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Abstract

Network representation is the basis of
many applications and of extensive in-
terest in various fields, such as infor-
mation retrieval, social network analy-
sis, and recommendation systems. Most
previous methods for network represen-
tation only consider the incomplete as-
pects of a problem, including link struc-
ture, node information, and partial integra-
tion. The present study introduces a deep
network representation model that seam-
lessly integrates the text information and
structure of a network. The model cap-
tures highly non-linear relationships be-
tween nodes and complex features of a
network by exploiting the variational au-
toencoder (VAE), which is a deep unsu-
pervised generation algorithm. The repre-
sentation learned with a paragraph vector
model is merged with that learned with the
VAE to obtain the network representation,
which preserves both structure and text in-
formation. Comprehensive experiments is
conducted on benchmark datasets and find
that the introduced model performs better
than state-of-the-art techniques.

1 Introduction

Information network representation is an impor-
tant research issue because it is the basis of many
applications, such as document classification in
citation networks, functional label prediction in
protein-protein interaction networks, and potential
friend recommendations in social networks. Al-
though there are not a few recent work proposed to
study the issue (Belkin and Niyogi, 2003; Tenen-
baum et al., 2001; Cao et al., 2015; Tian et al.,
2014; Cao, 2016), it is still far from satisfactory

because of the intrinsic difficulty. In essence, the
rich and complex information (i.e., link structure
and node contents) embedded in information net-
works poses a significant challenge in the effective
representation of networks.

Network-distributed representation learning can
be viewed as a problem using low-dimensional
vectors to represent nodes in a network. Most net-
work representation methods are based on a net-
work structure. The traditional representation is
based on matrix decomposition and uses eigenvec-
tors as representation (Belkin and Niyogi, 2003;
Roweis and Saul, 2000; Tenenbaum et al., 2001).
Furthermore, they extend to high-order informa-
tion (Cao et al., 2015). However, these meth-
ods are not applicable to large-scale networks,
and although many approximate approaches have
been developed to solve this problem, they are
not effective enough. Some methods are based
on optimization objective functions (Tang et al.,
2015; Pan et al., 2016; Yang et al., 2015). Al-
though they are suitable for large-scale network
data, they adopt shallow models that are limited
in terms of performance and are difficult to use
to obtain highly non-linear relationships that are
vital to the preservation of network structure. In-
spired by deep learning techniques in natural lan-
guage processing, (Perozzi et al., 2014; Grover
and Leskovec, 2016) adopted several stunted ran-
dom walks in networks to generate node se-
quences serving as sentence corpus and then ap-
plied the skip-gram model to these sequences to
learn node representation. However, they cannot
easily handle additional information during ran-
dom walks in a network.

To capture highly non-linear structures for
large-scale networks, (Tian et al., 2014; Cao,
2016) introduced an autoencoder to model train-
ing instead of using a sampling based method
to generate linear sequences. Motivated by this
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model, we develop the variational autoencoder
(VAE) (Kingma and Welling, 2014), which is a
deep generation model, instead of a basic autoen-
coder. Most previous studies utilized only one
type of information in networks. The work in (Le
and Mikolov, 2014) focused on node content, and
others (Grover and Leskovec, 2016; Perozzi et al.,
2014) explored link structure. Although a few
previous models (Pan et al., 2016; Yang et al.,
2015) combined both text information and net-
work structure, they did not preserve the complete
network structure and only partially utilized node
content. A straightforward method is to learn rep-
resentations from text features and network struc-
ture independently, and then concatenate the two
separate representations.

To address the above issues, we introduce a
deep generative model to learn network represen-
tation by modeling both node content information
and network structure comprehensively. First, the
representation based on node content through the
paragraph vector model is obtained. Then, we feed
the network adjacency matrix and representation
obtained into a deep generative model, the build-
ing block of which is the VAE. After stacking sev-
eral layers of the VAE, the result of the first layer is
chosen before decoding as the final representation.
Intuitively, we can obtain the representation con-
taining both content information and structure in
a d-dimensional feature space. The experimental
evaluation demonstrates the superior performance
of the model on the benchmark datasets.

2 Preliminary

Notation: Let G = (V,E,C) denote a given net-
work, where V = {vi}i=1...N is the node set and
E = {eij} is the edge set that indicates the re-
lation of nodes. If a direct link exists between vi
and vj then eij = 1; otherwise, eij = 0 when
network is unweighted. C = {ci} is the set of
content information. let A denote the adjacency
matrix for a network, and let x = {ei,k, ..., en,k}
be an adjacency vector. Our goal is to seek a low-
dimensional vector ~yj for each node vi of a given
network.
Autoencoder: We first provide a brief description
of a basic autoencoder and the VAE. The basic au-
toencoder first compresses the input into a small
form and then transforms it back into an approx-
imation of the input. The encoding part aims to
find the compression representation z of a given

data x, and the decoding part is a reflection of the
encoder used to reconstruct the original input x.
The VAE (Kingma and Welling, 2014) imposes
a prior distribution on the hidden layer vector of
the autoencoder and re-parameterizes the network
according to the parameters of the prior distribu-
tion. Through the parameterization process, the
means and variance values of the input data can
be learned. We extended VAE to generate two
means and variances of input data, which can be
considered correspond to the content and structure
respectively.

3 Model Description

The architecture of the proposed model is shown
in Fig. 1. The whole architecture consists of two
main modules, namely, the content2vec module
and the union training module. For an informa-
tion network, such as a paper citation network, we
can obtain the node link and content information
(e.g., paper abstract). We learn an effective feature
representation vector that preserves both structure
information and node content information and can
thus be applied to many tasks (e.g., paper classifi-
cation).

3.1 Content2vec Module

We employ the state-of-the-art approach called
doc2vec (Le and Mikolov, 2014), which uti-
lizes text to learn vector representations of docu-
ments, as our content2vec module. Specifically, if
one node contains other information (e.g., author
name), we treat it as a word and merge it into the
comprehensive text information (e.g., the abstract
of the paper in the citation network) as the con-
tent of the node. A representation ui that includes
the node content information is obtained from this
module.

3.2 Union-training Module

The union training module is the core part of our
model, in which content information and structure
information are integrated. The details are shown
in Fig 1. The VAE is adopted as the main block.
Given a network, the adjacency matrix A can be
obtained. A can describe the relationship among
the nodes and reflect the overall structure of the
network. We extract each adjacency vector ai and
concatenate it with the corresponding ui as the in-
put xi of our model. Therefore, the content and
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Figure 1: Architecture of our model. wi can be seen as a word of the content information, ui is a node
in the network, ui is a representation vector learned by the Content2Vec Module, xi is a vector of the
adjacency matrix. The input of the union-training module is combination of xi and ui, the encoder
and decoder are stack full-connected layer, σi1,σi2,µi1,µi2 can be seen the mean and variance of the
distribution of the content and structure data, respectively. εi1 and εi2 are the sample data from two
Gaussian distributions.

structure information is able to be learned simul-
taneously.

During the encoding phase, we adapt several
fully connected layers composed of multiple non-
linear mapping functions to map the input data to a
highly nonlinear latent space. Therefore, given the
input xi, the output hk for the kth layer is shown
as follow:

h1 = π(W 1xi + b
1)

hk = π(W khk−1 + bk), k = 1, 2...K
(1)

where π is the nonlinear activation function of
each layer. The value of K varies with the data.

In the last layer of encoder, we obtain four out-
put: µi1, σi1 µi2 and σi2. They can be treated
as the means and variances of the distribution of
content information and structure information re-
spectively. Furthermore, we sample two values
εi1 and εi2 from two previous distributions (e.g.,
Gaussian distribution). Then we can obtain the re-
parameterized zi1 and z21. Through concatenate
zi1 and z21, content and structure information can
be integrated together, yi is the representation of
the network. Nonlinear operations are not per-
formed in this phase. Thus, the gradient descent
method can be safely applied in optimization. The
operations can be expressed as follows:

zik = f(µik,σik, εi), k = 1, 2

yi =Merge[zi1, zi2]
(2)

where f is a linear function that can re-
parameterize yi, Merge concatenate the two vec-
tors together directly.

The decoding phase is a reflection of the en-
coder; its output x̂i should be close to the input
xi. The loss function of this module that should
be minimized is as follows:

L(xi) = −
2∑

k=1

KL(q(zik|xi)||p(zik))+H(xi, x̂i)

(3)
where KL is the KL divergence which is always

used as a measure of the difference between two
distributions, H is a cross-entropy function that is
used to measure the difference between xi and x̂i.

Finally, We choose the output of the layer yi as
the final representation of each node.

4 Experiments

4.1 Experimental setup

Paper citation networks is a classical social infor-
mation network. To evaluate the quality of the
proposed model, we conduct three important tasks
on two benchmark citation network datasets: (1)
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Table 1: Macro-F1 score on Citeseer-M10 Network

%p One-Hot Deepwalk Node2vec Doc2vec DW+D2V TADW TriDNR Ours

10% 0.254 0.297 0.314 0.503 0.526 0.475 0.683 0.889
30% 0.321 0.334 0.331 0.536 0.615 0.488 0.744 0.913
50% 0.352 0.346 0.346 0.547 0.633 0.495 0.760 0.924
70% 0.363 0.344 0.339 0.534 0.630 0.495 0.773 0.940

Table 2: Macro-F1 score on DBLP Network

%p One-Hot Deepwalk Node2vec Doc2vec DW+D2V TADW TriDNR Ours

10% 0.328 0.379 0.448 0.574 0.495 0.660 0.724 0.751
30% 0.362 0.454 0.473 0.598 0.586 0.687 0.742 0.753
50% 0.371 0.459 0.475 0.604 0.614 0.697 0.747 0.762
70% 0.372 0.461 0.476 0.605 0.628 0.699 0.748 0.763

CiteSeerM101. It contains 10 distinct categories
with 10,310 papers and 77,218 citations. Titles
are treated as the text information because no
more text information is available; and (2) DBLP
dataset2. We treat abstracts as text information
and choose 4 research areas with the same setting
as that of (Pan et al., 2016), which are database
(SIGMOD, ICDE, VLDB, EDBT, PODS, ICDT,
DASFAA, SSDBM, CIKM), data mining (KDD,
ICDM, SDM, PKDD, PAKDD), artificial intelli-
gent (IJCAI, AAAI, NIPS, ICML, ECML, ACML,
IJCNN, UAI, ECAI, COLT, ACL, KR), computer
vision (CVPR, ICCV, ECCV, ACCV, MM, ICPR,
ICIP, ICME). Therefore we get a network contains
30,422 nodes and 41,206 edges.

We compare our approach with the following
methods:

• One-Hot uses adjacency matrix, which car-
ries the structure information as the high-
dimension representation, and directly feed
into the classifier.

• DeepWalk (Perozzi et al., 2014) is exploited
by statistical models, which employs trun-
cated random walks to learns nodes embed-
ding by treating walk as the equivalent of sen-
tences.

• Node2vec (Grover and Leskovec, 2016)
learns the network representation by design-
ing a biased random walk procedure which
efficiently explores diverse neighborhoods.

• Doc2vec (Le and Mikolov, 2014) is the Para-
graph Vector model that learns document rep-

1http://citeseerx.ist.psu.edu/
2http://arnetminer.org/citation (V4 version is used)

resentation by predicting the words appeared.

• DW+D2V is simply to concatenate the rep-
resentation result learned by DeepWalk and
Doc2vec.

• TADW (Yang et al., 2015) is text-based
DeepWalk, which incorporates text informa-
tion into network structure by matrix factor-
ization.

• TriDNR (Pan et al., 2016) uses node text, la-
bel, and structure to jointly learn node repre-
sentation.

4.2 Performance on Node Classification

We conduct the paper classification task on two
benchmark citation networks to evaluate the per-
formance of our method. To reduce the impact
of sophisticated classifiers on the performance, we
employ a linear SVM, which is a common tech-
nique used by the exiting work (Pan et al., 2016).
The results are shown in Table 1 and Table 2, re-
spectively. The reported parameters for our model
are set: dimension d=100 on CiteseerM10 and
d=300 on DBLP. The dimension for other algo-
rithms is the same as ours, and the other parame-
ters are set as their papers report, i.e., window size
b=10 in DeepWalk and Node2vec, in-out parame-
ter q=2 in Node2vec, text weight ∂=0.8 in TADW
and TriDNR. We use Macro-F1 which is the same
as that adopted by other algorithms to measure the
classification performance. The experiments are
independently conducted 10 times for each setting,
and the average values are reported. The propor-
tion of training data with labels is range from 10%
to 70%.
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(a) (b) (c) (d)

Figure 2: Performance of each strategy on different training proportion p

Our model is evaluated by comparing it with
seven approaches. One-Hot uses the original
structure data, and its performance is poor because
it is discrete and the context relation of nodes can
not be captured. DeepWalk and Node2vec are
structure-based methods that exhibit inferior per-
formance mainly because they only use the shal-
low structure information and the network is rather
sparse, while the information of the complex non-
linear structure cannot be employed. The perfor-
mance of Doc2vec is not as good as ours which
demonstrates the effectiveness of our proposed
model. TADW and TriDNR are inferior to our
approach, although these two methods also con-
sider the text and structure. Nevertheless, they
cannot capture the complex non-linear structure.
The reason for the superior of our method is
that our model can effectively capture the inter-
relationship between node content and link struc-
ture, and the intro-relationship among nodes and
links, which are essential to learn the represen-
tation of networks. Furthermore, our model can
capture the information of highly non-linear struc-
ture instead of the shallow structure (e.g., Deep-
Walk) by exploiting VAE. Moreover, our approach
does not require heavy text information which
is utilized by the other state-of-the-art strategies
(e.g.,TriDNR). Our model exhibits consistent su-
perior performance, and is up to 16% better than
the state-of-the-art methods (i.e., the Macro-F1
score of our model is 94% when the proportion
of training data with labels is 70% conducted on
the Citeseer-M10 Network dataset).

4.3 Parameter Setting
A significant hyperparameter in our model is the
dimension d. The performance of different meth-
ods with varying dimensions has been evaluated.
The result is illustrated in Fig. 2. We obtain very
good performance on the CiteSeer-M10 dataset,

i.e., the Macro-F1 score is 94% and the perfor-
mance tends to be stable as b becomes larger. It
validates the effectiveness of our algorithm and the
reason is due to the ability of our model that can
capture the complex network structure and the text
information. From Fig. 2, we can see that the per-
formance gets better when d increases from 100 to
600. We think the main reason is because more in-
formation can be preserved in higher dimensional
space of the datasets.

5 Conclusions

In this paper, we have introduced an effective
network representation model, which comprehen-
sively integrates the text information and the net-
work structure. We introduced Paragraph Model
as a preliminary module. And we have exploited
Variational Autoencoder as the main block of our
model, that could capture highly non-linear struc-
ture of the network. The comprehensive experi-
mental evaluation on two benchmark datasets has
demonstrated the effectiveness of the model.
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