
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 19–24
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-4004

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 19–24
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-4004

End-to-End Non-Factoid Question Answering with an Interactive
Visualization of Neural Attention Weights

Andreas Rücklé† and Iryna Gurevych†‡
†Ubiquitous Knowledge Processing Lab (UKP)

Department of Computer Science, Technische Universität Darmstadt
‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)

German Institute for Educational Research
www.ukp.tu-darmstadt.de

Abstract

Advanced attention mechanisms are an im-
portant part of successful neural network
approaches for non-factoid answer selec-
tion because they allow the models to focus
on few important segments within rather
long answer texts. Analyzing attention
mechanisms is thus crucial for understand-
ing strengths and weaknesses of particular
models. We present an extensible, highly
modular service architecture that enables
the transformation of neural network mod-
els for non-factoid answer selection into
fully featured end-to-end question answer-
ing systems. The primary objective of our
system is to enable researchers a way to in-
teractively explore and compare attention-
based neural networks for answer selec-
tion. Our interactive user interface helps
researchers to better understand the capa-
bilities of the different approaches and can
aid qualitative analyses. The source-code
of our system is publicly available.1

1 Introduction

Attention-based neural networks are increasingly
popular because of their ability to focus on the
most important segments of a given input. These
models have proven to be extremely effective in
many different tasks, for example neural machine
translation (Luong et al., 2015; Tu et al., 2016),
neural image caption generation (Xu et al., 2015),
and multiple sub-tasks in question answering (Her-
mann et al., 2015; Tan et al., 2016; Yin et al., 2016;
Andreas et al., 2016).

Attention-based neural networks are especially
successful in answer selection for non-factoid ques-

1https://github.com/UKPLab/
acl2017-non-factoid-qa

tions, where approaches have to deal with complex
multi-sentence texts. The objective of this task is
to re-rank a list of candidate answers according
to a non-factoid question, where the best-ranked
candidate is selected as an answer. Models usually
learn to generate dense vector representations for
questions and candidates, where representations
of a question and an associated correct answer
should lie closely together within the vector space
(Feng et al., 2015). Accordingly, the ranking score
can be determined with a simple similarity met-
ric. Attention in this scenario works by calculating
weights for each individual segment in the input
(attention vector), where segments with a higher
weight should have a stronger impact on the result-
ing representation. Several approaches have been
recently proposed, achieving state-of-the-art results
on different datasets (Dos Santos et al., 2016; Tan
et al., 2016; Wang et al., 2016).

The success of these approaches clearly shows
the importance of sophisticated attention mecha-
nisms for effective answer selection models. How-
ever, it has also been shown that attention mecha-
nisms can introduce certain biases that negatively
influence the results (Wang et al., 2016). As a
consequence, the creation of better attention mech-
anisms can improve the overall answer selection
performance. To achieve this goal, researchers are
required to perform in-depth analyses and compar-
isons of different approaches to understand what
the individual models learn and how they can be
improved. Due to the lack of existing tool-support
to aid this process, such analyses are complex and
require substantial development effort. This impor-
tant issue led us to creating an integrated solution
that helps researchers to better understand the ca-
pabilities of different attention-based models and
can aid qualitative analyses.

In this work, we present an extensible service
architecture that can transform models for non-

19

https://doi.org/10.18653/v1/P17-4004
https://doi.org/10.18653/v1/P17-4004

QA-Frontend

Candidate Ranking

Question Question, Answers,
Attention Weights

Question

HTTP
REST

Candidates

Que
sti

on
, C

an
did

ate
s

Que
sti

on
, A

ns
wers

,

Atte
nti

on
 W

eig
hts

Candidate Retrieval

InsuranceQA StackExchange Model A Model B

Figure 1: A high-level view on our service archi-
tecture.

factoid answer selection into fully featured end-to-
end question answering systems. Our sophisticated
user interface allows researchers to ask arbitrary
questions while visualizing the associated attention
vectors with support for both, one-way and two-
way attention mechanisms. Users can explore dif-
ferent attention-based models at the same time and
compare two attention mechanisms side-by-side
within the same view. Due to the loose coupling
and the strictly separated responsibilities of the
components in our service architecture, our system
is highly modular and can be easily extended with
new datasets and new models.

2 System Overview

To transform attention-based answer selection mod-
els into end-to-end question answering systems,
we rely on a service orchestration that integrates
multiple independent webservices with separate
responsibilities. Since all services communicate
using a well-defined HTTP REST API, our sys-
tem achieves strong extensibility properties. This
makes it simple to replace individual services with
own implementations. A high-level view on our
system architecture is shown in Figure 1. For
each question, we retrieve a list of candidate an-
swers from a given dataset (candidate retrieval).
We then rank these candidates with the answer se-
lection component (candidate ranking), which in-
tegrates the attention-based neural network model
that should be explored. The result contains the top-
ranked answers and all associated attention weights,

which enables us to interactively visualize the at-
tention vectors in the user interface.

Our architecture is similar to the pipelined struc-
tures of earlier work in question answering that
rely on a retrieval step followed by a more expen-
sive supervised ranking approach (Surdeanu et al.,
2011; Higashinaka and Isozaki, 2008). We primar-
ily chose this architecture because it allows the user
to directly relate the results of the system to the an-
swer selection model. The use of more advanced
components (e.g. query expansion or answer merg-
ing) would negate this possibility due to the added
complexity.

Because all components in our extensible ser-
vice architecture are loosely coupled, it is possible
to use multiple candidate ranking services with
different attention mechanisms at the same time.
The user interface exploits this ability and allows
researchers to interactively compare two models
side-by-side within the same view. A screenshot of
our UI is shown in Figure 2, and an example of a
side-by-side comparison is available in Figure 4.

In the following sections, we describe the in-
dividual services in more detail and discuss their
technical properties.

3 Candidate Retrieval

The efficient retrieval of answer candidates is a key
component in our question answering approach. It
allows us to narrow down the search space for more
sophisticated, computationally expensive attention-
based answer selection approaches in the subse-
quent step, and enables us to retrieve answers
within seconds. We index all existing candidates
of the target dataset with ElasticSearch, an open-
source high-performance search engine. Our ser-
vice provides a unified interface for the retrieval
of answer candidates, where we query the index
with the question text using BM25 as a similarity
measure.

The service implementation is based on Scala
and the Play Framework. Our implementation con-
tains data readers that allow to index InsuranceQA
(Feng et al., 2015) and all publicly available dumps
of the StackExchange platform.2 Researchers can
easily add new datasets by implementing a single
data reader class.

Analysis Enabling researchers to directly relate
the results of our question answering system to

2https://archive.org/details/
stackexchange

20

Figure 2: The user interface of our question answering system with the interactive visualization of neural
attention weights. The UI includes several options to adapt the attention visualization.

the answer selection component requires the ab-
sence of major negative influences from the answer
retrieval component. To analyze the potential influ-
ence, we evaluated the list of retrieved candidates
(size 500) for existing questions of InsuranceQA
and of different StackExchange dumps. Questions
in these datasets have associated correct answers,3

which we treat as the ground-truth that should be
included in the retrieved list of candidates. Oth-
erwise it would be impossible for the answer se-
lection model to find the correct answer, and the
results would be negatively affected. Table 1 shows
the number of questions with candidate lists that
include at least one ground-truth answer. Since the
ratio is sufficiently high for all analyzed datasets
(83% to 88%), we conclude that the chosen re-
trieval approach is a valid choice for our end-to-end
question answering system.

4 Candidate Ranking

The candidate ranking service provides an interface
to the attention-based neural network, which the
researcher chose to analyze. It provides a method
to rank a list of candidate answers according to a
given question text. An important property is the

3 For StackExchange, we consider all answers as correct
that have a positive user voting. We only include questions
with a positive user voting and at least one correct answer.

Dataset Candidate Lists with
Ground-Truth

InsuranceQA (v1) 84.1% (13,200/15,687)
InsuranceQA (v2) 83.3% (14,072/16,889)
StackExchange/Travel 85.8% (13,978/16,294)
StackExchange/Cooking 88.0% (12,025/13,668)
StackExchange/Photo 83.0% (10,856/13,079)

Table 1: Performance of the retrieval service for
different datasets.

retrieval of attention vectors from the model. These
values are bundled with the top-ranked answers and
are returned as a result of the service call.

Since our primary objective was to enable re-
searchers to explore different attention-based ap-
proaches, we created a fully configurable and mod-
ular framework that includes different modules to
train and evaluate answer selection models. The
key properties of this framework are:

• Fully configurable with external YAML files.
• Dynamic instantiation and combination of

configured module implementations (e.g. for
the data reader and the model).

• Highly extensible: researchers can integrate
new (TensorFlow) models by implementing a
single class.

• Seamless integration with a webapplication
that implements the service interface.

21

Application

Data Reader

Training

Evaluation

Model

configuration.yaml

Webapp + Server

Starts

Instantiates

Begin

API

Dataset

Figure 3: Our answer selection framework and
candidate ranking service.

Our framework implementation is based on Python
and relies on TensorFlow for the neural network
components. It uses Flask for the service imple-
mentation.

A high-level view on the framework structure is
shown in Figure 3. A particularly important prop-
erty is the dynamic instantiation and combination
of module implementations. A central configu-
ration file is used to define all necessary options
that enable to train and evaluate neural networks
within our framework. An excerpt of such config-
uration is shown in Listing 1. The first four lines
describe the module import paths of the desired im-
plementations. Our framework dynamically loads
and instantiates the configured modules and uses
them to perform the training procedure. The re-
maining lines define specific configuration options
to reference resource paths or to set specific neural
network settings. This modular structure enables a
high flexibility and provides a way to freely com-
bine different models, training procedures, and data
readers.

Additionally, our framework is capable of start-
ing a seamlessly integrated webserver that uses a
configured model to rank candidate answers. Since
model states can be saved, it is possible to load pre-
trained models to avoid a lengthy training process.

5 QA-Frontend and User Interface

The central part of our proposed system is the QA-
Frontend. This component coordinates the other
services and combines them into a fully functional
question answering system. Since our primary
goal was to provide a way to explore and com-
pare attention-based models, we especially focused
on the user interface. Our UI fulfills the following
requirements:

1 da ta−module: d a t a . i n s u r a n c e q a . v2
2 model−module: model . a p l s t m
3 t r a i n i n g −module: t r a i n i n g . dynamic
4 e v a l u a t i o n −module: e v a l u a t i o n . d e f a u l t
5
6 d a t a :
7 map oov: t rue
8 embeddings: d a t a / g l o v e . 6B. 1 0 0 d . t x t
9 i n s u r a n c e q a : d a t a / insuranceQA

10 . . .
11
12 model:
13 l s t m c e l l s i z e : 141
14 margin : 0 . 2
15 t r a i n a b l e e m b e d d i n g s : t rue
16 . . .
17
18 t r a i n i n g :
19 n e g a t i v e a n s w e r s : 50
20 b a t c h s i z e : 20
21 epochs : 100
22 s a v e f o l d e r : c h e c k p o i n t s / a p l s t m
23 d r o p o u t : 0 . 3
24 o p t i m i z e r : adam
25 s c o r e r : a c c u r a c y
26 . . .

Listing 1: An excerpt of a YAML configuration file
for the candidate ranking framework.

• Use a visualization for the attention vectors
similar to Hermann et al. (2015) and Dos San-
tos et al. (2016).

• Support for both, one-way attention mecha-
nisms (Tan et al., 2016) and two-way attention
mechanisms (Dos Santos et al., 2016).

• Enable to query multiple models within the
same view.

• Provide a side-by-side comparison of different
attention-based models.

We implemented the user interface with modern
web technologies, such as Angular, TypeScript, and
SASS. The QA-Frontend service was implemented
in Python with Flask. It is fully configurable and
allows multiple candidate ranking services to be
used at the same time.

A screenshot of our user interface is shown in
Figure 2. In the top row, we include an input field
that allows users to enter the question text. This
input field also contains a dropdown menu to select
the target model that should be used for the can-
didate ranking. This makes it possible to ask the
same question for multiple models and compare
the outputs to gain a better understanding of the
key differences. Below this input field we offer

22

multiple ways to interactively change the attention
visualization. In particular, we allow to change the
sensitivity s and the threshold t of the visualization
component. We calculate the opacity of an atten-
tion highlight oi that corresponds to the weight wi

in position i as follows:

a = min (wstd , wmax − wavg) (1)

oi =

{
s · wi−wavg

a , if wi ≥ wavg + a · t
0, otherwise

(2)

Where wavg, wstd and wmax are the average, stan-
dard deviation and maximum of all weights in the
text. We use a instead of wstd because in rare
cases it can occur that wstd > wmax−wavg, which
would lead to visualizations without fully opaque
positions. These two options make it possible to
adapt the attention visualization to fit the need of
the analysis. For example, it is possible to only
highlight the most important sections by increasing
the threshold. On the other hand, it is also possible
to highlight all segments that are slightly relevant
by increasing the sensitivity and at the same time
reducing the threshold.

When the user hovers over an answer and the
target model employs a two-way attention mecha-
nism, the question input visualizes the associated
attention weights. To get a more in-depth view on
the attention vectors, the user can hover over any
specific word in a text to view the exact value of the
associated weight. This enables numerical compar-
isons and helps to get an advanced understanding
of the employed answer selection model.

Finally, each answer offers the option to com-
pare the attention weights to the output of another
configured model. This action enables a side-by-
side comparison of different attention mechanisms
and gives researchers a powerful tool to explore the
advantages and disadvantages of the different ap-
proaches. A screenshot of a side-by-side visualiza-
tion is shown in Figure 4. It displays two attention
mechanisms that result in very different behavior.
Whereas the model to the left strongly focuses on
few individual words (especially in the question),
the model to the right is less selective and focuses
on more segments that are similar. Our user inter-
face makes it simple to analyze such attributes in
detail.

6 Conclusion

In this work, we presented a highly extensible ser-
vice architecture that can transform non-factoid

answer selection models into fully featured end-to-
end question answering systems. Our key contri-
bution is the simplification of in-depth analyses of
attention-based models to non-factoid answer selec-
tion. We enable researchers to interactively explore
and understand their models qualitatively. This can
help to create more advanced attention mechanisms
that achieve better answer selection results. Besides
enabling the exploration of individual models, our
user interface also allows researchers to compare
different attention mechanisms side-by-side within
the same view.

All components of our system are highly mod-
ular which allows it to be easily extended with
additional functionality. For example, our mod-
ular answer retrieval component makes it simple
to integrate new datasets, and our answer ranking
framework allows researchers to add new models
without requiring to change any other part of the
application.

The source-code of all presented components as
well as the user interface is publicly available. We
provide a documentation for all discussed APIs.

Acknowledgements

This work has been supported by the German Re-
search Foundation as part of the QA-EduInf project
(grant GU 798/18-1 and grant RI 803/12-1). We
gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla K40
GPU used for this research.

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Learning to Compose Neural Net-
works for Question Answering. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics.
pages 1545–1554. https://doi.org/10.18653/v1/N16-
1181.

Cicero Dos Santos, Ming Tan, Bing Xiang, and Bowen
Zhou. 2016. Attentive Pooling Networks. arXiv
preprint https://arxiv.org/abs/1602.03609.

Minwei Feng, Bing Xiang, Michael R. Glass, Li-
dan Wang, and Bowen Zhou. 2015. Applying
deep learning to answer selection: A study and an
open task. In 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding. pages 813–
820. https://doi.org/10.1109/ASRU.2015.7404872.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read

23

Figure 4: A side-by-side comparison of two different attention-based models. It allows the user to quickly
spot the differences of the used models and can be used to better analyze their benefits and drawbacks.

and comprehend. In Advances in Neural Informa-
tion Processing Systems. pages 1693–1701.

Ryuichiro Higashinaka and Hideki Isozaki. 2008.
Corpus-based question answering for why-
questions. In Proceedings of the Third International
Joint Conference on Natural Language Processing.
pages 418–425. http://aclweb.org/anthology/I08-
1055.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing. pages 1412–1421.
https://doi.org/10.18653/v1/D15-1166.

Mihai Surdeanu, Massimiliano Ciaramita, and
Hugo Zaragoza. 2011. Learning to rank an-
swers to non-factoid questions from web
collections. Computational Linguistics 37(2).
http://aclweb.org/anthology/J11-2003.

Ming Tan, Cicero dos Santos, Bing Xiang, and
Bowen Zhou. 2016. Improved representation learn-
ing for question answer matching. In Proceed-
ings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics. pages 464–473.
https://doi.org/10.18653/v1/P16-1044.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua
Liu, and Hang Li. 2016. Modeling Cover-
age for Neural Machine Translation. Proceed-
ings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics pages 76–85.
https://doi.org/10.1145/2856767.2856776.

Bingning Wang, Kang Liu, and Jun Zhao. 2016. Inner
attention based recurrent neural networks for answer

selection. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics.
pages 1288–1297. https://doi.org/10.18653/v1/P16-
1122.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, Attend and
Tell: Neural Image Caption Generation with Visual
Attention. Proceedings of The 32nd International
Conference on Machine Learning pages 2048–2057.
https://doi.org/10.1109/72.279181.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. Abcnn: Attention-based
convolutional neural network for modeling
sentence pairs. Transactions of the Associa-
tion of Computational Linguistics 4:259–272.
http://aclweb.org/anthology/Q16-1019.

24

	End-to-End Non-Factoid Question Answering with an Interactive Visualization of Neural Attention Weights

