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Abstract

We present a new neural sequence-to-
sequence model for extractive summa-
rization called SWAP-NET (Sentences
and Words from Alternating Pointer Net-
works). Extractive summaries comprising
a salient subset of input sentences, often
also contain important key words. Guided
by this principle, we design SWAP-NET
that models the interaction of key words
and salient sentences using a new two-
level pointer network based architecture.
SWAP-NET identifies both salient sen-
tences and key words in an input docu-
ment, and then combines them to form the
extractive summary. Experiments on large
scale benchmark corpora demonstrate the
efficacy of SWAP-NET that outperforms
state-of-the-art extractive summarizers.

1 Introduction

Automatic summarization aims to shorten a text
document while maintaining the salient informa-
tion of the original text. The practical need for
such systems is growing with the rapid and con-
tinuous increase in textual information sources in
multiple domains.

Summarization tools can be broadly classified
into two categories: extractive and abstractive.
Extractive summarization selects parts of the in-
put document to create its summary while ab-
stractive summarization generates summaries that
may have words or phrases not present in the
input document. Abstractive summarization is
clearly harder as methods have to address fac-
tual and grammatical errors that may be intro-
duced and problems in utilizing external knowl-
edge sources to obtain paraphrasing or generaliza-
tion. Extractive summarizers obviate the need to

solve these problems by selecting the most salient
textual units (usually sentences) from the input
documents. As a result, they generate summaries
that are grammatically and semantically more ac-
curate than those from abstractive methods. While
they may have problems like incorrect or unclear
referring expressions or lack of coherence, they
are computationally simpler and more efficient to
generate. Indeed, state-of-the-art extractive sum-
marizers are comparable or often better in per-
formance to competitive abstractive summarizers
(see (Nallapati et al., 2017) for a recent empirical
comparison).

Classical approaches to extractive summariza-
tion have relied on human-engineered features
from the text that are used to score sentences
in the input document and select the highest-
scoring sentences. These include graph or
constraint-optimization based approaches as well
as classifier-based methods. A review of these ap-
proaches can be found in Nenkova et al. (2011).
Some of these methods generate summaries from
multiple documents. In this paper, we focus on
single document summarization.

Modern approaches that show the best per-
formance are based on end-to-end deep learning
models that do not require human-crafted fea-
tures. Neural models have tremendously improved
performance in several difficult problems in NLP
such as machine translation (Chen et al., 2017) and
question-answering (Hao et al., 2017). Deep mod-
els with thousands of parameters require large,
labeled datasets and for summarization this hur-
dle of labeled data was surmounted by Cheng
and Lapata (2016), through the creation of a la-
beled dataset of news stories from CNN and Daily
Mail consisting of around 280,000 documents and
human-generated summaries.

Recurrent neural networks with encoder-
decoder architecture (Sutskever et al., 2014) have
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been successful in a variety of NLP tasks where an
encoder obtains representations of input sequences
and a decoder generates target sequences. At-
tention mechanisms (Bahdanau et al., 2015) are
used to model the effects of different loci in the
input sequence during decoding. Pointer net-
works (Vinyals et al., 2015) use this mechanism
to obtain target sequences wherein each decoding
step is used to point to elements of the input se-
quence. This pointing ability has been effectively
utilized by state-of-the-art extractive and abstrac-
tive summarizers (Cheng and Lapata, 2016; Nalla-
pati et al., 2016; See et al., 2017).

In this work, we design SWAP-NET a new
deep learning model for extractive summarization.
Similar to previous models, we use an encoder-
decoder architecture with attention mechanism to
select important sentences. Our key contribution is
to design an architecture that utilizes key words in
the selection process. Salient sentences of a doc-
ument, that are useful in summaries, often con-
tain key words and, to our knowledge, none of
the previous models have explicitly modeled this
interaction. We model this interaction through a
two-level encoder and decoder, one for words and
the other for sentences. An attention-based mech-
anism, similar to that of Pointer Networks, is used
to learn important words and sentences from la-
beled data. A switch mechanism is used to select
between words and sentences during decoding and
the final summary is generated using a combina-
tion of selected sentences and words. We demon-
strate the efficacy of our model on the CNN/Daily
Mail corpus where it outperforms state-of-the-art
extractive summarizers. Our experiments also
suggest that the semantic redundancy in SWAP-
NET generated summaries is comparable to that
of human-generated summaries.

2 Problem Formulation

Let D denote an input document, comprising of
a sequence of N sentences: s1, . . . , sN . Ignor-
ing sentence boundaries, let w1, . . . , wn be the se-
quence of n words in document D. An extractive
summary aims to obtain a subset of the input sen-
tences that forms a salient summary.

We use the interaction between words and sen-
tences in a document to predict important words
and sentences. Let the target sequence of in-
dices of important words and sentences be V =
v1, . . . , vm, where each index vj can point to ei-

ther a sentence or a word in an input document.
We design a supervised sequence-to-sequence
recurrent neural network model, SWAP-NET,
that uses these target sequences (of sentences
and words) to learn salient sentences and key
words. Our objective is to find SWAP-NET model
parameters M that maximize the probability
p(V |M,D) =

∏
j p(vj |v1, . . . , vj−1,M,D) =∏

j p(vj |v<j ,M,D). We omit M in the following
to simplify notation. SWAP-NET predicts both
key words and salient sentences, that are subse-
quently used for extractive summary generation.

3 Background

We briefly describe Pointer Networks (Vinyals
et al., 2015). Our approach, detailed in the follow-
ing sections, uses a similar attention mechanism.

Given a sequence of n vectors X = x1, ....xn
and a sequence of indices R = r1, ....rm, each
between 1 and n, the Pointer Network is an
encoder-decoder architecture trained to maximize
p(R|X; θ) =

∏m
j=1 pθ(rj |r1, ....rj−1,X; θ), where

θ denotes the model parameters. Let the en-
coder and decoder hidden states be (e1, ...., en)
and (d1, ...., dm) respectively. The attention vec-
tor at each output step j is computed as follows:

uji = vT tanh(Weei +Wddj), i ∈ (1, . . . , n)

αji = softmax(uji ), i ∈ (1, . . . , n)

The softmax normalizes vector uj to be an atten-
tion mask over inputs. In a pointer network, the
same attention mechanism is used to select one of
the n input vectors with the highest probability, at
each decoding step, thus effectively pointing to an
input:

p(rj |r1, ....rj−1,X) = softmax(uj)

Here, v,Wd, and We are learnable parameters of
the model.

4 SWAP-NET

We use an encoder-decoder architecture with an
attention mechanism similar to that of Pointer Net-
works. To model the interaction between words
and sentences in a document we use two encoders
and decoders, one at the word level and the other
at the sentence level. The sentence-level decoder
learns to point to important sentences while the
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Figure 1: SWAP-NET architecture. EW: word encoder, ES: sentence encoder, DW: word decoder, DS:
sentence decoder, Q: switch. Input document has words [w1, . . . , w5] and sentences [s1, s2]. Target
sequence shown: v1 = w2, v2 = s1, v3 = w5. Best viewed in color.

word-level decoder learns to point to important
words. A switch mechanism is trained to select ei-
ther a word or a sentence at each decoding step.
The final summary is created using the output
words and sentences. We now describe the details
of the architecture.

4.1 Encoder

We use two encoders: a bi-directional LSTM at
the word level and a LSTM at the sentence level.
Each word wi is represented by a K-dimensional
embedding (e.g., via word2vec), denoted by xi.
The word embedding xi is encoded as ei using
bi-directional LSTM for i = 1, . . . , n. The vec-
tor output of BiLSTM at the end of a sentence
is used to represent that entire sentence, which is
further encoded by the sentence-level LSTM as
Ek = LSTM(ekl , Ek−1), where kl is the index
of the last word in the kth sentence in D and Ek
is the hidden state at the kth step of LSTM, for
k = 1, . . . , N . See figure 1.

4.2 Decoder

We use two decoders – a sentence-level and a
word-level decoder, that are both LSTMs, with
each decoder pointing to sentences and words re-

spectively (similar to a pointer network). Thus, we
can consider the output of each decoder step to be
an index in the input sequence to the encoder. Let
m be the number of steps in each decoder. Let
T1, . . . , Tm be the sequence of indices generated
by the sentence-level decoder, where each index
Tj ∈ {1, . . . , N}; and let t1, . . . , tm be the se-
quence of indices generated by the word-level de-
coder, where each index tj ∈ {1, . . . , n}.

4.3 Network Details
At the jth decoding step, we have to select a
sentence or a word which is done through a bi-
nary switch Qj that has two states Qj = 0 and
Qj = 1 to denote word and sentence selection re-
spectively. So, we first determine the switch prob-
ability p(Qj |v<j , D). Let αskj denote the proba-
bility of selecting the kth input sentence at the jth

decoding step of sentence decoder:

αskj = p(Tj = k|v<j , Qj = 1, D),

and let αwij denote the probability of selecting the
ith input word at the jth decoding step of word
decoder:

αwij = p(tj = i|v<j , Qj = 0, D),
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Figure 2: Illustration of word and sentence level attention in the second decoder step (Eq. 1 and Eq. 2).
Purple: attention on words, Orange: attention on sentences, Unidirectional dotted arrows: attention from
previous step, Bidirectional arrows: attention from previous and to present step. Best viewed in color.

both conditional on the corresponding switch
selection. We set vj based on the probability
values:

vj =

{
k = argmaxk p

s
kj if maxk p

s
kj > maxi p

w
ij

i = argmaxi p
w
ij if maxi p

w
ij > maxk p

s
kj

pskj = αskjp(Qj = 1|v<j , D),

pwij = αwijp(Qj = 0|v<j , D).

These probabilities are obtained through the at-
tention weight vectors at the word and sentence
levels and the switch probabilities:

αwij = softmax(vTt φ(whhj + wtei)),

αskj = softmax(V T
T φ(WHHj +WTEk)).

Parameters vt, wh, wt, VT ,WH and WT are
trainable parameters. Parameters hj and Hj are
the hidden vectors at the jth step of the word-
level and sentence-level decoder respectively de-
fined as:

hj = LSTM(hj−1, aj−1, φ(Aj−1)) (1)

Hj = LSTM(Hj−1, Aj−1, φ(aj−1)) (2)

where aj =
∑n

i=0 α
w
ijei, Aj =

∑N
k=0 α

s
kjEk.

The non-linear transformation, φ (we choose
tanh), is used to connect the word-level encod-
ings to the sentence decoder and the sentence-level
encodings to the word decoder. Specifically, the
word-level decoder updates its state by consider-
ing a sum of sentence encodings, weighted by the
attentions from the previous state and mutatis mu-
tandis for the sentence-level decoder.

The switch probability p(Qj |v<j , D) at the jth

decoding step is given by:

p(Qj = 1|v<j , D) =

σ(wTQ(Hj−1, Aj−1, φ(hj−1, aj−1)))

p(Qj = 0|v<j , D) = 1− p(Qj = 1|v<j , D)

where wQ is a trainable parameter and σ denotes
the sigmoid function and φ is the chosen non-
linear transformation (tanh).

During training the loss function lj at jth

step is set to lj = − log(pskjq
s
j + pwijq

w
j ) −

log p(Qj |v<j , D). Note that at each decoding
step, switch is either qwj = 1, qsj = 0 if the jth

output is a word or qwj = 0, qsj = 1 if the jth out-
put is a sentence. The switch probability is also
considered in the loss function.
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4.4 Summary Generation

Given a document whose summary is to be gen-
erated, its sentences and words are given as input
to the trained encoder. At the jth decoding step,
either a sentence or a word is chosen based on
the probability values αskj and αwij and the switch
probability p(Qj |v<j , D). We assign importance
scores to the selected sentences based on their
probability values during decoding as well as the
probabilities of the selected words that are present
in the selected sentences. Thus sentences with
words selected by the decoder are given higher im-
portance. Let the kth input sentence sk be selected
at the jth decoding step and ith input word wi be
selected at the lth decoding step. Then the impor-
tance of sk is defined as

I(sk) = αskj + λ
∑
wi∈sk

αwil (3)

In our experiments we choose λ = 1. The final
summary consists of three sentences with the high-
est importance scores.

5 Related Work

Traditional approaches to extractive summariza-
tion rely on human-engineered features based on,
for example, part of speech (Erkan and Radev,
2004) and term frequency (Nenkova et al., 2006).
Sentences in the input document are scored us-
ing these features, ranked and then selected for
the final summary. Methods used for extractive
summarization include graph-based approaches
(Mihalcea, 2005) and Integer Linear Program-
ming (Gillick and Favre, 2009). There are many
classifier-based approaches that select sentences
for the extractive summary using methods such
as Conditional Random Fields (Shen et al., 2007)
and Hidden Markov models (Conroy and O’leary,
2001). A review of these classical approaches can
be found in Nenkova et al. (2011).

End-to-end deep learning based neural models
that can effectively learn from text data, without
human-crafted features, have witnessed rapid de-
velopment, resulting in improved performance in
multiple areas such as machine translation (Chen
et al., 2017) and question-answering (Hao et al.,
2017), to name a few. Large labelled corpora
based on news stories from CNN and Daily Mail,
with human generated summaries have become
available (Cheng and Lapata, 2016), that have

spurred the use of deep learning models in sum-
marization. Recurrent neural network based ar-
chitectures have been designed for both extractive
(Cheng and Lapata, 2016; Nallapati et al., 2017)
and abstractive (See et al., 2017; Tan et al., 2017)
summarization problems. Among these, the work
of Cheng and Lapata (2016) and Nallapati et al.
(2017) are closest to our work on extractive single-
document summarization.

An encoder-decoder architecture with an atten-
tion mechanism similar to that of a pointer net-
work is used by Cheng and Lapata (2016). Their
hierarchical encoder uses a CNN at the word level
leading to sentence representations that are used in
an RNN to obtain document representations. They
use a hierarchical attention model where the first
level decoder predicts salient sentences used for
an extractive summary and based on this output,
the second step predicts keywords which are used
for abstractive summarization. Thus they do not
use key words for extractive summarization and
for abstractive summarization they generate key
words based on sentences predicted independently
of key words. SWAP-NET, in contrast, is simpler
using only two-level RNNs for word and sentence
level representations in both the encoder and de-
coder. In our model we predict both words and
sentences in such a way that their attentions inter-
act with each other and generate extractive sum-
maries considering both the attentions. By model-
ing the interaction between these key words and
important sentences in our decoder architecture,
we are able to extract sentences that are closer to
the gold summaries.

SummaRuNNer, the method developed by Nal-
lapati et al. (2017) is not similar to our method in
its architecture but only in the aim of extractive
summary generation. It does not use an encoder-
decoder architecture; instead it is an RNN based
binary classifier that decides whether or not to
include a sentence in the summary. The RNN
is multi-layered representing inputs, words, sen-
tences and the final sentence labels. The decision
of selecting a sentence at each step of the RNN
is based on the content of the sentence, salience
in the document, novelty with respect to previ-
ously selected sentences and other positional fea-
tures. Their approach is considerably simpler than
that of Cheng and Lapata (2016) but obtains sum-
maries closer to the gold summaries, and addi-
tionally, facilitates interpretable visualization and
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training from abstractive summaries. Their exper-
iments show improved performance over both ab-
stractive and extractive summarizers from several
previous models (Nallapati et al., 2017).

We note that several elements of our architec-
ture have been introduced and used in earlier work.
Pointer networks (Vinyals et al., 2015) used the at-
tention mechanism of (Bahdanau et al., 2015) to
solve combinatorial optimization problems. They
have also been used to point to sentences in ex-
tractive (Cheng and Lapata, 2016) and abstractive
(Nallapati et al., 2016; See et al., 2017) summa-
rizers. The switch mechanism was introduced to
incorporate rare or out-of-vocabulary words (Gul-
cehre et al., 2016) and are used in several summa-
rizers (e.g. (Nallapati et al., 2016)). However, we
use it to select between word and sentence level
decoders in our model.

The importance of all the three interactions:
(i) sentence-sentence, (ii) word-word and (iii)
sentence-word, for summarization, have been
studied by Wan et al. (2007) using graph-based
approaches. In particular, they show that meth-
ods that account for saliency using both the fol-
lowing considerations perform better than meth-
ods that consider either one of them alone, and
SWAP-NET is based on the same principles.

• A sentence should be salient if it is heav-
ily linked with other salient sentences, and a
word should be salient if it is heavily linked
with other salient words.

• A sentence should be salient if it contains
many salient words, and a word should be
salient if it appears in many salient sentences.

6 Data and Experiments

6.1 Experimental Settings
In our experiments the maximum number of words
per document is limited to 800, and the maximum
number of sentences per document to 50 (padding
is used to maintain the length of word sequences).
We also use the symbols <GO> and <EOS> to
indicate start and end of prediction by decoders.
The total vocabulary size is 150,000 words.

We use word embeddings of dimension 100 pre-
trained using word2vec (Mikolov et al., 2013) on
the training dataset. We fix the LSTM hidden state
size at 200. We use a batch size of 16 and the
ADAM optimizer (Kingma and Ba, 2015) with pa-
rameters: learning rate = 0.001, β1 = 0.9, β2 =

0.999 to train SWAP-NET. We employ gradient
clipping to regularize our model and an early stop-
ping criterion based on the validation loss.

During training we find that SWAP-NET learns
to predict important sentences faster than to pre-
dict words. To speed up learning of word proba-
bilities, we add the term− logαwij to our loss func-
tion lj in the final iterations of training. It is pos-
sible to get the same sentence or word in multi-
ple (usually consecutive) decoding steps. In that
case, in Eq. 3 we consider the maximum value
of alpha obtained across these steps and calculate
maximum scores of distinct sentences and words.

We select 3 top scoring sentences for the sum-
mary, as there are 3.11 sentences on average in the
gold summary of the training set (similar to set-
tings used by others, e.g., (Narayan et al., 2017)).

6.2 Baselines
Two state-of-the-art methods for extractive sum-
marization are SummaRuNNer (Nallapati et al.,
2017) and NN, the neural summarizer of Cheng
and Lapata (2016). SummaRuNNer can also pro-
vide extractive summaries while being trained ab-
stractively (Nallapati et al., 2017); we denote this
method by SummaRuNNer-abs. In addition, we
compare our method with the Lead-3 summary
which consists of the first three sentences from
each document. We also compare our method
with an abstractive summarizer that uses a sim-
ilar attention-based encoder-decoder architecture
(Nallapati et al., 2016), denoted by ABS.

6.3 Benchmark Datasets
For our experiments, we use the CNN/DailyMail
corpus (Hermann et al., 2015). We use the
anonymized version of this dataset, from Cheng
and Lapata (2016), which has labels for important
sentences, that are used for training. To obtain
labels for words, we extract keywords from each
gold summary using RAKE, an unsupervised key-
word extraction method (Rose et al., 2010). These
keywords are used to label words in the corre-
sponding input document during training. We re-
place numerical values in the documents by zeros
to limit the vocabulary size.

We have 193,986 training documents, 12,147
validation documents and 10,346 test documents
from the DailyMail corpus and 83,568 training
documents, 1,220 validation documents and 1,093
test documents from CNN subset with labels for
sentences and words.
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6.4 Evaluation Metrics
We use the ROUGE toolkit (Lin and Hovy, 2003)
for evaluation of the generated summaries in com-
parison to the gold summaries. We use three vari-
ants of this metric: ROUGE-1 (R1), ROUGE-2
(R2) and ROUGE-L (RL) that are computed by
matching unigrams, bigrams and longest common
subsequences respectively between the two sum-
maries. To compare with (Cheng and Lapata,
2016) and (Nallapati et al., 2017) we use limited
length ROUGE recall at 75 and 275 bytes for the
Daily-Mail test set, and full length ROUGE-F1
score, as reported by them.

6.5 Results on Benchmark Datasets
Performance on Daily Mail Data

Models R1 R2 RL
Lead-3 21.9 7.2 11.6

NN 22.7 8.5 12.5
SummaRuNNner-abs 23.8 9.6 13.3

SummaRuNNner 26.2 10.8 14.4
SWAP-NET 26.4 10.7 14.4

Table 1: Performance on Daily-Mail test set using
the limited length recall of Rouge at 75 bytes.

Models R1 R2 RL
Lead-3 40.5 14.9 32.6

NN 42.2 17.3 34.8
SummaRuNNner-abs 40.4 15.5 32.0

SummaRuNNner 42.0 16.9 34.1
SWAP-NET 43.6 17.7 35.5

Table 2: Performance on Daily-Mail test set using
the limited length recall of Rouge at 275 bytes.

Table 1 shows the performance of SWAP-NET,
state-of-the-art baselines NN and SummaRuNNer
and other baselines, using ROUGE recall with
summary length of 75 bytes, on the entire Daily
Mail test set. The performance of SWAP-NET is
comparable to that of SummaRuNNer and better
than NN and other baselines. Table 2 compares
the same algorithms using ROUGE recall with
summary length of 275 bytes. SWAP-NET out-
performs both state-of-the-art summarizers Sum-
maRuNNer as well as NN.

Performance on CNN/DailyMail Data
SWAP-NET has the best performance on the com-
bined CNN and Daily Mail corpus, outperforming

Models R1 R2 RL
Lead-3 39.2 15.7 35.5
ABS 35.4 13.3 32.6

SummaRuNNer-abs 37.5 14.5 33.4
SummaRuNNer 39.6 16.2 35.3

SWAP-NET 41.6 18.3 37.7

Table 3: Performance on CNN and Daily-Mail test
set using the full length Rouge F score.

the previous best reported F-score by SummaRuN-
Ner, as seen in table 3, with a consistent improve-
ment of over 2 ROUGE points in all three metrics.

6.6 Discussion

SWAP-NET outperforms state-of-the-art extrac-
tive summarizers SummaRuNNer (Nallapati et al.,
2017) and NN (Cheng and Lapata, 2016) on
benchmark datasets. Our model is similar, al-
though simpler, than that of NN and the main dif-
ference between SWAP-NET and these baselines
is its explicit modeling of the interaction between
key words and salient sentences.

Automatic keyword extraction has been studied
extensively (Hasan and Ng, 2014). We use a pop-
ular and well tested method, RAKE (Rose et al.,
2010) to obtain key words in the training docu-
ments. A disadvantage with such methods is that
they do not guarantee representation, via extracted
keywords, of all the topics in the text (Hasan and
Ng, 2014). So, if RAKE key words are directly
applied to the input test document (without using
word decoder trained on RAKE words, obtained
from gold summary as done in SWAP-NET), then
there is a possibility of missing sentences from the
missed topics. So, we train SWAP-NET to predict
key words and also model their interactions with
sentences.

Statistics Lead-3 SWAP-NET
KW coverage 61.6% 73.8%

Sentences with KW 92.2% 98%

Table 4: Key word (KW) statistics per summary
(average percentage) from 500 documents in Daily
Mail test set. See text for definitions.

We investigate the importance of modeling this
interaction and the role of key words in the final
summary. Table 4 shows statistics that reflect the
importance of key words in extractive summaries.
Key word coverage measures the proportion of key
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Title:
@entity19 vet surprised reason license plate denial

Gold Summary:
@entity9 of @entity10 , @entity1 , wanted to get ’ @entity11 - 0 ’ put on a license plate . that would have
commemorated both @entity9 getting the @entity8 in 0 and his @entity16 . the @entity1 @entity21
denied his request , citing state regulations prohibiting the use of the number 0 because of its indecent
connotations .
SWAP-NET Summary:
@entity9 of @entity10 wanted to get ’ @entity11 ’ put on a license plate , the @entity14

newspaper of @entity10 reported . that would have commemorated both @entity9 getting the
@entity8 in 0 and his @entity16 , according to the newspaper . the @entity1 @entity21
denied his request , citing state regulations prohibiting the use of the number 0 because of its
indecent connotations @entity9 had been an armored personnel carrier ’s gunner during his time in

the @entity29 .

SWAP-NET Key words:
@entity1, @entity9, @entity8, citing, number, year, indecent, personalized, war, surprised, plate, @en-
tity14, @entity11, @entity10, regulations, reported, wanted, connotations, license, request, accord-
ing,@entity21, armored, @entity16

Lead 3 Summary:
a @entity19 war veteran in @entity1 has said he ’s surprised over the reason for the denial of his request
for a personalized license plate commemorating the year he was wounded and awarded a @entity8
. @entity9 of @entity10 wanted to get ’ @entity11 ’ put on a license plate , the @entity14

newspaper of @entity10 reported . that would have commemorated both @entity9 getting the
@entity8 in 0 and his @entity16 , according to the newspaper .

Table 5: Sample gold summary and summaries generated by SWAP-NET and Lead-3. Key words are
highlighted, bold font indicates overlap with gold summary.

words from those in the gold summary present
in the generated summary. SWAP-NET obtains
nearly 74% of the key words. In comparison Lead-
3 has only about 62% of the key words from the
gold summary.

Sentences with key words measures the propor-
tion of sentences containing at least one key word.
It is not surprising that in SWAP-NET summaries
98% of the sentences, on average, contain at least
one key word: this is by design of SWAP-NET.
However, note that Lead-3 which has poorer per-
formance in all the benchmark datasets has much
fewer sentences with key words. This highlights
the importance of key words in finding salient sen-
tences for extractive summaries.

Gold summary Lead-3 SWAP-NET
0.81 0.553 0.8

Table 6: Average pairwise cosine distance be-
tween paragraph vector representations of sen-
tences in summaries.

We also find the SWAP-NET obtains summaries
that have less semantic redundancy. Table 6 shows
the average distance between pairs of sentences
from the gold summary, and summaries generated
from SWAP-NET and Lead-3. Distances are mea-
sured using cosine distance of paragraph vectors
of each sentence (Le and Mikolov, 2014) from
randomly selected 500 documents of the Daily
Mail test set. Paragraph vectors have been found
to be effective semantic representations of sen-
tences (Le and Mikolov, 2014) and experiments in
(Dai et al., 2015) also show that paragraph vectors
can be effectively used to measure semantic sim-
ilarity using cosine distance. For training we use
GENSIM (Řehůřek and Sojka, 2010) with embed-
ding size 200 and initial learning rate 0.025. The
model is trained on 500 documents from Daily-
Mail dataset for 10 epochs and learning rate is de-
creased by 0.002 at each epoch.

The average pair-wise distance of SWAP-NET
is very close to that of the gold summary, both
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nearly 0.8. In contrast, the average pairwise dis-
tance in Lead-3 summaries is 0.553 indicating
higher redundancy. This highly desirable feature
of SWAP-NET is likely due to use of of key words,
that is affecting the choice of sentences in the final
summary.

Table 5 shows a sample gold summary from
the Daily Mail dataset and the generated sum-
mary from SWAP-NET and, for comparison, from
Lead-3. We observe the presence of key words in
all the overlapping segments of text with the gold
summary indicating the importance of key words
in finding salient sentences. Modeling this inter-
action, we believe, is the reason for the superior
performance of SWAP-NET in our experiments.

An implementation of SWAP-NET and all the
generated summaries from the test sets are avail-
able online in a github repository1.

7 Conclusion

We present SWAP-NET, a neural sequence-to-
sequence model for extractive summarization that
outperforms state-of-the-art extractive summariz-
ers SummaRuNNer (Nallapati et al., 2017) and
NN (Cheng and Lapata, 2016) on large scale
benchmark datasets. The architecture of SWAP-
NET is simpler than that of NN but due to its
effective modeling of interaction between salient
sentences and key words in a document, SWAP-
NET achieves superior performance. SWAP-NET
models this interaction using a new two-level
pointer network based architecture with a switch-
ing mechanism. Our experiments also suggest
that modeling sentence-keyword interaction has
the desirable property of less semantic redundancy
in summaries generated by SWAP-NET.
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