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Abstract

To solve math word problems, previous
statistical approaches attempt at learning
a direct mapping from a problem descrip-
tion to its corresponding equation system.
However, such mappings do not include
the information of a few higher-order op-
erations that cannot be explicitly repre-
sented in equations but are required to
solve the problem. The gap between nat-
ural language and equations makes it dif-
ficult for a learned model to generalize
from limited data. In this work we present
an intermediate meaning representation
scheme that tries to reduce this gap. We
use a sequence-to-sequence model with a
novel attention regularization term to gen-
erate the intermediate forms, then execute
them to obtain the final answers. Since the
intermediate forms are latent, we propose
an iterative labeling framework for learn-
ing by leveraging supervision signals from
both equations and answers. Our experi-
ments show using intermediate forms out-
performs directly predicting equations.

1 Introduction

There is a growing interest in math word problem
solving (Kushman et al., 2014; Koncel-Kedziorski
et al., 2015; Huang et al., 2017; Roy and Roth,
2018). It requires reasoning with respect to sets of
numbers or variables, which is an essential capa-
bility in many other natural language understand-
ing tasks. Consider the math problems shown in
Table 1. To solve the problems, one needs to know
how many numbers to be summed up (e.g. “2
numbers/3 numbers”), and the relation between

∗Work done while this author was an intern at Microsoft
Research.

1) The sum of 2 numbers is 18. The first
number is 4 more than the second number.
Find the two numbers.
Equations: x+ y = 18, x = y + 4

2) The sum of 3 numbers is 15. The larger
number is 4 times the smallest and the mid-
dle number is 5. What are the numbers?
Equations: x+ y+ z = 15, x = 4 ∗ z, y = 5

Table 1: Math word problems. Equations have lost
the information of count, max, ordinal operations.

variables (“the first/second number”). However,
an equation system does not encode these infor-
mation explicitly. For example, an equation repre-
sents “the sum of 2 numbers” as (x + y) and “the
sum of 3 numbers” as (x + y + z). This makes
it difficult to generalize to cases unseen from data
(e.g. “the sum of 100 numbers”).

This paper presents a new intermediate meaning
representation scheme for solving math problems,
aiming at closing the semantic gap between natu-
ral language and equations. To generate the inter-
mediate forms, we adapt a sequence-to-sequence
(seq2seq) network following recent work that tries
to generate equations from problem descriptions
for this task. Wang et al. (2017) have shown
that seq2seq models have the power to generate
equations of which problem types do not exist in
training data. In this paper, we propose a new
method which adds an extra meaning representa-
tion and generate an intermediate form as output.
Additionally, we observe that the attention weights
of the seq2seq model repetitively concentrates on
numbers in the problem description. To address
the issue, we further propose to use a form of at-
tention regularization.

To train the model without explicit annotations
of intermediate forms, we propose an iterative la-
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beling framework to leverage signals from both
equations and their solutions. We first derive
possible intermediate forms with ambiguity using
the gold-standard equation systems, and use these
forms for training to get a pre-trained model. Then
we iteratively refine the intermediate forms using
the learned model and the signals from the gold-
standard answers.

We conduct experiments on two publicly avail-
able math problem datasets. Our experimental re-
sults show that using the intermediate forms for
training performs significantly better than directly
mapping problems to equation systems. Further-
more, our iterative labeling framework creates bet-
ter labeled data with intermediate forms for train-
ing, which leads to improved performance.

To summarize, our contributions include:

• We present a new intermediate meaning rep-
resentation scheme for solving math prob-
lems.

• We design an iterative labeling framework to
automatically augment training data with in-
termediate meaning representation.

• We propose using attention regularization in
training to address the issue of incorrect at-
tention in the seq2seq model.

• We verify the effectiveness of our proposed
solutions by conducting experiments and
analysis on real-world datasets.

2 Meaning Representation

In this section, we will compare meaning repre-
sentations for solving math problems and intro-
duce the proposed intermediate meaning represen-
tation.

2.1 Meaning Representations for Math
Problem Solving

We first discuss two meaning representation
schemes for math problem solving.
An equation system is a collection of one or
more equations involving the same set of vari-
ables, which should be considered as highly ab-
stractive symbolic representation.
The Dolphin Language is introduced by Shi et al.
(2015). It contains about 35 math-related classes
and over 200 math-related functions, with addi-
tional classes and functions automatically mined
from Freebase.

Unfortunately, these representation schemes do
not generalize well. Consider the two problems
listed in Table 2. They belong to the same type of
problems asking about the summation of consec-
utive integers. However, their meaning represen-
tations are very different in the Dolphin language
and in equations. On one hand, the Dolphin lan-
guage aligns too closely with natural utterances.
Since the math problem descriptions are diverse
in using various nouns and verbs, Dolphin lan-
guage may represent the same type of problems
differently. On the other hand, an equation system
does not explicitly represent useful problem solv-
ing information such as “number of variables” and
“numbers are consecutive”

2.2 Intermediate Meaning Representation

To bridge the semantic gap between the two mean-
ing representations, we present a new intermedi-
ate meaning representation scheme for math prob-
lem solving. It consists of 6 classes and 23 func-
tions. Here a class is the set of entities with
the same semantic properties and can be inher-
ited (e.g. 2 ∈ int, int v num). A function is
comprised of a name, a list of arguments with cor-
responding types, and a return type. For exam-
ple, there are two overloaded definitions for the
function math#sum (Table 3). These forms can
be constructed by recursively applying joint opera-
tions on functions with class type constraints. Our
representation scheme attempts to borrow the ex-
plicit use of higher-order functions from the Dol-
phin language, while avoiding to be too specific.
Meanwhile, the intermediate forms are not as con-
cise as the equation systems (Table 2). We leave
more detailed definitions to the supplement mate-
rial due to space limit.

3 Problem Statement

Given a math word problem p, our goal is to pre-
dict its answer Ap. For each problem we have an-
notations of both the equation system Ep and the
answer Ap available for training. The latent inter-
mediate form will be denoted as LFp.

We formulate math problem solving as a se-
quence prediction task, taking the sequence of
words in a math problem as input and generating
a sequence of tokens in its corresponding interme-
diate form as output. We then execute the inter-
mediate form to obtain the final answer. We evalu-
ate the task using answer accuracy on two publicly
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Problem 1: Find three consecutive integers with a sum of 267.
Dolphin Language: vf.find(cat(‘integers’), count:3, adj.consecutive, (math#sum(pron.that, 267, det.a)))
Equation: x+ (x+ 1) + (x+ 2) = 267
This work: math#consecutive(3), math#sum(cnt: 3) = 267

Problem 2: What are 5 consecutive numbers total 95?
Dolphin Language: wh.vf.math.total((cat(‘numbers’), count:5, pron.what, adj.consecutive), 95)
Equation: x+ (x+ 1) + (x+ 2) + (x+ 3) + (x+ 4) = 95
This work: math#consecutive(5), math#sum(cnt: 5) = 95

Table 2: Different representations for math problems. Dolphin language is detailed (’all words’). Equa-
tion system is coarse that it represents many functions implicitly, such as “count”, “consecutive”.

Classes
int, float, num, unk, var, list
Functions
ret:int count($1:list): number of variables in $1
ret:var max($1:list): variable of max value in $1
ret:var math#product($1,$2:var): $1 times $2
ret:var math#sum($1:list): sum of variables in $1
ret:var math#sum(cnt:$1:int): sum of $1 unks
Example
Four times the sum of three and a number is 10.
-> math#product(4, math#sum(3, m))=10

Table 3: Examples of classes and functions in our
intermediate representation. “ret” stands for return
type. $1, $2 are arguments with its types.

available math word problem datasets1:

• Number Word Problem (NumWord) is cre-
ated by Shi et al. (2015). It contains 1,878
number word problems (verbally expressed
number problems, such as the examples in
Table 1). Its linear subset (subset of problems
that can be solved by linear equation systems)
has 986 problems, only involving four basic
operations {+,−, ∗, /}.

• Dolphin18K is created by Huang et al. (2016).
It contains 18,711 math word problems col-
lected from Yahoo! Answers2. Since it con-
tains some problems without equations, we
only use the subset of 10,644 problems which
are paired with their equation systems.

1Other small datasets with 4 basic operations {+,−, ∗, /}
and only one unknown variable are considered as subsets of
our datasets.

2https://answers.yahoo.com/

4 Model

In this section, we describe (1) the basic sequence-
to-sequence model, and (2) attention regulariza-
tion.

4.1 Sequence-to-Sequence RNN Model
Our baseline model is based on sequence-to-
sequence learning (Sutskever et al., 2014) with at-
tention (Bahdanau et al., 2015) and copy mecha-
nism (Gulcehre et al., 2016; Gu et al., 2016).
Encoder: The encoder is implemented as a single-
layer bidirectional RNN with gated recurrent units
(GRUs). It reads words one-by-one from the input
problem, producing a sequence of hidden states
hi = [hFi , h

B
i ] with:

hFi = GRU(φin(xi), h
F
i−1), (1)

hBi = GRU(φin(xi), h
B
i+1), (2)

where φin maps each input word xi to a fixed-
dimensional vector.
Decoder with Copying: At each decoding step
j, the decoder receives the word embedding of the
previous word, and an attention function is applied
to attend over the input words as follows:

eji = vT tanh(Whhi +Wssj + battn), (3)

aji =
exp(eji)∑m

i′=1 exp(eji′)
, (4)

cj =

m∑
i=1

ajihi, (5)

where sj is the decoder hidden state. Intuitively,
aji defines the probability distribution of attention
over the input words. They are computed from the
unnormalized attention scores eji. cj is the context
vector, which is the weighted sum of the encoder
hidden states.
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At each step, the model has to decide whether
to generate a word from target vocabulary or to
copy a number from the problem description. The
generation probability pgen is modeled by:

pgen = σ(wT
c cj + wT

s sj + bptr), (6)

where wc, ws and bptr are model parameters.
Next, pgen is used as a soft switch: with proba-
bility pgen the model decides to generate from the
decoder state. The probability distribution over all
words in the vocabulary is:

PRNN = softmax(W [sj , cj ] + b); (7)

with probability 1− pgen the model decides to di-
rectly copy an input word according to its attention
weight. This leads to the final distribution of de-
coder state outputs:

P (wj = w|·) = pgenPRNN (w) + (1− pgen)aji
(8)

4.2 Attention Regularization
In preliminary experiments, we observed that the
attention weights in the baseline model repeti-
tively concentrate on the numbers in the math
problem description (will be discussed in later sec-
tions with Figure 1(a)). To address this issue,
we regularize the accumulative attention weights
for each input token using a rectified linear unit
(ReLU) layer, leading to the regularization term:

AttReg =
∑
i

ReLU(

T∑
j=0

aji − 1), (9)

where ReLU(x) = max(x, 0). This term penal-
izes the accumulated attention weights on specific
locations if it exceeds 1. Adding this term to the
primary loss to get the final objective function:

Loss = −
∑
i

log p(yi|xi; θ) + λ ∗ AttReg (10)

where λ is a hyper-parameter that controls the con-
tribution of attention regularization in the loss.

The format of our attention regularization term
resembles the coverage mechanism used in neural
machine translation (Tu et al., 2016; Cohn et al.,
2016), which encourages the coverage or fertility
control for input tokens.

5 Iterative Labeling

Since explicit annotations of our intermediate
forms do not exist, we propose an iterative label-
ing framework for training.

5.1 Deriving Latent Forms From Equations

We use the annotated equation systems to derive
possible latent forms. First we define some simple
rules that map an expression to our intermediate
form. For example, we use regular expressions to
match numbers and unknown variables. Example
rules are shown in Table 4 (see Section 2 of the
Supplement Material for all rules).

Regex/Rules Class/Function
\-?[0-9\.]+ num
[a-z] unk
<num>|<unk> var
(<var>\+)+<var> math#sum($1:list)
(<unk>\+)+<unk> math#sum
$1=count of unk (cnt:$1:int)

Table 4: Example rules for deriving latent forms
from equation system.

5.2 Ambiguity in Derivation

For one equation system, several latent form
derivations are possible. Take the following math
problem as an example:

Find 3 consecutive integers that 3 times
the sum of the first and the third is 79.

Given the annotation of its equation
3 ∗ (x + (x + 2)) = 79, there are two pos-
sible latent intermediate forms:
1) math#consecutive(3), math#product(3,
math#sum(ordinal(1), ordinal(3)))=79
2) math#consecutive(3), math#product(3,
math#sum(min(), max()))=79

There exist two types of ambiguities: a) opera-
tor ambiguity. (x+2) may correspond to the op-
erator “ordinal(3)” or “max()”; b) alignment am-
biguity. For each “3” in the intermediate form,
it is unclear which “3” in the input to be copied.
Therefore, we may derive multiple intermediate
forms with spurious ones for a training problem.

We can see from Table 5 that both datasets
we used have the issue of ambiguity, containing
about 20% of problems with operator ambiguity
and 10% of problems with alignment ambiguity.

5.3 Iterative Labeling

To address the issue of ambiguity, we perform an
iterative procedure where we search for correct in-
termediate forms to refine the training data. The
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Dataset Ambiguous Ambig. #LF
oper align (per prob)

NumWord
28.0% 10.2% 3.67

(Linear)
NumWord

26.9% 9.5% 4.29
(All)

Dolphin18K 35.9% 9.6% 3.86

Table 5: Statistics of latent forms on two datasets.
The percentage of problems with operator and
alignment ambiguity is shown in the 2nd and 3rd
columns respectively. We also show the average
number of intermediate forms of problems with
derivation ambiguity in the rightmost column.

intuition is that a better model will lead to more
correct latent form outputs, and more correct latent
forms in training data will lead to a better model.

Algorithm 1 Iterative Labeling

Require:
(1) Tuples of (math problem description, equa-
tion system, answer) Dn = {(pi, Epi , Api)}
(2) Possible latent forms PLF = {(p0, LF 1

p0),
(p0, LF

2
p0), ..., (pn, LF

m
pn)}

(3) Beam size B
(4) training iterations Niter, pre-training itera-
tions Npre

Procedure:
for iter = 1 to Niter do

if iter < Npre then
θ←MLE with PLF

else
for (p, LF ) in PLF do

C = Decode B latent forms given p
for j in 1...B do

if Ans(Cj) is correct then
LF ⇐ Cj

break
θ←MLE with relabeled PLF

Algorithm 1 describes our training procedure.
As pre-training, we first update our model by max-
imum likelihood estimation (MLE) with all possi-
ble latent forms for Npre iterations. Ambiguous
and wrong latent forms may appear at this stage.
This pre-training is to ensure faster convergence
and a more stable model. After Npre iterations,
iterative labeling starts. We decode on each train-
ing instance with beam search. We declare Cj to
be the consistent form in the beam if it can be ex-

ecuted to yield the correct answer. Therefore we
can relabel the latent form LF with Cj for prob-
lem p and use the new pairs for training. If there
is no consistent form in the beam, we keep it un-
changed. With iterative labeling, we update our
model by MLE with relabeled latent forms. There
are two conditions of Npre to consider:
(1) Npre = 0, the training starts iterative labeling
without pre-training.
(2) Npre = Niter, the training is pure MLE with-
out iterative labeling.

6 Experiments

In this section, we compare our method against
several strong baseline systems.

6.1 Experiment Setting
Following previous work, experiments are done in
5-fold cross validation: in each run, 20% is used
for testing, 70% for training and 10% for valida-
tion.
Representation To make the task easier with less
auxiliary nuisances (e.g. bracket pairs), we repre-
sent the intermediate forms in Polish notation. 3

Implementation details The dimension of en-
coder hidden state, decoder hidden state and em-
beddings are 100 in NumWord, 512 in Dol-
phin18K. All model parameters are initialized ran-
domly with Gaussian distribution. The hyper-
parameter λ for the weight of attention regulariza-
tion is set to 1.0 on NumWord and 0.4 on Dol-
phin18K. We use SGD optimizer with decaying
learning rate initialized as 0.5. Dropout rate is set
to 0.5. The stopping criterion for training is vali-
dation accuracy with the maximum number of iter-
ations no more than 150. The vocabulary consists
of words observed no less thanN times in training
set. We set N = 1 for NumWord and N = 5 for
Dolphin18K. The beam size is set to 20 in the de-
coding stage. For iterative training, we first train
a model for Npre = 50 iterations for pre-training.
We tune the hyper-parameters on a separate dev
set.

We consider the following models for compar-
isons:

•Wang et al. (2017): a seq2seq model with at-
tention mechanism. As preprocessing, it re-
places numbers in the math problem with
tokens {n1, n2, ...}. It generates equation

3https://en.wikipedia.org/wiki/Polish_
notation

https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/Polish_notation
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as output and recovers {n1, n2, ...} to corre-
sponding numbers in the post-processing.

• Seq2Seq Equ: we implement a seq2seq model
with attention and copy mechanism. Differ-
ent from Wang et al. (2017), it has the ability
to copy numbers from problem description.

• Shi et al. (2015): a rule-based system. It parses
math problems into Dolphin language trees
with predefined grammars and reasons across
trees to get the equations with rules. We re-
port numbers from their paper as the Dolphin
language is not publicly available.

• Huang et al. (2017): the current state-of-the-
art model on Dolphin18K. It is a feature-
based model. It generates candidate equa-
tions and find the most probable equation by
ranking with predefined features.

6.2 Results

Overall results are shown in Table 6. From
the table, we can see that our final model
(Seq2Seq LF+AttReg+Iter) outperforms the
neural-based baseline models (Wang et al.
(2017)4 and Seq2Seq Equ). On Number word
problem dataset, our model already outperforms
the state-of-the-art feature-based model (Huang
et al., 2017) by 40.8% and is comparable to the
ruled-based model (Shi et al., 2015)5.

Advantage of intermediate forms: From the
first two rows, we can see that the seq2seq
model which is trained to generate interme-
diate forms (Seq2Seq LF) greatly outperforms
the same model trained to generate equations
(Seq2Seq Equ). The use of intermediate forms
helps more on NumWord than on Dolphin18K.
This result is expected as the Dolphin18K dataset
is more challenging, containing many other types
of difficulties discussed in Section 6.3.

Effect of Attention Regularization: Attention
regularization improves the seq2seq model on the
two datasets as expected. Figure 1 shows an exam-
ple. The attention regularization does meet the ex-
pectation: the alignments in Fig 1(b) are less con-
centrated on the numbers in the input and more
importantly and alignments are more reasonable.
For example, when generating “math#product” in

4We re-implement this since it is not publicly available.
5The system reports precision and recall. Since all the

problems have answers, its recall equals to our accuracy.

the output, the attention is now correctly focused
on the input token “times”.

Effect of Iterative Labeling: We can see from
Table 6 that iterative labeling clearly contributes to
the accuracy increase on the two datasets. Now we
compare the performance with and without pre-
training in Table 7. When Npre = 0 in Algo-
rithm 1, the model starts iterative labeling from the
first iteration without pre-training. We find that
training with pre-training is substantially better,
as the model without pre-training can be unstable
and may generate misleading spurious candidate
forms.

Next, we compare the performance with pure
MLE training on NumWord (Linear) in Figure 2.
The difference is that after 50 iterations of MLE
training, iterative labeling would refine the latent
forms of training data. In pure MLE training, the
accuracy converges after 130 iterations. By using
iterative labeling, the model achieves the accuracy
of 61.6% at 110th iterations, which is faster to con-
verge and leads to better performance.

Furthermore, to check whether iterative label-
ing actually resolves ambiguities in the intermedi-
ate forms of the training data, we manually sam-
ple 100 math problems with derivation ambigu-
ity. 78% of them are relabeled with correct latent
forms as we have checked. From Table 8, we can
see the latent form of one training problem is iter-
atively refined to the correct one.

6.3 Model Comparisons

To explore the generalization ability of the neu-
ral approach and better guide our future work, we
compare the problems solved by our neural-based
model with the rule-based model (Shi et al., 2015)
and the feature-based model (Huang et al., 2017).

Neural-based v. Rule-based: On NumWord
(ALL), 41.6% of problems can be solved by both
models. 15.5% can only be solved by our neural
model, while the rule-based model generates an
empty or a wrong semantic tree due to the lim-
itations of the predefined grammar. The neural
model is more consistent with flexible word or-
der and insertion of lexical items (e.g. rule-based
model cannot handle the extra word ‘whole’ in
“Find two consecutive whole numbers”).

Neural-based v. Feature-based: On Dol-
phin18K, 9.2% of problems can be solved by both
models. 7.6% can only be solved by our neu-
ral model, which indicates that the neural model
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Models NumWord NumWord Dolphin18K
(Linear) (ALL) (Linear)

Wang et al. (2017) 19.7% 14.6% 10.2%
Seq2Seq Equ 26.8% 20.1% 13.1%
Seq2Seq LF 50.8% 45.2% 13.9%

Seq2Seq LF+AttReg 56.7% 54.0% 15.1%
Seq2Seq LF+AttReg+Iter 61.6% 57.1% 16.8%

Shi et al. (2015) 63.6% 60.2% n/a
Huang et al. (2017) 20.8% n/a 28.4%

Table 6: Performances on two datasets. “LF” means that the model generates latent intermediate forms
instead of equation systems. “AttReg” means attention regularization. “Iter” means iterative labeling.
“n/a” means that the model does not run on the dataset.

(a) seq2seq LF (b) seq2seq LF+AttReg

Figure 1: Example alignments for one problem (darker color represents higher attention score).

NumWord NumWord Dolphin18K
(Linear) (ALL) (Linear)

-pre 58.1% 54.9% 14.9%
+pre 61.6% 57.1% 16.8%

Table 7: Performance with and without pre-
training in iterative labeling.

50 100 150
0.45

0.5

0.55

0.6

0.65

number of iterations

ac
cu

ra
cy

MLE
iterative labeling

Figure 2: Accuracy with different iterations of
training on NumWord (Linear).

can capture novel features that the feature-based
model is missing.

While our neural model is complementary to the
above mentioned models, we observe two main
types of errors (more examples are shown in the
supplementary material):
1. Natural language variations: Same type of
problems can be described in different scenarios.
The two problems: (1) “What is 10 minus 2?” and
(2) “John has 10 apples. How many apples does
John have after giving Mary 2 apples”, lead to the
same equation x = 10 − 2 but with very different
descriptions. With limited size of data, we could
not be expected to cover all possible ways to ask
the same underlining math problems. Although
the feature-based model has considered this with
some features (e.g. POS Tag), the challenge is not
well-addressed.
2. Nested operations: Some problems require
multiple nested operations (e.g. “I think of a num-
ber, double it, add 3, multiply the answer by 3 and
then add on the original number”). The rule-based
model performs more consistently on this.
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Training Problem:
Find 2 0 consecutive integers which the first number is 2 1 more than 2 2 times the second number.
Intermediate form in 1st iteration
(7) math#consecutive(2 0), ordinal(1) = math#sum(“2 0”, math#product(“2 0”, “max()”)
Intermediate form in 51st iteration
(7) math#consecutive(2 0), ordinal(1) = math#sum(2 1, math#product(“2 0”, ordinal(2))
Intermediate form in 101st iteration
(3) math#consecutive(2 0), ordinal(1) = math#sum(2 1, math#product(2 2, ordinal(2))

Table 8: Instance check of intermediate form for one math problem in several training iterations. 2 0
means the the first ‘2’ in the input and so on. Tokens with quote marks mean that they are incorrect.

7 Related Work

Our work is related to two research areas: math
word problem solving and semantic parsing.

7.1 Math Word Problem Solving

There are two major components in this task: (1)
meaning representation; (2) learning framework.

Semantic Representation With the annotation
of equation system, most approaches attempt at
learning a direct mapping from math problem
description to an equation system. There are
other approaches considering an intermediate rep-
resentation that bridges the semantic gap between
natural language and equation system. Bakman
(2007) defines a table of schema (e.g. Transfer-
In-Place, Transfer-In-Ownership) with associated
formulas in natural utterance. A math problem
can be mapped into a list of schema instantiations,
then converted to equations. Liguda and Pfeiffer
(2012) use augmented semantic network to repre-
sent math problems, where nodes represent con-
cepts of quantities and edges represent transition
states. Shi et al. (2015) design a new meaning
representation language called Dolphin Language
(DOL) with over 200 math-related functions and
more additional noun functions. With predefined
rules, these approaches accept limited well-format
input sentences. Inspired by these representations,
our work describes a new formal language which
is more compact and is effective in facilitating bet-
ter machine learning performance.

Learning Framework In rule-based ap-
proaches (Bakman, 2007; Liguda and Pfeiffer,
2012; Shi et al., 2015), they map math prob-
lem description into structures with predefined
grammars and rules.

Feature-based approaches contain two stages:
(1) generate equation candidates; They either re-

place numbers of existing equations in the training
data as new equations (Kushman et al., 2014; Zhou
et al., 2015; Upadhyay et al., 2016), or enumer-
ate possible combinations of math operators and
numbers and variables (Koncel-Kedziorski et al.,
2015), which leads to intractably huge search
space. (2) predict equation with features. For ex-
ample, Hosseini et al. (2014) design features to
classify verbs to addition or subtraction. Roy and
Roth (2015); Roy et al. (2016) leverage the tree
structure of equations. Mitra and Baral (2016);
Roy and Roth (2018) design features for a few
math concepts (e.g. Part-Whole, Comparison).
Roy and Roth (2017) focus on the dependencies
between number units. These approaches requires
manual feature design and the features may be dif-
ficult to be generalized to other tasks.

Recently, there are a few works trying to build
an end-to-end system with neural models. Ling
et al. (2017) consider multiple-choice math prob-
lems and use a seq2seq model to generate rationale
and the final choice (i.e. A, B, C, D). Wang et al.
(2017) apply a seq2seq model to generate equa-
tions with the constraint of single unknown vari-
able. Similarly, we use the seq2seq model but with
novel attention regularization to address incorrect
attention weights in the seq2seq model.

7.2 Semantic Parsing

Our work is also related to the classic set-
tings of learning executable semantic parsers
from indirect supervision (Clarke et al., 2010;
Liang et al., 2011; Artzi and Zettlemoyer, 2011,
2013; Berant et al., 2013; Pasupat and Liang,
2016). Maximum marginal likelihood with beam
search (Kwiatkowski et al., 2013; Pasupat and
Liang, 2016; Ling et al., 2017) is traditionally
used. It maximizes the marginal likelihood of all
consistent logical forms being observed. Recently
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reinforcement learning (Guu et al., 2017; Liang
et al., 2017) has also been considered, which max-
imizes the expected reward over all possible logi-
cal forms. Different from them, we only consider
one single consistent latent form per training in-
stance by leveraging training signals from both the
answer and the equation system, which should be
more efficient for our task.

8 Conclusion

This paper presents an intermediate meaning rep-
resentation scheme for math problem solving that
bridges the semantic gap between natural lan-
guage and equation systems. To generate inter-
mediate forms, we propose a seq2seq model with
novel attention regularization. Without explicit
annotations of latent forms, we design an iterative
labeling framework for training. Experimental re-
sult shows that using intermediate forms is more
effective than directly using equations. Further-
more, our iterative labeling effectively resolves
ambiguities and leads to better performances.

As shown in the error analysis, same types of
problems can have different natural language ex-
pressions. In the future, we will focus on tackling
this challenge. In addition, we plan to expand the
coverage of our meaning representation to support
more mathematic concepts.
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