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Abstract

Motivated by concerns for user pri-
vacy, we design a steganographic system
(“stegosystem”) that enables two users to
exchange encrypted messages without an
adversary detecting that such an exchange
is taking place. We propose a new linguis-
tic stegosystem based on a Long Short-
Term Memory (LSTM) neural network.
We demonstrate our approach on the Twit-
ter and Enron email datasets and show
that it yields high-quality steganographic
text while significantly improving capac-
ity (encrypted bits per word) relative to the
state-of-the-art.

1 Introduction

The business model behind modern communica-
tion systems (email services or messaging services
provided by social networks) is incompatible with
end-to-end message encryption. The providers of
these services can afford to offer them free of
charge because most of their users agree to receive
“targeted ads” (ads that are especially chosen to
appeal to each user, based on the needs the user
has implied through their messages). This model
works as long as users communicate mostly in the
clear, which enables service providers to make in-
formed guesses about user needs.

This situation does not prevent users from en-
crypting a few sensitive messages, but it does take
away some of the benefits of confidentiality. For
instance, imagine a scenario where two users want
to exchange forbidden ideas or organize forbidden
events under an authoritarian regime; in a world
where most communication happens in the clear,
encrypting a small fraction of messages automat-
ically makes these messages—and the users who
exchange them—suspicious.

With this motivation in mind, we want to de-
sign a system that enables two users to exchange
encrypted messages, such that a passive adversary
that reads the messages can determine neither the
original content of the messages nor the fact that
the messages are encrypted.

We build on linguistic steganography, i.e., the
science of encoding a secret piece of informa-
tion (“payload”) into a piece of text that looks
like natural language (“stegotext”). We propose
a novel stegosystem, based on a neural network,
and demonstrate that it combines high quality of
output (i.e., the stegotext indeed looks like natu-
ral language) with the highest capacity (number of
bits encrypted per word) published in literature.

In the rest of the paper, we describe existing lin-
guistic stegosystems along with ours (§2), provide
details on our system (§3), present preliminary ex-
perimental results on Twitter and email messages
(§4), and conclude with future directions (§5).

2 Linguistic Steganography

In this section, we summarize related work (§2.1),
then present out proposal (§2.2).

2.1 Related Work

Traditional linguistic stegosystems are based on
modification of an existing cover text, e.g., us-
ing synonym substitution (Topkara et al., 2006;
Chang and Clark, 2014) and/or paraphrase sub-
stitution (Chang and Clark, 2010). The idea is
to encode the secret information in the transfor-
mation of the cover text, ideally without affect-
ing its meaning or grammatical correctness. Of
these systems, the most closely related to ours is
CoverTweet (Wilson et al., 2014), a state-of-the-
art cover modification stegosystem that uses Twit-
ter as the medium of cover; we compare to it in
our preliminary evaluation (§4).
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Cover modification can introduce syntactic and
semantic unnaturalness (Grosvald and Orgun,
2011); to address this, Grovsald and Orgun pro-
posed an alternative stegosystem where a human
generates the stegotext manually, thus improving
linguistic naturalness at the cost of human ef-
fort (Grosvald and Orgun, 2011).

Matryoshka (Safaka et al., 2016) takes this fur-
ther: in step 1, it generates candidate stegotext au-
tomatically based on an n-gram model of the En-
glish language; in step 2, it presents the candidate
stegotext to the human user for polishing, i.e., ide-
ally small edits that improve linguistic naturalness.
However, the cost of human effort is still high, be-
cause the (automatically generated) candidate ste-
gotext is far from natural language, and, as a re-
sult, the human user has to spend significant time
and effort manually editing and augmenting it.

Volkhonskiy et al. have applied Generative Ad-
versarial Networks (Goodfellow et al., 2014) to
image steganography (Volkhonskiy et al., 2017),
but we are not aware of any text stegosystem based
on neural networks.

2.2 Our Proposal: Steganographic LSTM
Motivated by the fact that LSTMs (Hochreiter and
Schmidhuber, 1997) constitute the state of the art
in text generation (Jozefowicz et al., 2016), we
propose to automatically generate the stegotext
from an LSTM (as opposed to an n-gram model).
The output of the LSTM can then be used either
directly as the stegotext, or Matryoshka-style, i.e.,
as a candidate stegotext to be polished by a hu-
man user; in this paper, we explore only the for-
mer option, i.e., we do not do any manual polish-
ing. We describe the main components of our sys-
tem in the paragraphs below; for reference, Fig. 1
outlines the building blocks of a stegosystem (Sa-
lomon, 2003).

Figure 1: Stegosystem building blocks.

Secret data. The secret data is the information
we want to hide. First, we compress and/or en-
crypt the secret data (e.g., in the simplest set-
ting using the ASCII coding map) into a secret-

containing bit string S. Second, we divide S
into smaller bit blocks of length |B|, resulting in
a total of |S|/|B|1 bit blocks. For example, if
S = 100001 and |B| = 2, our bit-block sequence
is 10, 00, 01. Based on this bit-block sequence,
our steganographic LSTM generates words.

Key. The sender and receiver share a key that
maps bit blocks to token sets and is constructed
as follows: We start from the vocabulary, which
is the set of all possible tokens that may appear in
the stegotext; the tokens are typically words, but
may also be punctuation marks. We partition the
vocabulary into 2|B| bins, i.e., disjoint token sets,
randomly selected from the vocabulary without re-
placement; each token appears in exactly one bin,
and each bin contains |V |/2|B| tokens. We map
each bit block B to a bin, denoted by WB . This
mapping constitutes the shared key.

Bit Block Tokens
00 This, am, weather, ...
01 was, attaching, today, ...
10 I, better, an, Great, ...
11 great, than, NDA, ., ...

Table 1: Example shared key.

Embedding algorithm. The embedding algo-
rithm uses a modified word-level LSTM for lan-
guage modeling (Mikolov et al., 2010). To encode
the secret-containing bit string S, we consider one
bit block B at a time and have our LSTM select
one token from bin WB; hence, the candidate ste-
gotext has as many tokens as the number of bit
blocks in S. Even though we restrict the LSTM
to select a token from a particular bin, each bin
should offer sufficient variety of tokens, allowing
the LSTM to generate text that looks natural. For
example, given the bit string “1000011011” and
the key in Table 1, the LSTM can form the partial
sentence in Table 2. We describe our LSTM model
in more detail in the next section.

Bit String 10 00 01 10 11
Token I am attaching an NDA

Table 2: Example stegotext generation.

1If |B|6 | |S|, then we leave the remainder bit string out of
encryption.
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Decoder. The decoder recovers the original data
deterministically and in a straightforward manner:
it takes as input the generated stegotext, considers
one token at a time, finds the token’s bin in the
shared key, and recovers the original bit block.

Common-token variant. We also explore a
variant where we add a set of common tokens, C,
to all bins. These common tokens do not carry
any secret information; they serve only to enhance
stegotext naturalness. When the LSTM selects a
common token from a bin, we have it select an ex-
tra token from the same bin, until it selects a non-
common token. The decoder removes all common
tokens before decoding. We discuss the choice
of common tokens and its implication on our sys-
tem’s performance in Section 4.

3 Steganographic LSTM Model

In this section, we provide more details on our sys-
tem: how we modify the LSTM (§3.1) and how we
evaluate its output (§3.2).

3.1 LSTM Modification
Text generation in classic LSTM. Classic
LSTMs generate words as follows (Sutskever
et al., 2011): Given a word sequence
(x1, x2, . . . , xT ), the model has hidden states
(h1, . . . , hT ), and resulting output vectors
(o1, . . . , oT ). Each output vector ot has length
|V |, and each output-vector element o

(j)
t is

the unnormalized probability of word j in the
vocabulary. Normalized probabilities for each
candidate word are obtained by the following
softmax activation function:

softmax(ot)j := exp(o
(j)
t )

/∑

k

exp(o
(k)
t ).

The LSTM then selects the word with the highest
probability P [xt+1 |x≤t] as its next word.

Text generation in our LSTM. In our stegano-
graphic LSTM, word selection is restricted by the
shared key. That is, given bit block B, the LSTM
has to select its next word from bin WB . We set
P [x = wj ] = 0 for j /∈ WB , so that the multi-
nomial softmax function selects the word with the
highest probability within WB .

Common tokens. In the common-token variant,
we restrict P [x = wj ] = 0 only for j /∈ (WB∪C),
where C is the set of common tokens added to all
bins.

3.2 Evaluation Metrics

We use perplexity to quantify stegotext quality;
and capacity (i.e., encrypted bits per output word)
to quantify its efficiency in carrying secret infor-
mation. In Section 4, we also discuss our stegotext
quality as empirically perceived by us as human
readers.

Perplexity. Perplexity is a standard metric for
the quality of language models (Martin and Ju-
rafsky, 2000), and it is defined as the average
per-word log-probability on the valid data set:
exp(−1/N ∑

i ln p[wi]) (Jozefowicz et al., 2016).
Lower perplexity indicates a better model.

In our steganographic LSTM, we cannot use
this metric as is: since we enforce p[wi] = 0 for
wi /∈WB , the corresponding ln p[wi] becomes un-
defined under this vocabulary.

Instead, we measure the probability of wi by
taking the average of p[wi] over all possible secret
bit blocks B, under the assumption that bit blocks
are distributed uniformly. By the Law of Large
Numbers (Révész, 2014), if we perform many
stegotext-generating trials using different random
secret data as input, the probability of each word
will tend to the expected value,

∑
p[wi, B]/2|B|,

Hence, we set p[wi] :=
∑

p[wi, B]/2|B| instead
of p[wi] = 0 for wi /∈WB .

Capacity. Our system’s capacity is the num-
ber of encrypted bits per output word. Without
common tokens, capacity is always |B| bits/word
(since each bit block of size |B| is always mapped
to one output word). In the common-token variant,
capacity decreases because the output includes
common tokens that do not carry any secret infor-
mation; in particular, if the fraction of common
tokens is p, then capacity is (1− p) · |B|.

4 Experiments

In this section, we present our preliminary experi-
mental evaluation: our Twitter and email datasets
(§4.1), details about the LSTMs used to produce
our results (§4.2), and finally a discussion of our
results (§4.3).

4.1 Datasets

Tweets and emails are among the most popular
media of open communication and therefore pro-
vide very realistic environments for hiding infor-
mation. We thus trained our LSTMs on those
two domains, Twitter messages and Enron emails
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(Klimt and Yang, 2004), which vary greatly in
message length and vocabulary size.

For Twitter, we used the NLTK tokenizer to tok-
enize tweets (Bird, 2006) into words and punctua-
tion marks. We normalized the content by replac-
ing usernames and URLs with a username token
(<user>) and a URL token (<url>), respectively.
We used 600 thousand tweets with a total of 45
million words and a vocabulary of size 225 thou-
sand.

For Enron, we cleaned and extracted email mes-
sage bodies (Zhou et al., 2007) from the Enron
dataset, and we tokenized the messages into words
and punctuation marks. We took the first 100MB
of the resulting messages, with 16.8 million tokens
and a vocabulary size of 406 thousand.

4.2 Implementation Details

We implemented multi-layered LSTMs based on
PyTorch2 in both experiments. We did not use pre-
trained word embeddings (Mikolov et al., 2013;
Pennington et al., 2014), and instead trained word
embeddings of dimension 200 from scratch.

We optimized with Stochastic Gradient Descent
and used a batch size of 20. The initial learning
rate was 20 and the decay factor per epoch was 4.
The learning rate decay occurred only when the
validation loss did not improve. Model training
was done on an NVIDIA GeForce GTX TITAN X.

For Twitter, we used a 2-layer LSTM with 600
units, unrolled for 25 steps for back propagation.
We clipped the norm of the gradients (Pascanu
et al., 2013) at 0.25 and applied 20% dropout (Sri-
vastava et al., 2014). We stopped the training after
12 epochs (10 hours) based on validation loss con-
vergence.

For Enron, we used a 3-layer LSTM with 600
units and no regularization. We unrolled the net-
work for 20 steps for back propagation. We
stopped the training after 6 epochs (2 days).

4.3 Results and Discussion

4.3.1 Tweets

We evaluate resulting tweets generated by LSTMs
of 1 (non-steganographic), 2, 4, 8 bins. Fur-
thermore, we found empirically that adding 10
most frequent tokens from the Twitter corpus was
enough to significantly improve the grammati-
cal correctness and semantic reasonableness of

2https://github.com/pytorch

tweets. Table 3 shows the relationship between ca-
pacity (bits per word), and quantitative text qual-
ity (perplexity). It also compares models with and
without adding common tokens using perplexity
and bits per word.

Table 4 shows example output texts of LSTMs
with and without common tokens added. To re-
flect the variation in the quality of the tweets, we
represent tweets that are good and poor in quality3.

We replaced <user> generated by the LSTM
with mock usernames for a more realistic presen-
tation in Table 4. In practice, we can replace the
<user> tokens systematically, randomly selecting
followers or followees of that tweet sender, for ex-
ample.

Re-tweet messages starting with “RT” can also
be problematic, because it will be easy to check
whether the original message of the retweeted
message exists. A simple approach to deal with
this is to eliminate “RT” messages from training
(or at generation). Finally, since we made all
tweets lower case in the pre-processing step, we
can also post-process tweets to adhere to proper
English capitalization rules.

Original Common Tokens
# of Bins bpw ppl bpw ppl

1 0 134.73 0 134.73
2 1 190.84 0.65 171.35
4 2 381.2 1.17 277.55
8 3 833.11 1.53 476.66

Table 3: An increase of of capacity correlates
with an increase of perplexity, which implies that
there is a negative correlation between capacity
and text quality. After adding common tokens,
there is a significant reduction in perplexity (ppl),
at the expense of a lower capacity (bits per word).

4.3.2 Emails
We also tested email generation, and Table 5
shows sample email passages4 from each bin. We
post-processed the emails with untokenization of
punctuations.

The biggest difference between emails and
tweets is that emails have a much longer range for

3For each category, we manually evaluate 60 randomly
generated tweets based grammatical correctness, semantic
coherence, and resemblance to real tweets. We select tweets
from the 25th, 50th, and 75th percentile, and call them
“good”, “average”, and “poor” respectively. We limit to
tweets that are not offensive in language.

4We only present passages ”average” in quality to con-
serve space.
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# of Bins Tweets Tweets with Common Tokens

2

good: i was just looking for someone that i used have.
poor: cry and speak! rt @user421: relatable per-
sonal hygiene for body and making bad things as a
best friend in lifee

good: i’m happy with you. i’ll take a pic
poor: rt: cut your hair, the smallest things get to the
body.

4

good: @user390 looool yeah she likes me then ;). you
did?
poor: “where else were u making?... i feel fine? - e?
lol” * does a voice for me & take it to walmart?

good: i just wanna move. collapses.
poor: i hate being contemplating for something i
want to.

8

good: @user239 hahah. sorry that my bf is amazing
because i’m a bad influence ;).
poor: so happy this to have been working my ass and
they already took the perfect. but it’s just cause you’re
too busy the slows out! love... * dancing on her face,
holding two count out cold * ( a link with a roof on
punishment... - please :)

good: i hate the smell of my house.
poor: a few simple i can’t. i need to make my specs
jump surprisingly.

Table 4: We observe that the model with common tokens produces tweets simpler in style, and uses
more words from the set of common tokens. There is a large improvement in grammatical correctness
and context coherence after adding common tokens, especially in the “poor” examples. For example,
adding the line break token reduced the length of the tweet generated from the 8-bin LSTM.

context dependency, with context spanning sen-
tences and paragraphs. This is challenging to
model even for the non-steganographic LSTM.
Once the long-range context dependency of the
non-steganographic LSTM improves, the context
dependency of the steganographic LSTMs should
also improve.

# of Bins Sample Email
1 —–Original Message—– From: Nelson,

Michelle Sent: Thursday, January 03, 2002
3:35 PM To: Maggi, Mike Subject: Hey, You
are probably a list of people that are around
asleep about the point of them and our wife.
Rob

2 If you do like to comment on the above you
will not contact me at the above time by 8:00
a.m. on Monday, March 13 and July 16 and
Tuesday, May 13 and Tuesday, March 9 -
Thursday, June 17, - 9:00 to 11:30 AM.

4 At a moment when my group was working
for a few weeks, we were able to get more
flexibility through in order that we would not
be willing.

Table 5: The issue of context inconsistency is
present for all bins. However, the resulting text
remains syntactical even as the number of bins in-
creases.

4.4 Comparison with Other Stegosystems
For all comparisons, we use our 4-bin model with
no common tokens added.

Our model significantly improves the state-
of-the-art capacity. Cover modification based
stegosystems hide 1-2 bits per sentence (Chang
and Clark, 2012). The state-of-the-art Twitter
stegosystem hides 2.8 bits of per tweet (Wil-

son and Ker, 2016). Assuming 16.04 words per
tweet5, our 4-bin system hides 32 bits per tweet,
over 11 times higher than (Wilson and Ker, 2016).

We hypothesize that the subjective quality of
our generated tweets will be comparable to tweets
produced by CoverTweet (2014). We present
some examples6 in Table 6 to show there is po-
tential for a comparison. This contrasts the previ-
ous conception that cover generation methods are
fatally weak against human judges (Wilson et al.,
2014). CoverTweet was tested to be secure against
human judges. Formal experiments will be nec-
essary to establish that our system is also secure
against human judges.

CoverTweet (2014) Steganographic LSTM
yall must have 11:11 set
1 minute early before yall
tweet it, because soon as
11:11 hit yall don’t wastes
no time. lol

i wanna go to sleep in the
gym, ny in peoples houses
& i’m in the gym..! :((

you can tell when some-
body hating on you!

i would rather marry a reg-
ular sunday!!

most of the people who got
mouth can’t beat you.

my mom is going so hard
to get his jam.

Table 6: The tweets generated by the 4-bin LSTM
(32 bits per tweet) are reasonably comparable in
quality to tweets produced by CoverTweet (2.8
bits per tweet).

Our system also offers flexibility for the user to
freely trade-off capacity and text quality. Though
we chose the 4-bin model with no common tokens
for comparison, user can choose to use more bins

5Based a random sample of 2 million tweets.
6Tweets selected for comparison are “average” in quality.
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to achieve an even higher capacity, or use less bins
and add common tokens to increase text quality.
This is not the case with existing cover modifi-
cation systems, where capacity is bounded above
by the number of transformation options (Wilson
et al., 2014).

5 Conclusion and Future Work

In this paper, we opened a new application of
LSTMs, namely, steganographic text generation.
We presented our steganographic model based on
existing language modeling LSTMs, and demon-
strated that our model produces realistic tweets
and emails while hiding information.

In comparison to the state-of-the-art stegano-
graphic systems, our system has the advantage of
encoding much more information (around 2 bits
per word). This advantage makes the system more
usable and scalable in practice.

In future work, we will formally evaluate our
system’s security against human judges and other
steganography detection (steganalysis) methods
(Wilson et al., 2015; Kodovsky et al., 2012). When
evaluated against an automated classifier, the setup
becomes that of a Generative Adversarial Network
(Goodfellow et al., 2014), though with additional
conditions for the generator (the secret bits) which
are unknown to the discriminator, and not neces-
sarily employing joint training. Another line of
future research is to generate tweets which are per-
sonalized to a user type or interest group, instead
of reflecting all twitter users. Furthermore, we
plan to explore if capacity can be improved even
more by using probabilistic encoders/decoders, as
e.g. in Matryoshka (Safaka et al., 2016, Section
4).

Ultimately, we aim to open-source our stegosys-
tem so that users of open communication systems
(e.g. Twitter, emails) can use our stegosystem to
communicate private and sensitive information.
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