P) =

(€))

5CMUSphinx English LM: https://cmusphinx.github.io
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of unique clusters visited by the path, normalized
by the length of the path:

k
Zj:l 1E|pi€P|pi€clusterj
1P|

D(P) = (10)
The graphical intuition for this measure is pro-
vided in Figure 6. Note that we do not normalize
D by the total number of clusters (only by path
length) because k is fixed for all candidate paths.

4.4 Budgeted submodular maximization

We apply the previous steps separately for all ut-
terance communities, which results in a set S of
abstractive sentences (one for each community).
This set of sentences can already be considered to
be a summary of the meeting. However, it might
exceed the maximum size allowed, and still con-
tain some redundancy or off-topic sections unre-
lated to the general theme of the meeting (e.g.,
chit-chat).

Therefore, we design the following submodular
and monotone non-decreasing objective function:

k
f(S) = Z Ns; Ws; + )‘ Z 135¢€S|5i€groupj
7=1

s;€8
(11
where A > 0 is the trade-off parameter, ng, is the
number of occurrences of word s; in .S, and wy, is
the CoreRank score of s;.

Then, as explained in subsection 3.5, we ob-
tain a near-optimal subset of abstractive sentences
by maximizing f with a greedy algorithm. Cor-
eRank scores and clusters are found as previ-
ously described, except that this time they are ob-
tained from the full processed meeting transcrip-
tion rather than from a single utterance commu-
nity.

S Experimental setup

5.1 Datasets

We conducted experiments on the widely-used
AMI (McCowan et al., 2005) and ICSI (Janin
et al., 2003) benchmark datasets. We used the tra-
ditional test sets of 20 and 6 meetings respectively
for the AMI and ICSI corpora (Riedhammer et al.,
2008). Each meeting in the AMI test set is asso-
ciated with a human abstractive summary of 290
words on average, whereas each meeting in the
ICSI test set is associated with 3 human abstrac-
tive summaries of respective average sizes 220,
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220 and 670 words. For parameter tuning, we con-
structed development sets of 47 and 25 meetings,
respectively for AMI and ICSI, by randomly sam-
pling from the training sets. The word error rate of
the ASR transcriptions is respectively of 36% and
37% for AMI and ICSI.

5.2 Baselines

We compared our system against 7 baselines,
which are listed below and more thoroughly de-
tailed in Appendix B. Note that preprocessing was
exactly the same for our system and all baselines.
e Random and Longest Greedy are basic base-
lines recommended by (Riedhammer et al., 2008),
e TextRank (Mihalcea and Tarau, 2004),

e ClusterRank (Garg et al., 2009),

e CoreRank & PageRank submodular (Tixier
etal., 2017),

e Oracle is the same as the random baseline, but
uses the human extractive summaries as input.

In addition to the baselines above, we included
in our comparison 3 variants of our system using
different MSCGs: Our System (Baseline) uses
the original MSCG of Filippova (2010), Our Sys-
tem (KeyRank) uses that of Boudin and Morin
(2013), and Our System (FluCovRank) that of
Mehdad et al. (2013). Details about each approach
were given in Section 3.

5.3 Parameter tuning

For Our System and each of its variants, we con-
ducted a grid search on the development sets of
each corpus, for fixed summary sizes of 350 and
450 words (AMI and ICSI). We searched the fol-
lowing parameters:

e n: number of utterance communities (see Sec-
tion 4.2). We tested values of n ranging from 20
to 60, with steps of 5. This parameter controls how
much abstractive should the summary be. If all ut-
terances are assigned to their own singleton com-
munity, the MSCG is of no utility, and our frame-
work is extractive. It becomes more and more ab-
stractive as the number of communities decreases.
e z: minimum path length (see Section 4.3). We
searched values in the range [6, 16] with steps of 2.
If a path is shorter than a certain minimum number
of words, it often corresponds to an invalid sen-
tence, and should thereby be filtered out.

e )\ and r, the trade-off parameter and the scaling
factor (see Section 4.4). We searched [0, 1] and
[0, 2] (respectively) with steps of 0.1. The parame-
ter \ plays a regularization role favoring diversity.



The scaling factor makes sure the quality function
gain and utterance cost are comparable.

The best parameter values for each corpus are
summarized in Table 1. A is mostly non-zero, in-
dicating that it is necessary to include a regular-
ization term in the submodular function. In some
cases though, r is equal to zero, which means that
utterance costs are not involved in the greedy de-
cision heuristic. These observations contradict the
conclusion of Lin (2012) that » = 0 cannot give
best results.

System AMI

ICSI

Our System

Our System (Baseline)
Our System (KeyRank)
Our System (FluCovRank)

50, 8, (0.7, 0.5) 40, 14, (0.0, 0.0)
50, 12, (0.3, 0.5) 45, 14, (0.1, 0.0)
50, 10, (0.2, 0.9) 45, 12, (0.3, 0.4)

35,6, (0.4, 1.0) 50,10, (0.2, 0.3)

Table 1: Optimal parameter values n, z, (X, r).

Apart from the tuning parameters, we set the
number of LSA dimensions to 30 and 60 (resp.
on AMI and ISCI). The small number of LSA di-
mensions retained can be explained by the fact
that the AMI and ICSI transcriptions feature 532
and 1126 unique words on average, which is much
smaller than traditional documents. This is due to
relatively small meeting duration, and to the fact
that participants tend to stick to the same terms
throughout the entire conversation. For the k-
means algorithm, k& was set equal to the minimum
path length z when doing MSCG path re-ranking
(see Equation 10), and to 60 when generating the
final summary (see Equation 11).

Following Boudin and Morin (2013), the num-
ber of shortest weighted paths K was set to 200,
which is greater than the K = 100 used by Fil-
ippova (2010). Increasing K from 100 improves
performance with diminishing returns, but sig-
nificantly increases complexity. We empirically
found 200 to be a good trade-off.

6 Results and Interpretation

Metrics. We evaluated performance with the
widely-used ROUGE-1, ROUGE-2 and ROUGE-
SU4 metrics (Lin, 2004). These metrics are re-
spectively based on unigram, bigram, and unigram
plus skip-bigram overlap with maximum skip dis-
tance of 4, and have been shown to be highly
correlated with human evaluations (Lin, 2004).
ROUGE-2 scores can be seen as a measure of sum-
mary readability (Lin and Hovy, 2003; Ganesan
et al., 2010). ROUGE-SU4 does not require con-
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secutive matches but is still sensitive to word or-
der.

Macro-averaged results for summaries gener-
ated from automatic transcriptions can be seen in
Figure 7 and Table 2. Table 2 provides detailed
comparisons over the fixed budgets that we used
for parameter tuning, while Figure 7 shows the
performance of the models for budgets ranging
from 150 to 500 words. The same information for
summaries generated from manual transcriptions
is available in Appendix C. Finally, summary ex-
amples are available in Appendix D.

ROUGE-1. Our systems outperform all baselines
on AMI (including Oracle) and all baselines on
ICSI (except Oracle). Specifically, Our System is
best on ICSI, while Our System (KeyRank) is su-
perior on AMI. We can also observe on Figure 7
that our systems are consistently better throughout
the different summary sizes, even though their pa-
rameters were tuned for specific sizes only. This
shows that the best parameter values are quite ro-
bust across the entire budget range.

ROUGE-2. Again, our systems (except Our Sys-
tem (Baseline)) outperform all baselines, except
Oracle. In addition, Our System and Our System
(FluCovRank) consistently improve on Our Sys-
tem (Baseline), which proves that the novel com-
ponents we introduce improve summary fluency.

ROUGE-SU4. ROUGE-SU4 was used to mea-
sure the amount of in-order word pairs overlap-
ping. Our systems are competitive with all base-
lines, including Oracle. Like with ROUGE-1, Our
System is better than Our System (KeyRank) on
ICSI, whereas the opposite is true on AMI.

General remarks.

e The summaries of all systems except Oracle
were generated from noisy ASR transcriptions, but
were compared against human abstractive sum-
maries. ROUGE being based on word overlap, it
makes it very difficult to reach very high scores,
because many words in the ground truth sum-
maries do not appear in the transcriptions at all.

e The scores of all systems are lower on ICSI than
on AMI. This can be explained by the fact that on
ICSI, the system summaries have to jointly match
3 human abstractive summaries of different con-
tent and size, which is much more difficult than
matching a single summary.

e Our framework is very competitive to Oracle,
which is notable since the latter has direct access
to the human extractive summaries. Note that Or-
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Figure 7: ROUGE-1 F-1 scores for various budgets (ASR transcriptions).

450 500

AMI ROUGE-1

AMI ROUGE-2

AMI ROUGE-SU4

ICSI ROUGE-1

ICSI ROUGE-2

ICSI ROUGE-SU4

R P F-1

R P

F-1

R P F-1

R P F-1

R P

F-1

R P F-1

Our System
Our System (Baseline)

Our System (KeyRank)

Our System (FluCovRank)

41.83 34.44 37.25
41.56 34.37 37.11
42.43 35.01 37.86
41.84 34.61 37.37

8.22 6.95
7.88 6.66
8.72 7.29
8.29 6.92

743
7.11
7.84
7.45

15.83 13.70 14.51
15.36 13.20 14.02
16.19 13.76 14.71
16.28 13.48 14.58

36.99 28.12 31.60
36.39 27.20 30.80
35.95 27.00 30.52
36.27 27.56 31.00

5.41 4.39
5.19 4.12
4.64 3.64
5.56 4.35

4.79
4.55
4.04
4.83

13.10 10.17 11.35
12.59 9.70 10.86
12.43 9.23 10.50
13.47 9.85 11.29

Oracle

CoreRank Submodular
PageRank Submodular
TextRank

ClusterRank

Longest Greedy
Random

40.49 34.65 36.73
41.14 32.93 36.13
40.84 33.08 36.10
39.55 32.60 35.25
39.36 32.53 35.14
37.31 30.93 33.35
39.42 32.48 35.13

8.07 7.35
8.06 6.88
8.27 6.88
7.67 6.43
7.14 6.05
5.77 471
6.88 5.89

7.55
7.33
7.42
6.90
6.46
5.11
6.26

15.00 14.03 14.26
14.84 1391 14.18
15.37 13.71 14.32
14.87 12.87 13.62
14.34 12.80 13.35
13.79 11.11 12.15
14.07 12.70 13.17

37.91 28.39 32.12
35.22 26.34 29.82
36.05 26.69 30.40
34.89 26.33 29.70
32.63 24.44 27.64
35.57 26.74 30.23
34.78 25.75 29.28

5.73 4.82
4.36 3.76
4.82 4.16
4.60 3.74
4.03 3.44
4.84 3.88
4.19 351

5.18
4.00
442
4.09
3.68
4.27
3.78

13.35 10.73 11.80
12.11 9.58 10.61
12.19 10.39 11.14
1242 9.43 10.64
11.04 8.88 9.77
13.09 9.46 10.90
11.61 9.37 10.29

Table 2: Macro-averaged results for 350 and 450 word summaries (ASR transcriptions).

acle does not reach very high ROUGE scores be-
cause the overlap between the human extractive
and abstractive summaries is low (19% and 29%,
respectively on AMI and ICSI test sets).

7 Conclusion and Next Steps

Our framework combines the strengths of 6 ap-
proaches that had previously been applied to 3 dif-
ferent tasks (keyword extraction, multi-sentence
compression, and summarization) into a uni-
fied, fully unsupervised end-to-end summarization
framework, and introduces some novel compo-
nents. Rigorous evaluation on the AMI and ICSI
corpora shows that we reach state-of-the-art per-
formance, and generate reasonably grammatical
abstractive summaries despite taking noisy utter-
ances as input and not relying on any annotations
or training data. Finally, thanks to its fully unsu-
pervised nature, our method is applicable to other
languages than English in an almost out-of-the-
box manner.

Our framework was developed for the meeting
domain. Indeed, our generative component, the

multi-sentence compression graph (MSCGQG), needs
redundancy to perform well. Such redundancy
is typically present in meeting speech but not in
traditional documents. In addition, the MSCG is
by design robust to noise, and our custom path
re-ranking strategy, based on graph degeneracy,
makes it even more robust to noise. As a result,
our framework is advantaged on ASR input. Fi-
nally, we use a language model to favor fluent
paths, which is crucial when working with (meet-
ing) speech but not that important when dealing
with well-formed input.

Future efforts should be dedicated to improv-
ing the community detection phase and generating
more abstractive sentences, probably by harness-
ing Deep Learning. However, the lack of large
training sets for the meeting domain is an obsta-
cle to the use of neural approaches.
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