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Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
isguderg@itu.edu.tr

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, Scotland

steedman@inf.ed.ac.uk

Abstract

Character-level models have become a
popular approach specially for their acces-
sibility and ability to handle unseen data.
However, little is known on their ability to
reveal the underlying morphological struc-
ture of a word, which is a crucial skill for
high-level semantic analysis tasks, such as
semantic role labeling (SRL). In this work,
we train various types of SRL models that
use word, character and morphology level
information and analyze how performance
of characters compare to words and mor-
phology for several languages. We con-
duct an in-depth error analysis for each
morphological typology and analyze the
strengths and limitations of character-level
models that relate to out-of-domain data,
training data size, long range dependen-
cies and model complexity. Our exhaus-
tive analyses shed light on important char-
acteristics of character-level models and
their semantic capability.

1 Introduction

Encoding of words is perhaps the most impor-
tant step towards a successful end-to-end natural
language processing application. Although word
embeddings have been shown to provide bene-
fit to such models, they commonly treat words
as the smallest meaning bearing unit and assume
that each word type has its own vector repre-
sentation. This assumption has two major short-
comings especially for languages with rich mor-
phology: (1) inability to handle unseen or out-of-
vocabulary (OOV) word-forms (2) inability to ex-
ploit the regularities among word parts.

The limitations of word embeddings are par-
ticularly pronounced in sentence-level semantic

tasks, especially in languages where word parts
play a crucial role. Consider the Turkish sen-
tences “Köy+lü-ler (villagers) şehr+e (to town)
geldi (came)” and “Sendika+lı-lar (union mem-
bers) meclis+e (to council) geldi (came)”. Here
the stems köy (village) and sendika (union) func-
tion similarly in semantic terms with respect to the
verb come (as the origin of the agents of the verb),
where şehir (town) and meclis (council) both func-
tion as the end point. These semantic similar-
ities are determined by the common word parts
shown in bold. However ortographic similarity
does not always correspond to semantic similar-
ity. For instance the ortographically similar words
knight and night have large semantic differences.
Therefore, for a successful semantic application,
the model should be able to capture both the regu-
larities, i.e, morphological tags and the irregulari-
ties, i.e, lemmas of the word.

Morphological analysis already provides the
aforementioned information about the words.
However access to useful morphological features
may be problematic due to software licensing
issues, lack of robust morphological analyzers
and high ambiguity among analyses. Character-
level models (CLM), being a cheaper and acces-
sible alternative to morphology, have been re-
ported as performing competitively on various
NLP tasks (Ling et al., 2015; Plank et al., 2016;
Lee et al., 2017). However the extent to which
these tasks depend on morphology is small; and
their relation to semantics is weak. Hence, little is
known on their true ability to reveal the underly-
ing morphological structure of a word and their se-
mantic capabilities. Furthermore, their behaviour
across languages from different families; and their
limitations and strengths such as handling of long-
range dependencies, reaction to model complex-
ity or performance on out-of-domain data are un-
known. Analyzing such issues is a key to fully
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understanding the character-level models.
To achieve this, we perform a case study

on semantic role labeling (SRL), a sentence-
level semantic analysis task that aims to identify
predicate-argument structures and assign mean-
ingful labels to them as follows:

[Villagers]comers came [to town]end point

We use a simple method based on bidirectional
LSTMs to train three types of base semantic role
labelers that employ (1) words (2) characters and
character sequences and (3) gold morphological
analysis. The gold morphology serves as the up-
per bound for us to compare and analyze the per-
formances of character-level models on languages
of varying morphological typologies. We carry
out an exhaustive error analysis for each language
type and analyze the strengths and limitations of
character-level models compared to morphology.
In regard to the diversity hypothesis which states
that diversity of systems in ensembles lead to
further improvement, we combine character and
morphology-level models and measure the perfor-
mance of the ensemble to better understand how
similar they are.

We experiment with several languages with
varying degrees of morphological richness and ty-
pology: Turkish, Finnish, Czech, German, Span-
ish, Catalan and English. Our experiments and
analysis reveal insights such as:

• CLMs provide great improvements over
whole-word-level models despite not be-
ing able to match the performance of
morphology-level models (MLMs) for in-
domain datasets. However their performance
surpass all MLMs on out-of-domain data,

• Limitations and strengths differ by morpho-
logical typology. Their limitations for agglu-
tinative languages are related to rich deriva-
tional morphology and high contextual am-
biguity; whereas for fusional languages they
are related to number of morphological tags
(morpheme ambiguity) ,

• CLMs can handle long-range dependencies
equally well as MLMs,

• In presence of more training data, CLM’s
performance is expected to improve faster
than of MLM.

2 Related Work

Neural SRL Methods: Neural networks have
been first introduced to the SRL scene by Col-
lobert et al. (2011), where they use a unified
end-to-end convolutional network to perform vari-
ous NLP tasks. Later, the combination of neural
networks (LSTMs in particular) with traditional
SRL features (categorical and binary) has been in-
troduced (FitzGerald et al., 2015). Recently, it
has been shown that careful design and tuning
of deep models can achieve state-of-the-art with
no or minimal syntactic knowledge for English
and Chinese SRL. Although the architectures vary
slightly, they are mostly based on a variation of
bi-LSTMs. Zhou and Xu (2015); He et al. (2017)
connect the layers of LSTM in an interleaving pat-
tern where in (Wang et al., 2015; Marcheggiani
et al., 2017) regular bi-LSTM layers are used.
Commonly used features for the encoding layer
are: pretrained word embeddings; distance from
the predicate; predicate context; predicate region
mark or flag; POS tag; and predicate lemma em-
bedding. Only a few of the models (Marcheg-
giani et al., 2017; Marcheggiani and Titov, 2017)
perform dependency-based SRL. Furthermore, all
methods focus on languages with rich resources
and less morphological complexity like English
and Chinese.

Character-level Models: Character-level mod-
els have proven themselves useful for many NLP
tasks such as language modeling (Ling et al.,
2015; Kim et al., 2016), POS tagging (Santos and
Zadrozny, 2014; Plank et al., 2016), dependency
parsing (Dozat et al., 2017) and machine trans-
lation (Lee et al., 2017). However the number
of comparative studies that analyze their relation
to morphology are rather limited. Recently, Va-
nia and Lopez (2017) presented a unified frame-
work, where they investigated the performances of
different subword units, namely characters, mor-
phemes and morphological analysis on language
modeling task. They experimented with lan-
guages of varying morphological typologies and
concluded that the performance of character mod-
els can not yet match the morphological models,
albeit very close. Similarly, Belinkov et al. (2017)
analyzed how different word representations help
learn better morphology and model rare words on
a neural MT task and concluded that character-
based representations are much better for learning
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morphology.

3 Method

Formally, we generate a label sequence ~l for each
sentence and predicate pair: (s, p). Each lt ∈ ~l is
chosen from L = {roles ∪ nonrole}, where roles
are language-specific semantic roles (mostly con-
sistent with PropBank) and nonrole is a symbol
to present tokens that are not arguments. Given θ
as model parameters and gt as gold label for tth
token, we find the parameters that minimize the
negative log likelihood of the sequence:

θ̂ = argmin
θ

(
−

n∑
t=1

log(p(gt|θ, s, p))

)
(1)

Label probabilities, p(lt|θ, s, p), are calculated
with equations given below.First, the word encod-
ing layer splits tokens into subwords via ρ func-
tion.

ρ(w) = s0, s1, .., sn (2)

As proposed by Ling et al. (2015), we treat
words as a sequence of subword units. Then,
the sequence is fed to a simple bi-LSTM net-
work (Graves and Schmidhuber, 2005; Gers et al.,
2000) and hidden states from each direction are
weighted with a set of parameters which are also
learned during training. Finally, the weighted vec-
tor is used as the word embedding given in Eq. 4.

hsf , hsb = bi-LSTM(s0, s1, .., sn) (3)

~w =Wf · hsf +Wb · hsb + b (4)

There may be more than one predicate in the sen-
tence so it is crucial to inform the network of
which arguments we aim to label. In order to mark
the predicate of interest, we concatenate a predi-
cate flag pft to the word embedding vector.

~xt = [~w; pft] (5)

Final vector, ~xt serves as an input to another bi-
LSTM unit.

~hf , hb = bi-LSTM(xt) (6)

Finally, the label distribution is calculated via soft-
max function over the concatenated hidden states
from both directions.

~p(lt|s, p) = softmax(Wl · [ ~hf ; ~hb] + ~bl) (7)

For simplicity, we assign the label with the highest
probability to the input token. 1.

3.1 Subword Units
We use three types of units: (1) words (2) char-
acters and character sequences and (3) outputs of
morphological analysis. Words serve as a lower
bound; while morphology is used as an upper
bound for comparison. Table 1 shows sample out-
puts of various ρ functions. Here, char function

ρ word output
char available <-a-v-a-i-l-a-b-l-e->
char3 available <av-ava-vai-ail-ila-lab-abl-ble-le>
morph-DEU prächtiger [prächtig;Pos;Nom;Sg;Masc]
morph-SPA las [el;postype=article;gen=f;num=p]
morph-CAT la [el;postype=article;gen=f;num=s]
morph-TUR boyundaki [boy;NOUN;A3sg;P3sg;Loc;DB;ADJ]
morph-FIN tyhjyyttä [tyhjyys;Case=Par;Number=Sing]
morph-CZE si [se;SubPOS=7;Num=X;Cas=3]

Table 1: Sample outputs of different ρ functions

simply splits the token into its characters. Similar
to n-gram language models, char3 slides a char-
acter window of width n = 3 over the token.
Finally, gold morphological features are used as
outputs of morph-language. Throughout this pa-
per, we use morph and oracle interchangably, i.e.,
morphology-level models (MLM) have access to
gold tags unless otherwise is stated. For all lan-
guages, morph outputs the lemma of the token fol-
lowed by language specific morphological tags.
As an exception, it outputs additional information
for some languages, such as parts-of-speech tags
for Turkish. Word segmenters such as Morfes-
sor and Byte Pair Encoding (BPE) are other com-
monly used subword units. Due to low scores ob-
tained from our preliminary experiments and un-
satisfactory results from previous studies (Vania
and Lopez, 2017), we excluded these units.

4 Experiments

We use the datasets distributed by LDC for Cata-
lan (CAT), Spanish (SPA), German (DEU), Czech
(CZE) and English (ENG) (Hajič et al., 2012b,a);
and datasets made available by Haverinen et al.
(2015); Şahin and Adalı (2017) for Finnish (FIN)
and Turkish (TUR) respectively 2. Datasets are

1Our implementation can be found at https://
github.com/gozdesahin/Subword_Semantic_
Role_Labeling

2Turkish PropBank is based on previous efforts (Atalay
et al., 2003; Sulubacak et al., 2016; Sulubacak and Eryiğit,
2018; Oflazer et al., 2003; Şahin, 2016b,a)

https://github.com/gozdesahin/Subword_Semantic_Role_Labeling
https://github.com/gozdesahin/Subword_Semantic_Role_Labeling
https://github.com/gozdesahin/Subword_Semantic_Role_Labeling
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#sent #token #pred #role type
CZE 39K 653K 414K 51 F
ENG 39K 958K 179K 38 F
DEU 36K 649K 17K 9 F
SPA 14K 419K 44K 34 F
CAT 13K 384K 37K 35 F
FIN 12K 163K 27K 20 A
TUR 4K 39K 8K 26 A

Table 2: Training data statistics. A: Agglutinative,
F: Fusional

provided with syntactic dependency annotations
and semantic roles of verbal predicates. In ad-
dition, English supplies nominal predicates anno-
tated with semantic roles and does not provide any
morphological feature. Statistics for the training
split for all languages are given in Table 2. Here,
#pred is number of predicates, and #role refers
to number distinct semantic roles that occur more
than 10 times. More detailed statistics about the
datasets can be found in Hajič et al. (2009); Haver-
inen et al. (2015); Şahin and Adalı (2017).

4.1 Experimental Setup
To fit the requirements of the SRL task and of our
model, we performed the following:

Spanish, Catalan: Multiword expressions
(MWE) are represented as a single token, (e.g.,
Confederación Francesa del Trabajo), that
causes notably long character sequences which
are hard to handle by LSTMs. For the sake of
memory efficiency and performance, we used an
abbreviation (e.g., CFdT) for each MWE during
training and testing.

Finnish: Original dataset defines its own
format of semantic annotation, such as
17:PBArgM mod|19:PBArgM mod meaning
the node is an argument of 17th and 19th tokens
with ArgM-mod (temporary modifier) semantic
role. They have been converted into CoNLL-09
tabular format, where each predicate’s arguments
are given in a specific column.

Turkish: Words are splitted from derivational
boundaries in the original dataset, where each in-
flectional group is represented as a separate token.
We first merge boundaries of the same word, i.e,
tokens of the word, then we use our own ρ func-
tion to split words into subwords.

Training and Evaluation: We lowercase all to-
kens beforehand and place special start and end of

the token characters. For all experiments, we ini-
tialized weight parameters orthogonally and used
one layer bi-LSTMs both for subword composi-
tion and argument labeling with hidden size of
200. Subword embedding size is chosen as 200.
We used gradient clipping and early stopping to
prevent overfitting. Stochastic gradient descent is
used as the optimizer. The initial learning rate is
set to 1 and reduced by half if scores on develop-
ment set do not improve after 3 epochs. We use
the provided splits and evaluate the results with
the official evaluation script provided by CoNLL-
09 shared task. In this work (and in most of the
recent SRL works), only the scores for argument
labeling are reported, which may cause confusions
for the readers while comparing with older SRL
studies. Most of the early SRL work report com-
bined scores (argument labeling with predicate
sense disambiguation (PSD)). However, PSD is
considered a simpler task with higher F1 scores 3.
Therefore, we believe omitting PSD helps us gain
more useful insights on character level models.

5 Results and Analysis

Our main results on test and development sets for
models that use words, characters (char), char-
acter trigrams (char3) and morphological analy-
ses (morph) are given in Table 3. We calculate
improvement over word (IOW) for each subword
model and improvement over the best character
model (IOC) for the morph. IOW and IOC values
are calculated on the test set.

The biggest improvement over the word base-
line is achieved by the models that have access to
morphology for all languages (except for English)
as expected. Character trigrams consistently out-
performed characters by a small margin. Same
pattern is observed on the results of the develop-
ment set. IOW has the values between 0% to 38%
while IOC values range between 2%-10% depen-
dending on the properties of the language and the
dataset. We analyze the results separately for ag-
glutinative and fusional languages and reveal the
links between certain linguistic phenomena and
the IOC, IOW values.

3For instance in English CoNLL-09 dataset, 87% of the
predicates are annotated with their first sense, hence even a
dummy classifier would achieve 87% accuracy. The best sys-
tem from CoNLL-09 shared task reports 85.63 F1 on English
evaluation dataset, however when the results of PSD are dis-
carded, it drops down to 81.
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(a) Finnish - Contextual ambiguity

(b) Turkish - Derivational morphology

Figure 1: Differences in model performances on
agglutinative languages

word char char3 morph
F1 F1 IOW% F1 IOW% F1 IOW% IOC%

FI
N 48.91 67.24

37.46
67.78

38.58
71.15

45.47 4.97
51.65 66.82 67.08 71.88

T
U

R 44.82 55.89
24.68

56.60
26.28

59.38
32.48 4.91

43.14 54.48 55.41 58.91

SP
A 64.30 67.90

5.61
68.43

6.42
69.39

7.92 2.25
64.53 67.64 67.64 69.17

C
AT

65.45 70.56
7.82

71.34
9.00

73.24
11.90 2.66

65.67 70.43 70.48 72.36

C
Z

E 63.58 74.04
16.45

74.98
17.93

80.66
26.87 7.58

72.69 74.58 75.59 81.06

D
E

U 54.78 63.71
16.29

65.56
19.68

69.35
26.58 5.77

53.76 62.75 63.70 72.18

E
N

G 81.19 81.61
0.52

80.65
-0.67

- - -
78.67 79.22 78.85 - - -

Table 3: F1 scores of word, character, character
trigram and morphology models for argument la-
beling. Best F1 for each language is shown in
bold. First row: results on test, Second row: re-
sults on development.

Agglutinative languages have many mor-
phemes attached to a word like beads on a
string. This leads to high number of OOV
words and cause word lookup models to fail.
Hence, the highest IOWs by character models
are achieved on these languages: Finnish and
Turkish. This language family has one-to-one
morpheme to meaning mapping with small
orthographic differences (e.g., mış, miş, muş,
müş for past perfect tense), that can be easily
extracted from the data. Even though each
morpheme has only one interpretation, each
word (consisting of many morphemes) has
usually more than one. For instance two pos-
sible analyses for the Turkish word “dolar” are
(1) “dol+Verb+Positive+Aorist+3sg” (it fills),
(2) “dola+Verb+Positive+Aorist+3sg” (he/she
wraps). For a syntactic task, models are not
obliged to learn the difference between the two;
whereas for a semantic task like SRL, they
are. We will refer to this issue as contextual
ambiguity. Another important linguistic issue for
agglutinative languages is the complex interac-
tion between morphology and syntax, which is
usually achieved via derivational morphemes. In
other words, unlike inflectional morphemes that
only give information on word-level semantics,
derivational morphemes provide more clues on
sentence-level semantics. The effects of these
two phenomena on model performances is shown
in Fig. 1. Scores given in Fig. 1 are absolute
F1 scores for each model. For the analysis in
Fig. 1a, we separately calculated F1 scores of
each model on words that have been observed
with at least two different set of morphological
features (ambiguous), and one set of features
(non-ambiguous). Due to the low number of am-
biguous words in Turkish dataset (≤100), it has
been calculated for Finnish only. Similarly, for
the derivational morphology analysis in Fig. 1b,
we have separately calculated scores for sentences
containing derived words (derivational), and
simple sentences without any derivations. Both
analyses show that access to gold morphological
tags (oracle) provided big performance gains
on arguments with contextual ambiguity and
sentences with derived words. Moderate IOC
signals that char and char3 learns to imitate the
“beads” and their “predictable order” on the string
(in the absence of the aforementioned issues).
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Figure 2: x axis: Number of morphological features; y axis: Targeted F1 scores

Fusional languages may have many mor-
phemes in a word. Spanish and Catalan have
relatively low morpheme per word ratio that re-
sults with low OOV% (5.63 and 5.40 for Span-
ish and Catalan respectively); whereas, German
and Czech have OOV% of 7.93 and 7.98 (Hajič
et al., 2009). We observe that IOW by character
models are well aligned with OOV percentages of
the datasets. Unlike agglutinative languages, sin-
gle morpheme can serve multiple purposes in fu-
sional languages. For instance, “o” (e.g., habl-o)
may signal 1st person singular present tense, or
3rd person singular past tense. We count the num-
ber of surface forms with at least two different fea-
tures and use their ratio (#ambiguous forms/#total
forms) as a proxy to morphological complexity of
the language. The complexities are approximated
as 22%, 16%, 15% for Czech, Spanish and Cata-
lan respectively; which are aligned with the ob-
served IOCs. Since there is no unique morpheme
to meaning mapping, generally multiple morpho-
logical tags are used to resolve the morpheme am-
biguity. Therefore there is an indirect relation be-
tween the number of morphological tags used and
the ambiguity of the word. To demonstrate this
phenomena, we calculate targeted F1 scores on
arguments with varying number of morphologi-
cal features. Results using feature bins of [1-2],
[3-4] and [5-6] are given in Fig. 2. As the num-
ber of features increase, the performance gap be-
tween oracle and character models grows dramati-
cally for Czech and Spanish, while it stays almost
fixed for Finnish. This finding suggests that high
number of morphological tags signal the vague-
ness/complex cases in fusional languages where
character models struggle; and also shows that the
complexity can not be directly explained by num-
ber of morphological tags for agglutinative lan-
guages. German is known for having many com-
pound words and compound lemmas that lead to
high OOV% for lemma; and also is less ambigu-

ous (9%). Therefore we would expect a lower
IOC. However, the evaluation set consists only of
550 predicates and 1073 arguments, hence small
changes in prediction lead to dramatic percentage
changes.

5.1 Similarity between models

One way to infer similarity is to measure diver-
sity. Consider a set of baseline models that are
not diverse, i.e., making similar errors with sim-
ilar inputs. In such a case, combination of these
models would not be able to overcome the biases
of the learners, hence the combination would not
achieve a better result. In order to test if character
and morphological models are similar, we com-
bine them and measure the performance of the en-
semble. Suppose that a prediction pi is generated
for each token by a model mi, i ∈ n, then the final
prediction is calculated from these predictions by:

pfinal = f(p0, p1, .., pn|φ) (8)

where f is the combining function with parame-
ter φ. The simplest global approach is averaging
(AVG), where f is simply the mean function and
pis are the log probabilities. Mean function com-
bines model outputs linearly, therefore ignores the
nonlinear relation between base models/units. In
order to exploit nonlinear connections, we learn
the parameters φ of f via a simple linear layer fol-
lowed by sigmoid activation. In other words, we
train a new model that learns how to best combine
the predictions from subword models. This en-
semble technique is generally referred to as stack-
ing or stacked generalization (SG). 4

Although not guaranteed, diverse models can
be achieved by altering the input representation,

4To train the SG model, we have used one linear layer
with 64 hidden units followed by sigmoid nonlinear activa-
tion. Weights are orthogonally initialized and optimized via
adam algorithm with a learning rate of 0.02 for 25 epochs.
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char+char3 char+oracle char3+oracle
Avg SG IOB% Avg SG IOB% Avg SG IOB%

Czech 76.24 76.26 2.03 80.36 81.06 0.49 80.57 81.10 0.55
Finnish 70.31 70.29 4.58 72.73 72.88 2.42 72.72 73.02 2.62
Turkish 59.43 59.39 6.34 61.98 62.07 4.53 60.56 60.74 2.28
Spanish 70.01 70.05 3.16 71.80 71.75 3.47 71.64 71.62 3.24
Catalan 72.79 72.71 2.03 74.80 74.82 2.16 75.15 75.18 2.66
German 66.84 66.97 2.15 71.02 71.16 2.62 71.31 71.25 2.84

Table 4: Results of ensembling via averaging (Avg) and stack generalization (SG). IOB: Improvement
Over Best of baseline models

the learning algorithm, training data or the hyper-
parameters. To ensure that the only factor con-
tributing to the diversity of the learners is the input
representation, all parameters, training data and
model settings are left unchanged.

Our results are given in Table 4. IOB shows
the improvement over the best of the baseline
models in the ensemble. Averaging and stack-
ing methods gave similar results, meaning that
there is no immediate nonlinear relations between
units. We observe two language clusters: (1)
Czech and agglutinative languages (2) Spanish,
Catalan, German and English. The common prop-
erty of that separate clusters are (1) high OOV%
and (2) relatively low OOV%. Amongst the first
set, we observe that the improvement gained by
character-morphology ensembles is higher (shown
with green) than ensembles between characters
and character trigrams (shown with red), whereas
the opposite is true for the second set of languages.
It can be interpreted as character level models be-
ing more similar to the morphology level mod-
els for the first cluster, i.e., languages with high
OOV%, and characters and morphology being
more diverse for the second cluster.

6 Limitations and Strengths

To expand our understanding and reveal the limita-
tions and strengths of the models, we analyze their
ability to handle long range dependencies, their re-
lation with training data and model size; and mea-
sure their performances on out of domain data.

6.1 Long Range Dependencies

Long range dependency is considered as an impor-
tant linguistic issue that is hard to solve. Therefore
the ability to handle it is a strong performance in-
dicator. To gain insights on this issue, we mea-
sure how models perform as the distance between
the predicate and the argument increases. The unit
of measure is number of tokens between the two;

and argument is defined as the head of the argu-
ment phrase in accordance with dependency-based
SRL task. For that purpose, we created bins of
[0-4], [5-9], [10-14] and [15-19] distances. Then,
we have calculate F1 scores for arguments in each
bin. Due to low number of predicate-argument
pairs in buckets, we could not analyze German
and Turkish; and also the bin [15-19] is only used
for Czech. Our results are shown in Fig. 3. We
observe that either char or char3 closely follows
the oracle for all languages. The gap between the
two does not increase with the distance, suggest-
ing that the performance gap is not related to long
range dependencies. In other words, both charac-
ters and the oracle handle long range dependencies
equally well.

6.2 Training Data Size

We analyzed how char3 and oracle models per-
form with respect to the training data size. For that
purpose, we trained them on chunks of increas-
ing size and evaluate on the provided test split.
We used units of 2000 sentences for German and
Czech; and 400 for Turkish. Results are shown
in Fig. 4. Apparently as the data size increases,
the performances of both models logarithmically
increase - with a varying speed. To speak in statis-
tical terms, we fit a logarithmic curve to the ob-
served F1 scores (shown with transparent lines)
and check the x coefficients, where x refers to the
number of sentences. This coefficient can be con-
sidered as an approximation to the speed of growth
with data size. We observe that the coefficient
is higher for char3 than oracle for all languages.
It can be interpreted as: in the presence of more
training data, char3 may surpass the oracle; i.e.,
char3 relies on data more than the oracle.

6.3 Out-of-Domain (OOD) Data

As part of the CoNLL09 shared task (Hajič et al.,
2009), out of domain test sets are provided for
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Figure 3: X axis: Distance between the predicate and the argument, Y axis: F1 scores on argument labels

Figure 4: Performance of units w.r.t training data size. X axis: Number of sentences, Y axis: F1 score

word char IOW% char3 IOW% oracle IOW% IOC%
CZE 69.97 72.98 4.30 73.24 4.67 72.28 3.30 -1.31
DEU 51.50 57.05 10.78 55.75 8.24 38.51 -25.24 -45.17
ENG 66.47 68.83 0.70 70.22 0.23 - - -

Table 5: F1 scores on out of domain data. Best
scores are shown with bold.

three languages: Czech, German and English. We
test our models trained on regular training dataset
on these OOD data. The results are given in Ta-
ble 5. Here, we clearly see that the best model has
shifted from oracle to character based models. The
dramatic drop in German oracle model is due to
the high lemma OOV rate which is a consequence
of keeping compounds as a single lemma. Czech
oracle model performs reasonably however is un-
able to beat the generalization power of the char3
model. Furthermore, the scores of the character
models in Table 5 are higher than the best OOD
scores reported in the shared task (Hajič et al.,
2009); even though our main results on evaluation
set are not (except for Czech). This shows that
character-level models have increased robustness
to out-of-domain data due to their ability to learn
regularities among data.

6.4 Model Size

Throughout this paper, our aim was to gain in-
sights on how models perform on different lan-
guages rather than scoring the highest F1. For
this reason, we used a model that can be consid-
ered small when compared to recent neural SRL
models and avoided parameter search. However,

char3 oracle
F1 I (%) F1 I (%)

Finnish ` = 1 67.78 71.15
` = 2 67.62 -0.2 75.71 6.4

Turkish ` = 1 56.60 59.38
` = 2 56.93 0.5 61.02 2.7

Spanish ` = 1 68.43 69.39
` = 2 69.30 1.3 71.56 3.1

Catalan ` = 1 71.34 73.24
` = 2 71.71 0.5 74.84 2.2

Table 6: Effect of layer size on model perfor-
mances. I: Improvement over model with one
layer.

we wonder how the models behave when given
a larger network. To answer this question, we
trained char3 and oracle models with more layers
for two fusional languages (Spanish, Catalan), and
two agglutinative languages (Finnish, Turkish).
The results given in Table 6 clearly shows that
model complexity provides relatively more benefit
to morphological models. This indicates that mor-
phological signals help to extract more complex
linguistic features that have semantic clues.

6.5 Predicted Morphological Tags

Although models with access to gold morpho-
logical tags achieve better F1 scores than char-
acter models, they can be less useful a in real-
life scenario since they require gold tags at test
time. To predict the performance of morphology-
level models in such a scenario, we train the
same models with the same parameters with pre-
dicted morphological features. Predicted tags
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Figure 5: F1 scores for best-char (best of the
CLMs) and model with predicted (predicted-
morph) and gold morphological tags (gold-
morph).

were only available for German, Spanish, Catalan
and Czech. Our results given in Fig. 5, show that
(except for Czech), predicted morphological tags
are not as useful as characters alone.

7 Conclusion

Character-level neural models are becoming the
defacto standard for NLP problems due to their
accessibility and ability to handle unseen data. In
this work, we investigated how they compare to
models with access to gold morphological analy-
sis, on a sentence-level semantic task. We eval-
uated their quality on semantic role labeling in a
number of agglutinative and fusional languages.
Our results lead to the following conclusions:

• For in-domain data, character-level mod-
els cannot yet match the performance of
morphology-level models. However, they
still provide considerable advantages over
whole-word models,

• Their shortcomings depend on the morphol-
ogy type. For agglutinative languages, their
performance is limited on data with rich
derivational morphology and high contextual
ambiguity (morphological disambiguation);
and for fusional languages, they struggle on
tokens with high number of morphological
tags,

• Similarity between character and
morphology-level models is higher than
the similarity within character-level (char
and char-trigram) models on languages with
high OOV%; and vice versa,

• Their ability to handle long-range dependen-
cies is very similar to morphology-level mod-
els,

• They rely relatively more on training data
size. Therefore, given more training data
their performance will improve faster than
morphology-level models,

• They perform substantially well on out of do-
main data, surpassing all morphology-level
models. However, relatively less improve-
ment is expected when model complexity is
increased,

• They generally perform better than models
that only have access to predicted/silver mor-
phological tags.
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Gözde Gül Şahin was a PhD student at Istanbul
Technical University and a visiting research stu-
dent at University of Edinburgh during this study.
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Jan Hajič, Maria A. Martı́, Lluis Marquez, Joakim
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menting Universal Dependency, Morphology and
Multiword Expression Annotation Standards for
Turkish Language Processing. Turkish Journal of
Electrical Engineering Computer Sciences pages 1–
23.
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