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Abstract

Automated speech recognition (ASR)
plays a significant role in training and
simulation systems for air traffic con-
trollers. However, because English is the
default language used in air traffic control
(ATC), ASR systems often encounter dif-
ficulty with speakers’ non-native accents,
for which there is a paucity of data. This
paper examines the effects of accent adap-
tation on the recognition of non-native En-
glish speech in the ATC domain. Accent
adaptation has been demonstrated to be
an effective way to model under-resourced
speech, and can be applied to a vari-
ety of models. We use Subspace Gaus-
sian Mixture Models (SGMMs) with the
Kaldi Speech Recognition Toolkit to adapt
acoustic models from American English
to German-accented English, and compare
it against other adaptation methods. Our
results provide additional evidence that
SGMMs can be an efficient and effective
way to approach this problem, particularly
with smaller amounts of accented training
data.

1 Introduction

As the field of speech recognition has developed,
ASR systems have grown increasingly useful for
the ATC domain. The majority of air traffic
communication is verbal (Hofbauer et al., 2008),
meaning ASR has the potential to be an invalu-
able tool not just in assisting air traffic controllers
in their daily operations, but also for training
purposes and workload analysis (Cordero et al.,
2012).

Due to a constrained grammar and vocabulary,
ATC ASR systems have relatively low word er-

ror rates (WER) when compared to other domains,
such as broadcast news (Geacăr, 2010). These sys-
tems can also be limited at run-time by location
(e.g. place names, runway designations), further
constraining these parameters and increasing ac-
curacy.

Despite the effectiveness of existing systems,
air traffic control has little tolerance for mis-
takes in day-to-day operations (Hofbauer et al.,
2008). Furthermore, these systems generally per-
form worse in real-world conditions, where they
have to contend with confounding factors such as
noise and speaker accents (Geacăr, 2010).

In this paper, we attempt to ameliorate the is-
sue of speaker accents by examining the useful-
ness of accent adaptation in the ATC domain. We
compare the relatively new innovation of SGMMs
(Povey et al., 2011a) against older adaptation tech-
niques, such as maximum a posteriori (MAP) es-
timation, as well as pooling, a type of multi-
condition training.

We perform experiments using out-of-domain
American English data from the HUB4 Broad-
cast News Corpus (Fiscus et al., 1998), as well as
German-accented English data taken from the AT-
COSIM corpus (Hofbauer et al., 2008) and pro-
vided by UFA, Inc., a company specializing in
ATC training and simulation.

The paper is organized as follows: in Section 2,
we describe previous accent adaptation techniques
as well as the structure of SGMMs and how they
can be adapted on new data. In Section 3, we out-
line our experiments and show how accent adap-
tation with SGMMs outperforms other methods
when using smaller amounts of data. Section 4
concludes the paper and presents paths for future
study.
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2 Background

2.1 Accent Adaptation
The ideal ASR system for non-native accented
speech is one trained on many hours of speech in
the target accent. However, for a variety of rea-
sons, there is often a paucity of such data. Several
different techniques have been employed to model
accented speech in spite of this lack of data.

One method is to manually adjust the pronun-
ciation lexicon to match the accented phone set
(Humphries et al., 1996). Unfortunately, this
is both time- and labor-intensive as it requires
mappings to be generated from one phoneset to
another, either probabilistically or using expert
knowledge.

Another technique is interpolate models, with
one trained on native accented speech and the
other trained on non-native accented speech (Witt
and Young, 1999). While this has been shown to
reduce word error rate (Wang et al., 2003), it does
not fully adapt the native model to the new accent.

An effective and versatile method, and the one
we implement here, is to directly adapt a native
acoustic model on the non-native speech. There
exist a few different ways to accomplish this,
such as MAP estimation for HMM-GMMs, Max-
imum Likelihood Linear Regression (MLLR) for
Gaussian parameters (Witt and Young, 1999), and
re-estimating the state-specific parameters of an
SGMM. These techniques have the advantage of
requiring little other than a trained native accent
model and a non-trivial amount of non-native ac-
cented data.

2.2 SGMM Adaptation
Unlike a typical GMM, the parameters of an
SGMM are determined by a combination of
globally-shared parameters and state-specific pa-
rameters. The model can be expressed as follows:

p(x|j) = Σ
Mj

m=1cjmΣI
i=1wjmiN (x;µjmi,Σi)

µjmi = Mivjm

wjmi =
exp wT

i vjm

ΣI
l=1exp wT

l vjm

where x is the feature vector, j is the speech
state, cjm is the state-specific weight, vjm is the
state-specific vector, and µjmi, Mi, and wi are
all globally-shared parameters. SGMMs are gen-
erally initialized using a Universal Background

Model (UBM), which is trained separately from
the SGMM.

SGMMs can be further extended beyond the
model described above to include speaker-specific
vectors and projections. Other speaker adaptation
techniques, such as feature-space Maximum Like-
lihood Linear Regression (fMLLR, also known as
CMLLR), can be applied on top of these exten-
sions to further increase the accuracy of the model.

Though it is possible to perform MAP adapta-
tion using SGMMs, their unique structure allows
a different and more effective technique to be ap-
plied (Povey et al., 2011a). Initially, all of the
model’s state-specific and globally-shared param-
eters are trained on out-of-domain data. The state-
specific parameter vjm can then be re-estimated
on the non-native speech using maximum like-
lihood. This adaptation method has been suc-
cessfully applied to multi-lingual SGMMs (Povey
et al., 2011a) as well as different native accents
of the same language (Motlicek et al., 2013), and
is the technique we use here to adapt the native-
accented SGMMs on non-native speech.

Though there exist other ways of adapting SG-
MMs (Juan et al. (2015) created a multi-accent
SGMM by combining UBMs that had been sep-
arately trained on the native and non-native data),
we do not implement those methods here.

3 Experiments

All experiments were performed using the Kaldi
Speech Recognition Toolkit (Povey et al., 2011b).

3.1 Data

Speech Data
For acoustic model training, data was taken from
three separate sources:

• Approximately 75 hours of US English audio
was taken from the 1997 English Broadcast
News Corpus (HUB4), which consists of var-
ious radio and television news broadcasts.

• About 20 hours of German-accented data,
which is purely in-domain ATC speech, was
supplied by UFA.

• An additional 6 hours of German-accented
speech was taken from the ATCOSIM cor-
pus, which consists of audio recorded during
real-time ATC simulations.
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Native (Unadapted) Non-native Only Pooled (Unadapted) Native (Adapted) Pooled (Adapted)
System WER SER WER SER WER SER WER SER WER SER

HMM-GMM 25.73 74.39 5.74 34.43 6.76 39.24 6.55 37.43 5.38 32.77
+ fMLLR 12.61 58.40 4.64 30.64 5.40 34.53 5.12 33.17 4.51 29.30
SGMM 13.78 58.43 4.15 26.23 4.97 30.99 4.13 26.65 3.71 24.44

+ fMLLR 10.02 51.76 3.46 23.57 4.38 29.15 4.09 27.57 3.25 22.38

Table 1: Error rates of different models trained with 6.5 hours of adaptation data.

Native (Unadapted) Non-native Only Pooled (Unadapted) Native (Adapted) Pooled (Adapted)
System WER SER WER SER WER SER WER SER WER SER

HMM-GMM 25.73 74.39 3.90 25.16 4.99 31.11 5.95 35.18 4.29 27.54
+ fMLLR 12.61 58.40 3.36 23.00 4.16 27.84 4.79 31.36 3.66 24.91
SGMM 13.78 58.43 3.12 21.34 3.82 25.29 3.71 24.71 3.00 21.10

+ fMLLR 10.02 51.76 2.77 20.03 3.34 23.18 3.64 25.16 2.88 20.45

Table 2: Error rates of different models trained with 26 hours of adaptation data.

Test data consisted of just under 4 hours of
German-accented speech provided by UFA. All
audio was downsampled to 16 kHz.

Language Model Data
We interpolated a language model trained on the
UFA and ATCOSIM utterances with one trained
on sentences generated from an ATC grammar
supplied by UFA. Both LMs were 5-gram mod-
els with Witten-Bell smoothing. The interpolated
model was heavily weighted towards the natural
utterances (with λ = 0.95), since the main pur-
pose of the generated utterances was to add cov-
erage for words and n-grams that were not present
in the natural data.

Lexicon
The lexicon was largely derived from the CMU
Pronouncing Dictionary. Additional pronuncia-
tions were supplied by UFA, and several were
written by hand.

3.2 Experimental Setup

The baseline acoustic model was a regular HMM-
GMM and was trained with the usual 39 MFCC
features, including delta and acceleration features.
Experiments were conducted both with and with-
out pooling the adaptation data with the US En-
glish data, since pooling data prior to adaptation
has been shown to give better results for both
MAP and SGMM maximum likelihood adaptation
(Motlicek et al., 2013), as well as for other adap-
tation techniques (Witt and Young, 1999).

We conducted two experiments, each with a dif-
ferent amount of adaptation data. The first exper-
iment included only a 6.5-hour subset of the total
adaptation data, which was created by randomly

selecting speakers from both the ATCOSIM cor-
pus and the UFA data. The second included all
26 hours of adaptation data. HMM-GMM models
were adapted using MAP estimation and SGMMs
were adapted using the method outlined above.

For each amount of adaptation data, we trained
several different models, testing all combinations
of the following variables:

• Whether the model was trained solely on the
native-accented data, trained solely on the
adaptation data, trained on the combined data
but not adapted, trained of the native data and
then adapted, or trained on the combined data
and then adapted.

• Whether an HMM-GMM or SGMM was
used (as well as the corresponding adaptation
method).

• Whether the model was trained with speaker-
dependent fMLLR transforms.

3.3 Experimental Results
With 6.5 hours of German accented data, both the
MAP-adapted and SGMM-adapted pooled sys-
tems saw modest reductions in word error rate,
as can be seen in Table 1. MAP adaptation pro-
vided a 6.3% relative improvement over the corre-
sponding accented-only model1, though WER was
reduced by only 2.8% when fMLLR was imple-
mented. Pooled SGMMs were more versatile and
amenable to adaptation, with a relative reduction
in WER of 10.6%, and a relative improvement of

1Unless otherwise specified, reduction in error rate is rela-
tive to the model with the same parameters (SGMM, fMLLR,
etc.) but trained on the non-native accented data only, rather
than relative to a single baseline.
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6.1% when using fMLLR. Changes in sentence er-
ror rate (SER) between models correlated with the
changes in WER, reaching a minimum of 22.38%
with the adapted SGMM-fMLLR system, a rela-
tive reduction of just over 5%.

Including the full 26 hours of non-native speech
in the training and adaptation data generally re-
sulted in higher error rates in the adapted sys-
tems than the corresponding accented-only mod-
els, as seen in Table 2. This decrease in per-
formance approached 10% for the HMM-GMM
systems. Though the SGMM-fMLLR adapted
system experienced a relative reduction in per-
formance of about 4%, the performance of the
non-fMLLR SGMM increased by about the same
amount. Changes in SER again correlated with the
changes in WER, with the adapted speaker inde-
pendent SGMM possessing a slight edge (about
1%) over its accented-only counterpart.

It is not clear from this experiment why the
speaker independent SGMM system was the only
one to undergo an increase in performance when
adapted with the full dataset. A possible explana-
tion is that, with enough data, the speaker adap-
tive techniques were simply more robust than the
accent-adaptation method.

Unsurprisingly, the unadapted native-accented
systems had the worst performance out of all of
the models, with word error rates that were more
than double than that of next best corresponding
system.

The unadapted pooled models and the adapted
native models were usually the second- and third-
worst performing groups of models, though their
ranking depended on the amount of adaptation
data used. The pooled models generally gave bet-
ter results when more adaptation data was pro-
vided, while the adapted native models had an ad-
vantage with less adaptation data.

Interestingly, fMLLR had relatively little effect
when used with the adapted native SGMMs, re-
gardless of the amount of adaptation data used.
WER was reduced by only about 1 to 2% com-
pared to the models’ non-fMLLR counterparts.
This stands in contrast with the gains that virtu-
ally every other model saw with the introduction
of fMLLR. It is not clear why this was the case,
though it might relate to some overlap between the
SGMM adaptation method and fMLLR.

While it is possible that training the pooled
model with in-domain English speech could in-

crease performance, it seems unlikely that it would
be superior to either the accented-only model or
the adapted pooled model.

4 Conclusion

In this paper, we explored how non-native accent
adaptation can be applied using SGMMs to yield
notable improvements over the baseline model,
particularly when there exists only limited in-
domain data. We also demonstrated that this tech-
nique can achieve as high as a 10% relative im-
provement in WER in the ATC domain, where the
baseline model is already highly accurate. Even
with large amounts of adaptation data, speaker in-
dependent SGMMs saw a minor increase in per-
formance when adapted, compared to when they
were trained only with in-domain data.

Future avenues of research include whether
the SGMM adaptation technique used here could
be successfully combined with the UBM-focused
adaptation method used by Juan et al. (2015) to
achieve even further reductions in WER.

Furthermore, future work could explore
whether smaller error rates could be achieved by
training the original acoustic models on speech
from the ATC domain, rather than from broadcast
news, and whether the increases in perfomance
found here still hold between more distantly re-
lated and phonologically dissimilar languages. It
should be noted, however, that this may necesitate
the creation of new corpora, as the few non-native
ATC corpora that exist seem to only include
European accents.
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