
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 590–600
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

590

Constraining MGbank: Agreement, L-Selection and Supertagging in

Minimalist Grammars

John Torr

School of Informatics
University of Edinburgh

11 Crichton Street, Edinburgh, UK
john.torr@cantab.net

Abstract

This paper reports on two strategies that
have been implemented for improving the
efficiency and precision of wide-coverage
Minimalist Grammar (MG) parsing. The
first extends the formalism presented in
Torr and Stabler (2016) with a mecha-
nism for enforcing fine-grained selectional
restrictions and agreements. The second
is a method for factoring computation-
ally costly null heads out from bottom-up
MG parsing; this has the additional bene-
fit of rendering the formalism fully com-
patible for the first time with highly effi-
cient Markovian supertaggers. These tech-
niques aided in the task of generating MG-
bank, the first wide-coverage corpus of
Minimalist Grammar derivation trees.

1 Introduction

Parsers based on deep grammatical formalisms,
such as CCG (Steedman and Baldridge, 2011) and
HPSG (Pollard and Sag, 1994), exhibit superior
performance on certain semantically crucial (un-
bounded) dependency types when compared to
those with relatively shallow context free gram-
mars (in the spirit of Collins (1997) and Char-
niak (2000)) or, in the case of modern dependency
parsers (McDonald and Pereira (2006), Nivre et
al. (2006)), no explicit formal grammar at all
(Rimell et al. (2009), Nivre et al. (2010)). As
parsing technology advances, the importance of
correctly analysing these more complex construc-
tion types will also inevitably increase, making re-
search into deep parsing technology an important
goal within NLP.

One deep grammatical framework that has not
so far been applied to NLP tasks is the Minimalist
Grammar (MG) formalism (Stabler, 1997). Lin-

guistically, MG is a computationally-oriented for-
malization of many aspects of Chomsky’s (1995)
Minimalist Program, arguably still the dominant
framework in theoretical syntax, but so far con-
spicuously absent from NLP conferences. Part of
the reason for this has been that until now no Min-
imalist treebank existed on which to train efficient
statistical Minimalist parsers.

The Autobank (Torr, 2017) system was de-
signed to address this issue. It provides a GUI
for creating a wide-coverage MG together with a
module for automatically generating MG trees for
the sentences of the Wall Street Journal section of
the Penn Treebank (PTB) (Marcus et al., 1993),
which it does using an exhaustive bottom-up MG
chart parser1. This system has been used to cre-
ate MGbank, the first wide coverage (precision-
oriented) Minimalist Grammar and MG treebank
of English, which consists of 1078 hand-crafted
MG lexical categories (355 of which are phoneti-
cally null) and currently covers approximately half
of the WSJ PTB sentences. A problem which
arose during its construction was that without any
statistical model to constrain the derivation, MG
parsing had to be exhaustive, and this presented
some significant efficiency challenges once the
grammar grew beyond a certain size2, mainly be-
cause of the problem of identifying the location
and category of phonetically silent heads (equiva-
lent to type-changing unary rules) allowed by the
theory. This problem was particularly acute for the
MGbank grammar, which makes extensive use of
such heads to multiply out the lexicon during pars-

1The parser is based on Harkema’s (2001) CKY variant.
2As Cramer and Zhang (2010) (who pursue a similar tree-

banking strategy for HPSG) observe, there is very often con-
siderable tension between the competing goals of efficiency
and coverage for deep, hand-written and precision-oriented
parsers, which aim not only to provide detailed linguistic
analyses for grammatical sentences, but also to reject un-
grammatical ones wherever possible.

591

ing. This approach reduces the amount of time
needed for manual annotation, and also enables
the parser to better generalise to unseen construc-
tions, but it can quickly lead to an explosion in the
search space if left unconstrained.

This paper provides details on two strategies
that were developed for constraining the hypoth-
esis space for wide-coverage MG parsing. The
first of these is an implementation of the sorts
of selectional restrictions3 standardly used by
other formalisms, which allow a head to spec-
ify certain fine-grained properties about its argu-
ments. Pesetsky (1991) refers to this type of fine-
grained selection as l(exical)-selection, in con-
trast to coarser-grained c(ategory)-selection and
semantic s-selection. The same system is also
used here to enforce morphosyntactic agreements,
such as subject-verb agreement4 and case ‘assign-
ment’. It is simpler and flatter than the structured
feature value matrices one finds in formalisms
such as HPSG and LFG, which arguably makes
it less linguistically plausible. However, it is also
considerably easier to read and to annotate, which
greatly facilitated the manual treebanking task.

The second technique to be presented is a
method for extracting a set of complex overt cate-
gories from a corpus of MG derivation trees which
has the dual effect of factoring computationally
costly null heads out from parsing (but not from
the resulting parse trees) and rendering MGs fully
compatible for the first time with existing su-
pertagging techniques. Supertagging was origi-
nally introduced in Bangalore and Joshi (1999) for
the Lexicalised Tree Adjoining Grammar (LTAG)
formalism (Schabes et al., 1988), and involves
applying Markovian part-of-speech tagging tech-
niques to strongly lexicalised tag sets that are
much larger and richer than the 45 tags used by
the PTB. Because each supertag contains a great
deal of information about the syntactic environ-
ment of the word it labels, such as its subcatego-
rization frame, supertagging is sometimes referred
to as ‘almost parsing’. It has proven highly ef-
fective at making CCG (Clark and Curran, 2007;
Lewis et al., 2016; Xu, 2016; Wu et al., 2017) pars-
ing in particular efficient enough to support large-
scale NLP tasks, making it desirable to apply this

3These were briefly introduced in Torr (2017), but are ex-
pounded here in much greater depth.

4The approach to agreement adopted here differs in var-
ious respects from the operation Agree (Chomsky (2000)
(2001)) assumed in current mainstream Minimalism.

technique to MGs. However, existing supertag-
gers can only tag what they can see, presenting a
problem for MGs, which include phonetically un-
pronounced heads. Our extraction algorithm ad-
dresses this by anchoring null heads to overt ones
within complex LTAG-like supertag categories.

The paper is arranged as follows: section 2
gives an informal overview of MGs; section 3 in-
troduces the selectional mechanisms and shows
how these are used in MGbank to enforce case
‘assignment’ (3.1), l-selection (3.2) and subject-
verb agreement (3.3); section 4 presents the al-
gorithm for extracting supertags from a corpus of
MG derivation trees (4.1), gives details of how a
standard CKY MG parser can straightforwardly be
adapted to make use of these complex tags (4.2),
and presents some preliminary supertagging re-
sults (4.3) and a discussion of these (4.4); section
5 concludes the paper.

2 Minimalist Grammars

For a more detailed and formal account of the MG
formalism assumed in this paper, see Torr and Sta-
bler (2016) (henceforth T&S); here we give only
an informal overview. MG is introduced in Sta-
bler (1997); it is a strongly lexicalised formalism
in which categories are comprised of lists of struc-
ture building features ordered from left to right.
These features must be checked against each other
and deleted during the derivation, except for a sin-
gle c feature on the complementizer (C) heading
the sentence, which survives intact (equivalent to
reaching the S root in classical CFG parsing). Fea-
tures are checked and deleted via the application of
a small set of abstract Merge and Move rules. Two
simple MG lexical entries are given below (The ::
is a type identifier5):

him :: d
helps :: d= v

The structure building features themselves can
be categorized into four classes: selector =x/x=
features, selectee x features, licensor +y features,
and licensee -y features. In a directional MG, such
as that presented in T&S, the = symbol on the se-
lector can appear on either side of the x category
symbol, and this indicates whether selection is to
the left or to the right. For instance, in our toy lexi-
con helps’s first feature is a d= selector, indicating
that it is looking for a DP on its right. Since the

5:: indicates a non-derived item and : a derived one.

592

first feature of him is a d selectee, we can merge
these two words to obtain the following VP cate-
gory, where ✏ is the empty string (The reason for
the commas separating the left and right depen-
dent string components from the head string com-
ponent is to allow for subsequent head movement
of the latter (see Stabler (2001)):

✏, helps, him : v

The strings of the two merged elements have
been here been concatenated, but this will not al-
ways be the case. In particular, if the selected item
has additional features behind its selectee, then it
will need to check these in subsequent derivational
steps via applications of Move. In that case the
two constituents must be kept separate within a
single expression following Merge. To illustrate
this, we will update the lexicon as follows:

him :: d -case
helps :: d= +CASE v

Merging these two items results in the following
expression:

✏, helps, ✏ : +CASE v, him : -case

The two subconstituents, separated above by the
rightmost comma, are referred to as chains; the
leftmost chain in any expression is the head of
the expression; all other chains are movers. The
+CASE licensor on the head chain must now at-
tract a chain within the expression with a matching
-case licensee as its first feature to move overtly
to its left dependent (specifier) position6. Exactly
one moving chain must satisfy this condition, or
this expression will be unable to enter into any
further operations (if more than one chain has
the same licensee feature, it will violate a con-
straint on MG derivations known as the Shortest
Move Constraint (SMC) and automatically be dis-
carded). As this condition is satisfied by just him’s

6Uppercase licensors specify overt movement; lowercase
licensors, by contrast, trigger covert movement, where only
the features move, not the string (see T&S). Note that the
MGbank grammar follows Chomsky’s (2008) suggestion that
it is the lexical verb V, rather than the null ‘little v’ head gov-
erning it, which checks the object’s features, having inherited
the relevant licensors (offline we assume) from v. This uni-
fies the analysis of standard transitives with ECM construc-
tions (Jack expected Mary to help), which in MGbank involve
overt raising of the subject of the embedded infinitival clause
to spec-VP to check accusative case (object control Jack per-
suaded Mary to help involves two such movements, the first
for theta and the second for case).

-case feature, we can perform the unary operation
Move on this expression, resulting in the following
new, single-chained expression:

him, helps, ✏ : v

We can represent these binary Merge and unary
Move operations using the MG derivation tree in
fig 1a. Derivation trees such as this are used fre-
quently in work on Stablerian Minimalist Gram-
mars, but they can be deterministically mapped
into phrase structure trees like fig 1b7.

him, helps, ✏ : v

✏, helps, ✏ : +CASE v, him : -case

✏, him, ✏ : d -case✏, helps, ✏ :: d= +CASE v

(a) VP

V’

DPi

t

V

helps

DPi

him

(b)

Figure 1: An MG Derivation tree for the VP him, helps
(a); and its corresponding Xbar phrase structure tree (b). At
this stage in the derivation the verb and its object are incor-
rectly ordered. This will be rectified by subsequent V-to-v
head movement placing the verb to the left of its object.

To continue this derivation and derive the transi-
tive sentence he helps him, we will expand our lex-
icon with the following categories, where square
brackets indicate a null head and a > diacritic on a
selector feature indicates that a variant of Merge is
triggered in which the head string of the selected
constituent undergoes head movement to the left
of the selecting constituent’s head string:

he :: d -case
[trans] :: >v= =d lv8

[pres] :: lv= +CASE t
[decl] :: t= c

The full derivation tree and corresponding Xbar
phrase structure tree for the sentence are given in
fig 2 and fig 3 respectively.

3 Case, L-selection and Agreement

3.1 Case ‘Assignment’

Notice that at present both the nominative and ac-
cusative forms of the masculine personal pronoun

7MGbank includes MG derivation tree, MG derived (bare
phrase structure) tree, and Xbar tree formats.

8Note that little v is written as lv in MGbank derivation
trees because upper vs lowercase letters are used to trigger
different rules. In the corresponding MGbank Xbar trees,
however, v has been converted to V and lv to v, to make these
trees more familiar.

593

✏, [decl], he [pres] helps [trans] him : c

he, [pres], helps [trans] him : t

✏, [pres], helps [trans] him : +CASE t, he : -case

✏, helps [trans], him : lv, he : -case

✏, helps [trans], him : =d lv

him, helps, ✏ : v

✏, helps, ✏ : +CASE v, him : -case

✏, him ✏, :: d -case✏, helps, ✏ :: d= +CASE v

✏, [trans], ✏ :: >v= =d lv

✏, he, ✏ :: d -case

✏, [pres], ✏ :: lv= +CASE t

✏, [decl], ✏ :: t= c

Figure 2: MG derivation tree for the sentence he helps him.

CP

TP

T’

vP

v’

VP

V’

DPj

t

Vk

t

DPj

him

v

v

[trans]

Vk

helps

DPi

t

T

[pres]

DPi

he

C

[decl]

Figure 3: Xbar phrase structure tree for the sentence he
helps him.

in our lexicon have the same feature sequence.
This means that as well as correctly generating
he helps him, our grammar also overgenerates him
helps he. One way to solve this would be to split
+/-case features into +/-nom and +/-acc. However,
many items of category d in English (e.g. the, a,
you, there, it) are syncretised (i.e. have the same
phonetic form) for nominative vs. accusative case.
This solution therefore lacks elegance as it ex-
pands the lexicon with duplicate homophonic en-
tries differing in just a single (semantically mean-
ingless) feature. Furthermore, increasing the size
of the set k of licensees could adversely impact
parsing efficiency, given that the worst case the-
oretical time complexity of MG chart parsing is
known to be n

2k+3 (Fowlie and Koller, 2017),
where k is the number of moving chains allowed
in any single expression by the grammar.

Instead, we will retain the single -case licensee
feature and introduce NOM and ACC as subcat-
egories, or selectional properties, of this feature.
We will also subcategorize licensor features using

selectional requirements of the form +X and -X,
where X is some selectional property. Positive +X
features require the presence of the specified prop-
erty on the licensee feature being checked, while
-X features require its absence. For example, con-
sider the following updated lexical entries, where
individual selectional features are separated by the
. symbol:

him :: d -case{ACC}

he :: d -case{NOM}

helps :: d= +CASE{+ACC} v{PRES.TRANS}

[pres] :: lv{+PRES}= +CASE{+NOM} t{FIN.PRES}

[trans] :: >v{+TRANS}= =d lv

The +ACC selectional requirement on the V
head’s +CASE licensor specifies that the object’s
licensee feature must bear an ACC selectional
property, while +NOM on the T(ense) head indi-
cates that the subject’s licensee must have a NOM
property. For SMC purposes, however, these two
different subcategories of -case will still block one
another, meaning that k remains unaffected. The
reader should satisfy themselves that our grammar
now correctly blocks the ungrammatical him helps
he.

We can now also address the aforementioned
syncretism issue without increasing the size of the
grammar. To do this, we simply allow features to
bear multiple selectional properties from the same
paradigm. For example, representing the pronoun
it as follows will allow it to appear in either a nom-
inative or an accusative case licensing position:

it :: d -case{ACC.NOM}

594

3.2 L-selection

As well as constraining Move, selectional restric-
tions can also constrain Merge. For instance, we
can ensure that a subject control verb like want
subcategorizes for a to-infinitival CP complement,
and thereby avoid overgenerating Jack wants that
she help(s), simply by using the following cate-
gories for want and that:

want :: c{+INF}= v{TRANS}
that :: t{+FIN}= c{DECL.FIN}

Because that lacks the INF feature required by
want, the ungrammatical derivation is blocked.
We also need to block *Jack wants she help(s),
where the overt C head is omitted. Minimalists
assume that finite embedded declaratives lacking
an overt C are nevertheless headed by a null C -
a silent counterpart of that. A complicating fac-
tor is that a null complementizer is also assumed
to head certain types of embedded infinitivals, in-
cluding the embedded help clause in Jack wants
[CP to help]. Given that these null C heads are
(trivially) homophones and that they arguably ex-
ist to encode the same illocutionary force9, an el-
egant approach would be to minimize the size of
the lexicon - and hence the grammar - by treat-
ing them as one and the same item. On the other
hand, using a single null C head syncretised with
both FIN and INF will fail to block *Jack wants
she help(s).

At present both C and T are specified as FIN,
suggesting a redundancy. Instead, therefore, we
will assume that T, being the locus of tense, is also
the sole locus of inherent finiteness, but that C’s
selectee may inherit FIN or INF from its TP com-
plement as the derivation proceeds10. Only a null
C which inherits INF from a to-TP complement
will be selectable by a verb like want, blocking the

9Infinitival complementizers are sometimes assumed to
encode irrealis force (see e.g. Radford (2004)) in contrast to
that and its null counterpart which encode declarative force.
However, the fact that Jack expects her to help is (on one
reading) virtually synonymous with Jack expects that she will
help suggests that in both cases the C head is encoding the
same semantic property, with any subtle difference in mean-
ing attributable to the contents of the Tense (T) head (i.e. to
vs. will). Consider also Mary wondered whether to help vs.
Mary wondered whether she should help, where the embed-
ded infinitival and finite clauses are both clearly interrogative.

10If Grimshaw (1991) is correct that functional projections
like DP, TP and CP are part of extended projections of the N
and V heads they most closely c-command, then we should
not be surprised to find instances where fine-grained syntactic
properties are projected up through these functional layers.

ungrammatical *Jack wants she help(s). However,
although lacking inherent tense properties, certain
C heads continue to bear inherent tense require-
ments11; for instance, that’s selector will retain its
inherent +FIN, identifying it as a finite comple-
mentizer.

To implement this percolation12 mechanism, we
now introduce selectional variables, which we
write as x, y, z etc. A variable on a selector or
licensor feature will cause all the selectional prop-
erties and requirements (but not other variables)
contained on the selectee or licensee feature that it
checks to be copied onto all other instances of that
variable on the selecting or licensing category’s
remaining unchecked feature sequence. Consider
the following:

[trans] :: >v{+TRANS.x}= =d lv{x}
[pres] :: lv{+PRES.x}= +CASE{+NOM.x} t{FIN.x}
to :: lv{+BARE.x}= t{INF.x}
[decl] :: t{x}= c{DECL.x}
that :: t{+FIN.x}= c{DECL.x}

The [pres] T head has an x variable on its lv=
selector feature and this same variable also ap-
pears to the right on its +CASE licensor and t se-
lectee; any selectional properties or requirements
contained on the lv selectee of its vP complement
will thus percolate onto these two features (see
fig 4). The x’s on the two C heads will percolate
the FIN property from the t selectee of [pres] to the
c selectee of [decl], where it can be selected for by
a verb like say, but not want, which requires INF
(contained on the to T head); this will correctly
block *Jack wants (that) she help(s).

Although we will not discuss the details here,
it is worth noting that the MGbank grammar also
uses this same percolation mechanism to capture
long distance subcategorization in English sub-
junctives, thereby allowing Jack demanded that
she be there on time while also blocking *Jack de-
manded that she is there on time.

11The property vs. requirement distinction mirrors Chom-
sky’s (1995) interpretable vs. uninterpretable one.

12Note that because we are only allowing selectional prop-
erties and requirements to percolate, rather than the structure
building feature themselves, this system is fundamentally dif-
ferent from that described in Kobele (2005), where it was
shown that allowing licensee features to be percolated leads
to type 0 MGs. Furthermore, by unifying any multiple in-
stances of the same selectional property or requirement that
arise on a structure building feature owing to percolation, we
can ensure that the set of MG terminals and non-terminals
remains finite and thus that the weak equivalence to MCFG
(Michaelis, 1998; Harkema, 2001) is maintained.

595

✏, [pres], helps [trans] him : +CASE{+NOM.PRES.TRANS.+3SG} t{FIN.PRES.TRANS.+3SG}, he : -case{NOM.3SG}

✏, helps [trans], him : lv{PRES.TRANS.+3SG}, he : -case{NOM.3SG}✏, [pres], ✏ :: lv{+PRES.x}= +CASE{+NOM.x} t{FIN.x}

Figure 4: Merge of T with vP with percolation of selectional properties and requirements.

3.3 Subject-Verb Agreement

The percolation mechanism introduced above can
also be used to capture agreement between the
subject and the inflected verb. In Minimalist the-
ory, this agreement is only indirect: the subject
actually agrees directly with T when it moves to
become the latter’s specifier, having been initially
selected for either by V (in the case of non-agent
arguments) or by v (in the case of agent subjects -
see fig 3)13. There is also assumed to be some sort
of syntactic agreement (Roberts (2010)) and/or
phonetic (Chomsky (2001)) process operating be-
tween T and the inflected verb, resulting in any
tense/agreement inflectional material generated in
T(ense) being suffixed onto the finite verb.

In MGbank, tense agreement is enforced be-
tween T and the finite verb by percolating a
PRES or PAST selectional property from the se-
lectee of the latter up through the tree so that
it can be selected for by the [pres] or [past] T
head. Subject-verb agreement, meanwhile, is en-
forced by also placing an agreement selectional

13A reviewer asks why all subjects are not directly se-
lected for by V, suggesting that this appears to be a deviation
from semantics, and more generally calls for some explana-
tion of the underlying modelling decisions adopted here (e.g.
head movements, case movements, null heads etc) which
clearly deviate from the more surface oriented analyses of
other formalisms used in NLP. In many cases these decisions
rest on decades of research which we cannot hope to sum-
marise here; for good introductions to Minimalism, see Rad-
ford (2004) and Hornstein et al. (2005). It is worth noting,
however, that the null v head in fig 3 is essentially a valency
increasing causative morpheme which ends up suffixed to the
main verb (via head movement of the latter), effectively en-
abling it to take an additional ‘external’ argument. We can
therefore view the V-v complex as a single synthetic verbal
head, so that just as in a language like Turkish the verb öl
meaning ‘to die’ can be transformed from an intransitive to a
transitive (meaning ‘to kill’) by appending to it the causative
suffix dür, in English a verb like break can be transformed
from an intransitive (the window broke) to a transitive (he
broke the window) by applying a null version of this mor-
pheme. This cross-linguistic perspective (which makes this
formalism potentially very relevant for machine translation)
reflects a central goal of Minimalism, which is to show that at
a relevant level of abstract representation, all languages share
a common syntax (making them easier for children to learn).
Most of the analyses adopted here are standard ones from
the literature (see e.g. Larson’s (1988) VP Shell Hypothe-
sis, Baker’s (1988) Uniform Theta Assignment Hypothesis,
Koopman and Sportiche’s (1991) Verb Phrase Internal Sub-
ject Hypothesis, and Chomsky (1995; 2008) on little v).

restriction (+3SG, +1PL, -3SG etc) on the finite
verb’s selectee, and then percolating this up to the
+CASE licensor of the T head. We thus have the
following updated entries:

him :: d -case{ACC.3SG}
he :: d -case{NOM.3SG}
helps :: d= +CASE{+ACC} v{+3SG.PRES}

The percolation step from little v (lv) to T is
shown in fig 4; lv has already inherited PRES and
+3SG from V (helps) at this point, and these fea-
tures now percolate to T’s licensor and selectee14

owing to the x variables; the PRES feature inher-
ited from V by v is selected for by T, enforcing
non-local tense agreement between T and V, while
the +3SG enforces subject verb agreement15.

4 MG Supertagging

The above selectional system restricts the parser’s
search space sufficiently well that it is feasible to
generate an initial MG treebank for many of the
sentences in the PTB, particularly the shorter ones
and those longer ones which do not require the
full range of null heads to be allowed into the
chart16. However, for longer sentences requiring
null heads such as extraposers, topicalizers or fo-
calizers, parsing remains impractically slow. In
this section we show how computationally costly
null heads can be factored out from MG parsing al-

14Note that selectional requirements are entirely inert on
selectee and licensee features while, conversely, selectional
properties are inert on selectors and licensors.

15For non-3SG present tense verbs, MGbank uses a -3SG
negative selectional requirement; for verbs with more com-
plex paradigms, however, the grammar allows for inclusive
disjunctive selectional requirements. For example, the se-
lectee feature of the was form of the verb be bears the fea-
ture [+1SG|+3SG], allowing it to take either a first or third
singular subject.

16The Autobank parser holds certain costly null heads back
from the chart and only introduces these incrementally if it
fails to parse the sentence without them. The advantage of
this strategy is that it improves efficiency for many sentences,
but the disadvantage is that it can also result in correct analy-
ses being bled by incorrect ones. The supertagging approach
introduced in this section eliminates this problem, since null
heads are now anchored to overt ones as part of complex cat-
egories, any of which may freely be assigned by the supertag-
ger.

596

together by anchoring them to overt heads within
complex overt categories extracted from this ini-
tial treebank. This allows much more of the dis-
ambiguation work to be undertaken by a statisti-
cal Markovian supertagger17, a strategy which has
proven highly effective at rendering CCG parsing
in particular efficient enough for large-scale NLP
tasks. We also show how a standard CKY MG
parser can be adapted to make use of these com-
plex categories, and present some preliminary su-
pertagging results.

4.1 Factoring null heads out from MG

parsing

Consider again the lexical items which appear
along the spine of the clause in fig 2.

[decl] :: t= c
[pres] :: lv= +CASE t
[trans] :: >v= =d lv
helps :: d= +CASE v

Recall that the null [trans] little v merges with
the VP headed by overt helps, while the null
[pres] T head merges with the vP, and the null
[decl] C with TP. If we view each of these head-
complement merge operations as a link in a chain,
then all of these null heads are either directly (in
the case of v) or indirectly (in the case of T and
C) linked to the overt verb. All of the information
represented on V, v, T and C heads in Minimalism
is in LTAG represented on a single overt lexical
category (known as an initial tree). We can adopt
this perspective for Minimalist parsing if we view
chains of merges that start with some null head
and end with some overt head as constituting com-
plex overt categories. Given a corpus of deriva-
tion trees, it is possible to extract all such chains
appearing in the corpus, essentially precompiling
all of the attested combinations of null heads with
their overt anchors into the lexicon. A very simple
algorithm for doing this is given below.

for each derivation tree ⌧ :
for each null head ⌘ in ⌧ :

if ⌘ is a proform:
linkWithGovernor(⌘);

else:
linkWithHeadOfComplement(⌘);

groupLinksIntoSupertags()
17During treebank generation we used the C&C (Clark and

Curran, 2007) supertagger retrained to take gold CCGbank
categories and words as input and output MGbank supertags.

For each derivation tree, we first anchor all null
heads either directly or indirectly to some overt
head; this is achieved by extracting a set of links,
each of which represents one merge operation in
the tree. Each link is comprised of the two atomic
MG lexical categories that are the arguments to
the merge operation along with matching indices
indicating which features are checked by the op-
eration. Applying the algorithm to our example
sentence would result in the following 3 links:

link1: [decl] :: t=1 c, [pres] :: lv= +CASE t1

link2: [pres] :: lv=2 +CASE t, [trans] :: v= =d lv2

link3: [trans] :: v=3 =d lv, helps :: d= +CASE v3

The majority of null heads are simply linked
with the head of their complement, the only ex-
ception being that null proforms, such as PRO in
arbitrary control constructions18 (named [pro-d]
in MGbank) and the null verbal heads used for
VP ellipsis ([pro-v] in MGbank), are linked to
whichever head selects for them (i.e. their gov-
ernor). Assuming that null proforms are the only
null heads appearing at the bottom of any extended
projection (ep)19 in the corpus, this ensures that all
of the lexical items inside a given supertag are part
of the same ep, except for PRO, which is trivially
an ep in its own right and must therefore be an-
chored to the verb that selects it. Note that some
atomic overt heads (such as he and him in our ex-
ample sentence) will not be involved in any links
and will therefore form simplex supertags.

Once the merge links and unattached overt
heads are extracted, the algorithm then groups
them together in such a way that any lexical items
which are chained together either directly or indi-
rectly by merge links are contained in the same
group. Because links are only formed between
null heads and their complements (except in the
case of the null proform heads), and not between
heads and specifiers or adjuncts, each chain ends
with the first overt head encountered, so that every
(null or overt) head is guaranteed to appear in just
one group and each group is guaranteed to contain
at most one overt lexical item.

The above merge links would form one group,
or supertag, represented compactly as follows:

18Other instances of control are treated as cases of A-
movement following Boeckx et al. (2010).

19Here, we define the clausal extended projection as run-
ning from V up to the closest CP (or TP if CP is absent, as
in ECM constructions), and for nominals from N up to the
closest PP (or DP if PP is absent).

597

[decl] :: t=1 c
[pres] :: lv=2 +CASE t1

[trans] :: v=3 =d lv2

helps :: d= +CASE v3

All of the subcategorization information of the
main verb is contained within this supertag, but
unlike in the case of LTAG categories, this is not
always the case: if an auxiliary verb were present
between little vP and TP, for instance, then only
little v would be anchored to the main verb, while
T and C would be anchored to the structurally
higher auxiliary. C is the head triggering A’-
movements, such as wh-movement and topical-
ization. A consequence of this is that, although
like LTAG (but unlike CCG) A’-movement is lex-
icalised onto an overt category here, that overt
category is often structurally and linearly much
closer to the A’-moved element than in LTAG. For
instance, in the sentence what did she say that
Pete eats for breakfast?, an LTAG would precom-
pile the wh-movement onto the supertag for eats,
whereas here the [int] C head licensing this move-
ment would be precompiled onto did.

As noted in Kasai et al. (2017), LTAG’s lexical-
isation of unbounded A’-movement is one reason
why supertagging has proven more difficult to ap-
ply successfully to TAG than to CCG, Markovian
supertaggers being inherently better at identifying
local dependencies. We hope that lexicalising A’-
movement into a supertag that is linearly closer to
the moved item will therefore ultimately prove ad-
vantageous.

4.2 Adapting an existing CKY MG parser to

use MG supertags

The MG supertags can be integrated into an ex-
isting CKY MG parser quite straight forwardly as
follows: first, for each supertag token assigned to
each word in the sentence, we map the indices that
indicate which features check each other into glob-
ally unique identifiers. This is necessary to ensure
that different supertags and different instances of
the same supertag assigned to different words are
differentiated by the system. Then, whenever one
of the constrained features is encountered, the
parser ensures that it is only checked against the
feature with the matching identifier. The parser
otherwise operates as usual except that thousands
of potential merge operations are now disallowed,
with the result that the search space is drastically
reduced (though this of course depends on the

number of supertags assigned to each word).
One complication concerns the dynamic pro-

gramming of the chart. In standard CKY MG
parsing, as with classical CFG CKY, items with
the same category spanning the same substring are
combined into a single chart entry during parsing.
This prevents the system having to create identical
tree fragments multiple times. But the current ap-
proach complicates this because many items now
have different predetermined futures (i.e. their
unchecked features are differentially constrained),
and when the system later attempts to reconstruct
the trees by following the backpointers, things can
become very complicated. We can avoid this is-
sue, however, simply by treating the unique identi-
fiers that were assigned to certain selector features
as part of the category. This has the effect of split-
ting the categories and will, for instance, prevent
two single chain categories =d1 d= v and =d2 d=
v from being treated as a single chart entry until
their =d features have been checked.

4.3 Preliminary Results

An LSTM supertagger similar to that in (Lewis
et al., 2016) was trained on 13,000 sentences ran-
domly chosen from MGbank, extracting various
types of (super)tag from the derivation trees. A
further 742 sentences were used for development,
and 753 for testing, again randomly chosen. We
tried training on just the automatically generated
corpus and testing on the hand-crafted trees, but
this hurt 1-best performances by 2-4%, no doubt
owing to the fact that this hand-crafted set delib-
erately contains many of the rarer constructions in
the Zipfian tail which didn’t make it into the au-
tomatically generated corpus20. With more data
this effect should lessen. The results for n-best su-
pertagging accuracies are given in table 1.

4.4 Discussion

Unsurprisingly, the accuracies improve as the
number of tags decreases. The CCGbank data
contains by far the least tag types and has the
highest performance. However, it is worth not-
ing that the MG supertags contain a lot more in-
formation than their CCGbank counterparts, even
once A’-movement and selectional restrictions are
removed. For example, MGbank encodes all
predicate-argument relations directly in the syn-
tax, distinguishing for instance between subject

20There are 831 category types in the automatically gener-
ated corpus from a total of 1078 for the entire treebank.

598

rei ab rei-A’ ab-A’ ov ccg
|tags| 3087 2087 1883 1181 717 342
1-best 79.1 81.1 83.0 84.2 88.0 92.4
2-best 88.4 90.2 91.1 91.9 95.3 97.1
3-best 91.6 93.5 94.1 94.8 97.1 98.3

10-best 96.4 97.4 97.9 98.2 99.2 99.5
25-best 97.6 98.5 98.9 99.1 99.7 99.7
40-best 98.0 98.7 99.0 99.4 99.8 99.8

Table 1: Accuracies on different MG (super)tag types showing
the % of cases where the correct tag appears in the n-best list.
The first row gives the number of different (super)tag types in the
data; rei(fied) is supertags with all selectional properties and re-
quirements; ab(stract) is supertags with all but 5 of these features
removed22; -A’ indicates that null C heads, and [focalizer], [topi-
calizer], [wh] and [relativizer] heads were not included in the su-
pertags, thereby delexicalising A’-movement and moving the for-
malism towards CCG; ov(ert) is the (reified) atomic overt tags; ccg
is the ccgbank supertags.

raising and subject control verbs, and between
object raising (ECM) and object control verbs,
whereas CCGbank itself does not. For a fairer
comparison, therefore, we would need to com-
bine CCGbank syntactic types with the seman-
tic types of Bos (Bos et al., 2004). There are
also many types of dependencies, such as those
for rightward movement and correlative focus
(either..or, neither..nor, both..and), which could be
delixicalised to reduce the size of the supertag sets
further. Of course, the more null heads that are
allowed freely into the chart, the stronger the sta-
tistical model of the derivation itself must be. Fi-
nally, the MGbank grammar (particularly in its rei-
fied versions) is precision-oriented, in the sense
that it blocks many ungrammatical sentence types
(agreement/l-selection violations, binding theory
violations, (anti)that-trace violations, wh-island
violations etc). The extra information needed to
attain this precision expands the tag set but should
also ultimately help in pruning the search space,
enabling the parser to try more tags. The CCG-
bank grammar, meanwhile, is much more flexi-
ble (making it very robust), and therefore leaves
a much greater proportion of the task of constrain-
ing the search space to the probability model.

The 1-best accuracies are clearly not high
enough to be practical for wide-coverage MG
parsing at present. By the time the 3-best su-
pertags per word are considered, however, the ac-
curacies are in all cases quite high, and by the 25-
best they are very high, although it is difficult to
say at this point what level will be sufficient for

wide-coverage parsing. The overt atomic tagging
is much better, achieving high accuracy by the 3-
best, but these tags contain the least information
and therefore leave much more disambiguation to
the parsing model. Clearly, using MG supertags
will require an algorithm that navigates the search
space as efficiently as possible and allows the su-
pertagger to try as many tags for each word as pos-
sible. We are in the process of re-implementing
the A* search algorithm of (Lewis and Steedman,
2014), which allows their CCG parser to consider
the complete distribution of 425 supertags for each
word.

The potential efficiency advantages of parsing
with MG supertags are considerable: reparsing
the seed set of 960 trees (which includes 207 sen-
tences which were added to cover some construc-
tions not found in the Penn Treebank) takes over 8
hours on a 1.4GHz Intel Core i5 Macbook Air with
a perfect oracle providing the 1-best overt atomic
tag, but just over 6 minutes using reified supertags.

5 Conclusion

We presented two methods for constraining the
parser’s search space and improving efficiency
during wide-coverage MG parsing. The first ex-
tends the formalism with mechanisms for enforc-
ing morphosyntactic agreements and selectional
restrictions. The second anchors computationally
costly null heads to overt heads inside complex
overt categories, rendering the formalism fully
compatible with Markovian supertagging tech-
niques. Both techniques have proven useful for
the generation of MGbank. We are now working
on an A* MG parser which can consider the full
distribution of supertags for each word and exploit
the potential of these rich lexical categories.

Acknowledgments

A big thank you is due to Mark Steedman, as well
as to the four anonymous reviewers for all their
helpful comments and suggestions. Most espe-
cially, I would like to thank Miloš Stanojević, who
coded up the LSTM supertagger, ran the experi-
ments reported in this paper and made some very
helpful suggestions regarding the supertagging
method described above. This project was sup-
ported by the Engineering and Physical Sciences
Research Council (EPSRC) and an ERC H2020
Advanced Fellowship GA 742137 SEMANTAX
and a Google Faculty Award.

599

References

Mark C Baker. 1988. Incorporation: A theory of gram-
matical function changing. University of Chicago
Press.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing. Computa-
tional Linguistics, 25:237–265.

Cedric Boeckx, Norbert Hornstein, and Jairo Nunes.
2010. Control as Movement. Cambridge University
Press, Cambridge, UK.

Johan Bos, Stephen Clark, Mark Steedman, James R
Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a ccg parser.
In Proceedings of the 20th international conference
on Computational Linguistics, page 1240. Associa-
tion for Computational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Meeting of the
North American Chapter of the Association for
Computational Linguistics, pages 132–139, Seattle,
WA.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, Massachusetts.

Noam Chomsky. 2000. Minimalist inquiries: The
framework. In Roger Martin, David Michaels,
and Juan Uriagereka, editors, Step by Step: Essays
in Minimalist Syntax in Honor of Howard Lasnik,
pages 89–155. MIT Press, Cambridge, MA.

Noam Chomsky. 2001. Derivation by phase. Ken
Hale: A life in language, pages 1–52.

Noam Chomsky. 2008. On phases. In Robert Freidin,
Carlos Peregrin Otero, and Maria Zubizarreta, edi-
tors, Foundational Issues in Linguistic Theory: Es-
says in Honor of Jean-Roger Vergnaud, pages 133–
166. MIT Press.

Stephen Clark and James R Curran. 2007. Wide-
coverage efficient statistical parsing with ccg and
log-linear models. Computational Linguistics,
33(4):493–552.

Michael Collins. 1997. Three generative lexicalized
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Compu-
tational Linguistics, pages 16–23, Madrid. ACL.

B. Cramer and Y. Zhang. 2010. Constraining robust
constructions for broad-coverage parsing with pre-
cision grammars. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(Coling 2010), pages 223–231, Beijing.

Meaghan Fowlie and Alexander Koller. 2017. Parsing
minimalist languages with interpreted regular tree
grammars. In Proceedings of the Thirteenth Inter-
national Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+13), pages 11–20.

Jane Grimshaw. 1991. Extended projection. Unpub-
lished manuscript, Brandeis University, Waltham,
Mass. (Also appeared in J. Grimshaw (2005), Words
and Structure, Stanford: CSLI).

Hendrik Harkema. 2001. Parsing Minimalist Lan-
guages. Ph.D. thesis, UCLA, Los Angeles, Califor-
nia.

Norbert Hornstein, Jairo Nunes, and Kleanthes
Grohmann. 2005. Understanding Minimalism.
Cambridge University Press.

Jungo Kasai, Bob Frank, Tom McCoy, Owen Ram-
bow, and Alexis Nasr. 2017. Tag parsing with neu-
ral networks and vector representations of supertags.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1712–1722.

Gregory M. Kobele. 2005. Features moving madly: A
formal perspective on feature percolation in the min-
imalist program. Research on Language and Com-
putation, 3(4):391–410.

Hilda Koopman and Dominique Sportiche. 1991. The
position of subjects. Lingua, 85(2-3):211–258.

Richard Larson. 1988. On the double object construc-
tion. Linguistic Inquiry, 19:335–392.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
Lstm ccg parsing. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 221–231.

Mike Lewis and Mark Steedman. 2014. A* ccg pars-
ing with a supertag-factored model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
990–1000.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Ryan McDonald and Fernando Pereira. 2006. Discrim-
inative learning and spanning tree algorithms for
dependency parsing. University of Pennsylvania.

Jens Michaelis. 1998. Derivational minimalism is
mildly context–sensitive. In International Confer-
ence on Logical Aspects of Computational Linguis-
tics, pages 179–198. Springer.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of LREC, vol-
ume 6, pages 2216–2219.

Joakim Nivre, Laura Rimell, Ryan McDonald, and Car-
los Gomez-Rodriguez. 2010. Evaluation of depen-
dency parsers on unbounded dependencies. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics, pages 833–841. Associ-
ation for Computational Linguistics.

600

David Pesetsky. 1991. Zero syntax: Vol. 2: Infinitives.
Unpublished MS., MIT.

Carl Pollard and Ivan Sag. 1994. Head Driven Phrase
Structure Grammar. CSLI Publications, Stan-
ford, CA.

Andrew Radford. 2004. Minimalist Syntax: Explor-
ing the Structure of English. Cambridge University
Press.

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 813–821, Singapore. ACL.

Ian G Roberts. 2010. Agreement and head move-
ment: Clitics, incorporation, and defective goals,
volume 59 of Linguistic Inquiry Monograph. MIT
Press.

Yves Schabes, Anne Abeille, and Aravind K Joshi.
1988. Parsing strategies with ‘lexicalized’ gram-
mars: application to tree adjoining grammars. In
Proceedings of the 12th conference on Computa-
tional linguistics-Volume 2, pages 578–583. Asso-
ciation for Computational Linguistics.

Edward Stabler. 1997. Derivational minimalism.
In Logical Aspects of Computational Linguistics
(LACL’96), volume 1328 of Lecture Notes in Com-
puter Science, pages 68–95, New York. Springer.

Edward P. Stabler. 2001. Recognizing head move-
ment. In Logical Aspects of Computational Lin-
guistics: 4th International Conference, LACL 2001,
Le Croisic, France, June 27-29, 2001, Proceedings.,
volume 4, pages 245–260.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. In Robert Borsley and
Kirsti Börjars, editors, Non-Transformational Syn-
tax: A Guide to Current Models, pages 181–224.
Blackwell, Oxford.

John Torr. 2017. Autobank: a semi-automatic anno-
tation tool for developing deep minimalist gram-
mar treebanks. In Proceedings of the EACL 2017
Software Demonstrations, Valencia, Spain, April 3-
7 2017, pages 81–86.

John Torr and Edward P. Stabler. 2016. Coordination
in minimalist grammars: Excorporation and across
the board (head) movement. In Proceedings of the
Twelfth International Workshop on Tree Adjoining
Grammar and Related Formalisms (TAG+12), pages
1–17.

Huijia Wu, Jiajun Zhang, and Chengqing Zong. 2017.
A dynamic window neural network for ccg supertag-
ging. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence (AAAI-17), pages
3337–3343.

Wenduan Xu. 2016. Lstm shift-reduce ccg parsing.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1754–1764.

