
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics- Student Research Workshop, pages 17–23
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-3004

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics- Student Research Workshop, pages 17–23
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-3004

nQuery - A Natural Language Statement to SQL Query Generator

Nandan Sukthankar, Sanket Maharnawar, Pranay Deshmukh
Yashodhara Haribhakta, Vibhavari Kamble

Department of Computer Engineering and Information Technology
College of Engineering Pune

Wellesley Road, Shivajinagar, Pune, Maharashtra, India
http://www.coep.org.in

{nandans16, sanketmaharnawar, pranay.s.deshmukh}@gmail.com
{ybl.comp, vvk.comp}@coep.ac.in

Abstract
In this research, an intelligent system is de-
signed between the user and the database
system which accepts natural language in-
put and then converts it into an SQL query.
The research focuses on incorporating com-
plex queries along with simple queries irre-
spective of the database. The system accom-
modates aggregate functions, multiple condi-
tions in WHERE clause, advanced clauses like
ORDER BY, GROUP BY and HAVING. The
system handles single sentence natural lan-
guage inputs, which are with respect to se-
lected database. The research currently con-
centrates on MySQL database system. The
natural language statement goes through var-
ious stages of Natural Language Processing
like morphological, lexical, syntactic and se-
mantic analysis resulting in SQL query forma-
tion.

1 Introduction

Today, virtually every relational database man-
agement system (RDBMS) uses Structured Query
Language (SQL) for querying and maintaining the
database. Users accessing relational databases
need to learn SQL and build queries in the right
syntax for retrieving the data. It becomes a big
hurdle for all those who are not technically knowl-
edgeable in this domain to write the queries in
SQL. It would be very convenient if the relational
database system can be queried using natural lan-
guage like English.

Natural language processing (NLP) is the abil-
ity of a computer program to understand human
speech as it is spoken. While natural language
may be easy for people to learn and use, it has been
proved to be hard for a computer to master. De-
spite such challenges, natural language processing

is regarded as a promising and important endeavor
in the field of computer research.

nQuery will translate natural language queries
into SQL before retrieving data from database.
It will deal with single sentence inputs given by
the user using a particular database. The sys-
tem mainly focuses on data retrieval but also pro-
vides the facility to convert DML natural language
statements to SQL. However, the system will out-
put queries which can be used for querying the
MySQL database system only. The aim of the sys-
tem is to reduce the complexity of database query-
ing. The approach our system uses, extracts cer-
tain keywords from the natural language statement
and goes through various steps of Natural Lan-
guage Processing. This system focuses on table
mapping, attribute mapping and clause tagging to
generate the resultant query.

2 Related Work

Over the years, certain systems which focus only
on a particular database have been built to serve
a particular purpose. (Woods, 1973) developed
a system called LUNAR, that answered questions
about rock samples brought back from the moon.
LIFER/LADDER designed by (Hendrix, 1978)
was designed as a natural language interface to
a database of information about US Navy ships.
The system could only support simple one-table
queries on a specific database.

Some of the recent developments try to build
a complete system which can generate various
types of queries. An expert system was pro-
posed by (Siasar et al., May 2008) using the con-
cepts of syntactic and semantic knowledge. They
have also suggested a selection algorithm to select
most appropriate query from the suggested possi-

17

https://doi.org/10.18653/v1/P17-3004
https://doi.org/10.18653/v1/P17-3004

Figure 1: nQuery - Data Flow Diagram

ble query. (Rao et al., 2010) have put forth a sys-
tem in which simple queries along with basic im-
plicit queries are covered. (Chaudhari, November
2013) implemented a system which handled sim-
ple queries and aggregate functions using a proto-
type approach. Both the above methods have not
handled multiple tables and advanced clauses. .
(Ghosh et al., 2014) built on the development done
by (Chaudhari, November 2013) and developed
an automatic query generator which took natural
language input in the form of text or speech. It
provided support for simple nested queries and ag-
gregate functions. The system handled sentences
which explicitly mention the attribute names as
they are in the Database. Our system handles the
problem by a specific substring algorithm we have
developed. We have looked to do the tasks which
the above systems do in a more efficient way by
building a different type of algorithm relying on
conditional substring matching to map the words
to attributes and tables. We also go beyond by in-
cluding various different types of queries.

A different type of approach was used by
(Reinaldha and Widagdo, 2014) in which the dif-
ferent kinds of questions which can be asked when
a database is to be queried were analyzed. They
have made use of semantic rules to find out de-
pendencies among the words present in the ques-
tion asked. (Palakurthi et al., 2015) provides in-
formation about the types of attributes and clas-
sification features. They describe how different

kinds of attributes are handled differently when
they occur in sentences. We handle explicit at-
tributes and certain types of implicit attributes in
sentences. (Ghosal et al., March 2016) proposed
a system which worked well on simple queries in-
volving multiple tables. But the data dictionar-
ies used for the system are limited and the gram-
mar is hard coded. (Kaur and J, Jan 2016) em-
phasized on simple queries and basic JOIN op-
erations. However, the system does not accom-
modate advance clauses like aggregate functions,
GROUP BY and HAVING Clauses. Our system
incorporates advanced clauses along with all the
simple queries and generalizes well on different
databases. (Singh and Solanki, 2016) proposed an
algorithm to convert natural language sentence to
SQL queries. They used verb lists, noun lists and
rules to map attributes and tables to the words in
the sentence. The system also handled ambiguity
among the inputs. We have tried to use concepts
discussed in this algorithm like noun and verb lists
in order to develop our algorithm.

From the above literature survey, we were able
to get a fair idea of the work carried out in this field
of research. The shortcomings of the referred pa-
pers and applications along with the future work
mentioned motivated us to take up this research.
The increasing importance of Natural Language
Processing lured us towards learning these con-
cepts. The system we propose looks to go beyond
the accomplished work.

18

3 System Design

As we have seen from the literature survey, ev-
ery system had limitations. We propose a system
which looks to overcome the shortcomings of the
existing systems. Our system gets a natural lan-
guage sentence as an input, which is then passed
through various phases of NLP to form the final
SQL query. Refer Fig 1 for the data flow diagram
and Fig 2 for the running example.

3.1 Tokenize and Tag

The input natural language query gets split into
different tokens with the help of the tokenizer from
’NLTK’ package. The tokenized array of words is
tagged according to the part-of-speech tagger. All
processes following this step use these tagged to-
kens for processing.

3.2 Analyze tagged tokens

Based on the tagged tokens of earlier step, the
noun map and verb list is prepared through one it-
eration over the tokens. The tokens corresponding
to aggregate functions are also mapped with their
respective nouns. The decision whether the natu-
ral language statement represents a data retrieval
query (SELECT) or a DML query (INSERT, UP-
DATE, DELETE) is taken at this stage with the
help of certain ’data arrays’ for denoting type of
query. For example, when words like ’insert’ and
its certain synonyms appear in the input, the type
of query is ’INSERT’ and so on. In any type
of query, the tentative tags ’S’ (SELECT), ’W’
(WHERE), ’O’ (ORDER BY) are mapped to the
nouns indicating the clauses to which they belong.
For this, we have designed ’data dictionaries’ for
different clauses. These data dictionaries consist
of the token-clause term pair, for e.g. aggregate
clause data dictionary is ”number”: ”COUNT”,
”count”: ”COUNT”, ”total”: ”SUM”, ”sum”:
”SUM”, ”average”: ”AVG”, ”mean”: ”AVG”.
Thus, if any of these tokens is encountered, it is
likely to have aggregate clause and accordingly the
nouns are tagged with the clause tag.

3.3 Map to table names and attributes

Using the noun map and verb list, the table set
is prepared, which will hold the tables that are
needed in the query to be formed. This is based
on the fact that the table names are either nouns
or verbs. The noun map is used to find the at-
tributes which are needed in the final query. The

Find the names of all the instructors
from ’Comp Sci’ department

Tokenize & Tag

[’Find’, ’NNP’], [’names’, ’NNS’],
[’instructors’, ’NNS’], [’Comp’, ’NNP’],

[’Sci’, ’NNP’], [’department’, ’NN’]

Analyze tagged tokens

Noun map: ’name instructor’: [’S’],
’depart’: [’W’]

Map to table names
and attributes

Noun ’name instructor’ mapped
to table ’instructor’; Noun ’de-

part’ mapped to table ’department’
Noun: name instructor Table: in-
structor Attr: name; Noun: depart
Table: instructor Attr: dep name

Table: department Attr: dep name

Table set: [’instructor’, ’department’]
Table attribute map: ’department’:

[[’dep name’, ’W’]], ’instructor’:
[[’name’, ’S’], [’dep name’, ’W’]]

Filter redundancy
& finalize clauses

Table set: [’instructor’]
Table attribute map: ’instructor’:
[[’name’, ’S’], [’dep name’, ’W’]]

WHERE clause objects:
instructor dep name = Comp Sci

SQL Query Formation

SELECT DISTINCT instructor.name
FROM instructor WHERE

instructor.dep name = ’Comp Sci’

Figure 2: Algorithm with example

19

attributes, the table associated with the attribute
and the clause tag are stored in an attribute-table
map which is used in the final stage of query for-
mation. This is done using the string matching al-
gorithm that we have implemented in our system.
The words in the input sentence need not exactly
be as they are in the database. The stemmer and
lemmatiser are applied on the words before they
are matched using our string matching algorithm.
The data obtained during this step i.e. table set and
attribute-table map, is most likely to be in the final
query, however, it might be refined later.

3.4 Filter redundancy and finalize clauses of
the query

Using the various data dictionaries defined, the
system has already decided which clauses are
likely to exist in the final query and has mapped
the data to the clauses. But, some of the data
has to be finalized at this stage. The data related
to GROUP BY and HAVING clause is collected
using the previous data and the basic rules of
SQL. For example, if aggregate function is com-
pared to a constant, i.e. ’MAX(salary) > 40000’,
then ’HAVING’ clause has to be used instead of
’WHERE’ clause.

As mentioned in the earlier step, the refinement
of data must be done. Here, the redundant tables
and attributes are removed using some filter algo-
rithms. For example, one of the algorithm filters
the table and their corresponding attributes which
are a subset of some other table in table set. i.e.
if table set has [table1, table2] and table1 has at-
tributes [a1, a2] and table2 has [a1, a2, a3] after
the previous steps, then table2 is enough to repre-
sent all the attributes required and hence table1 is
removed. There are various other algorithms ap-
plied in order to filter the results and finalize the
table set and table-attribute map.

3.5 Form the final query and execute
Currently, as our system handles only MySQL
queries, the templates used for the query forma-
tion will be according to the MySQL syntax. Ac-
cording to the type of query selected in the second
stage of the process (Analyze tagged tokens), the
appropriate template is chosen.
The template is selected from the following:

1. For data retrieval queries (SELECT):

• SELECT <select clause>
FROM <tables>

WHERE <where clause>
ORDER BY <order by clause >
GROUP BY <group by clause>
HAVING <having clause>
LIMIT <limit clause>.

2. For data manipulation queries (INSERT, UP-
DATE, DELETE):

• INSERT INTO <insert clause>
VALUES <values clause>
• UPDATE <update clause>

SET <set clause>
WHERE <where clause>
• DELETE FROM <delete clause>

WHERE <where clause>

Based on the data about various clauses col-
lected from earlier steps and the information about
attributes and tables stored in the attribute-table
map, the final query is formed by filling in the in-
formation into the appropriate template. Depend-
ing on the clause data collected from earlier steps,
corresponding <> are filled.
Depending on the relation between multiple ta-
bles, the decision of INNER JOIN or NATURAL
JOIN is taken. For example, if there are two ta-
bles. If these two tables have one common at-
tribute and is named the same in both, then there
is NATURAL JOIN between the tables. But if the
common attribute is named differently in the two
tables, then there is INNER JOIN between the ta-
bles. The final query is as shown in Fig 2.

4 Results and Analysis

The corpus that can be used to test our system
is not readily available and is dependent on a
database. Hence, we have tested our system on a
synthesized corpus of natural language statements
related to a bank and a university database. The
university and bank database consists of 11 and
6 tables respectively. However, system can work
on any complex database. The natural language
statement has to be a single sentence. The system
has been evaluated on a corpus of around 75 natu-
ral language statements of university database and
around 50 related to bank database. The accuracy
of the system is found out to be around 86%. The
system gives the same SQL query as the output
when the same natural language statement is rep-
resented in different ways. If the system fails to
generate SQL query corresponding to any natural

20

language statement, an error message is displayed.
These are a few results given by the system on the
university corpus:

1. Find the student name where instructor name
is ’Crick’.

• SELECT DISTINCT student.stud name
FROM instructor
INNER JOIN advisor
ON instructor.ID = advisor.inst ID
INNER JOIN student
ON student.ID = advisor.stud ID
WHERE instructor.name = ’Crick’

In this database, the tables ’student’ and ’in-
structor’ are linked through the table ’advi-
sor’. So, we can see that this query deals with
multiple tables which are joined by INNER
JOIN.

2. Find all student name whose credits are be-
tween 90 and 100 and department name is
’Finance’ or ’Biology’.

• SELECT DISTINCT student.stud name
FROM student
WHERE (student.tot cred
BETWEEN ’90’ AND ’100’) AND (
student.dep name = ’Finance’ OR
student.dep name = ’Biology’)

The above query showcases multiple condi-
tions within the WHERE clause. This query
also involves use of BETWEEN clause and
logical clauses like AND, OR.

3. List all student names whose credits are 50 in
decreasing order of credits.

• SELECT DISTINCT student.stud name
FROM student
WHERE student.tot cred = ’50’
ORDER BY student.tot cred DESC

Another type of query is the one involving
sorting its result based on some attribute. For
this purpose, the query uses the ORDER BY
clause to sort the results in decreasing order.

4. Give the department name where maximum
salary of instructor is greater than 50000.

• SELECT DISTINCT
instructor.dep name
FROM instructor

GROUP BY instructor.dep name
HAVING
MAX(instructor.salary) >’50000’

In SQL, when an aggregate function is com-
pared to constant, like in this case maxi-
mum of salary is compared to 50000, then
the query involves use of HAVING clause in-
stead of a WHERE clause. Also, whenever
HAVING is used, the results are supposed to
be grouped by the attributes in the SELECT
clause.

5. Give the department name where salary of in-
structor is greater than average of salary.

• SELECT DISTINCT
instructor.dep name
FROM instructor
WHERE instructor.salary >
(SELECT AVG(instructor.salary)
FROM instructor)

This query showcases a special case of nested
queries. Whenever an attribute is compared
to the result of an aggregate function, i.e. in
this case salary greater than average of salary,
we have to use nested query.

6. Find the course taught by Crick.

• SELECT DISTINCT teaches.course id
FROM teaches NATURAL JOIN in-
structor
WHERE instructor.name = ’Crick’

Till now, we have seen cases in which an at-
tribute associated to the value is mentioned in
the natural language statement. In this case,
we handle cases where attribute is not men-
tioned. We find out the most appropriate at-
tribute for the given value.

7. (a) Publish in alphabetic order the names of
all instructors.

(b) Give names of all the instructors in al-
phabetic order.

(c) Give instructors names in ascending or-
der.

• SELECT DISTINCT instructor.name
FROM instructor
ORDER BY instructor.name ASC

As seen in this example, there can be multi-
ple ways of representing the same natural lan-
guage statement.The system gives the same

21

SQL query as the output when the same nat-
ural language statement is represented in dif-
ferent ways.

8. Insert a student whose id is 5, name is Josh,
department name is Physics and credits are
150.

• INSERT INTO student
(student.ID, student.stud name,
student.dep name, student.tot cred)
VALUES
(’5’ , ’Josh’ , ’Physics’ , ’150’)

In addition to the data retrieval queries, our
system also provides a natural language in-
terface to insert data into the database. Other
DML queries such as UPDATE and DELETE
are also provided by the system.

5 Limitations

The following are some of the types of inputs that
are not presently handled by our system.

1. Find the capacity of the classroom number
3128 in building Taylor

• SELECT *
FROM classroom
WHERE classroom.capacity = ’3128’
AND classroom.building = ’Taylor’

In this particular example, the system fails
to decide whether to take ‘capacity of class-
room’ or ‘classroom number’ as an n-gram.
Hence, the mapping fails.

2. Who teaches Physics?

• SELECT *
FROM department
WHERE
department.dep name = ’Physics’

In this example, the implicit query module
of our system is able to map Physics to ’de-
partment name’ attribute from table ’depart-
ment’. But it fails to identify that ’who’ refers
to a person (an instructor).

6 Comparison and Conclusion

Similar existing systems:

1. Complex Queries are not handled very well.

2. Only a few types of aggregate functions have
been taken care of.

3. No system has incorporated HAVING,
GROUP BY and other clauses.

4. Many systems were specific use systems
which were limited to a certain database.

5. No system till date incorporates such a wide
range of queries.

Our System:

• The system is currently capable of generating

1. Simple queries.
2. Complex queries involving natural and

inner joins.
3. Aggregate functions in queries.
4. Advanced ’WHERE’ clauses.
5. ORDER BY, GROUP BY, HAVING and

LIMIT clauses.
6. Basic implicit queries.
7. DML Queries like INSERT, UPDATE

and DELETE.

• The system works irrespective of the selected
MySQL database.

• No system till date incorporates such a wide
range of queries.

7 Future Work

The following points are not yet incorporated in
the system and are hence left as future work. The
development on the points mentioned in future
work is in progress.

1. It is possible that a natural language state-
ment can result in multiple SQL queries.
Machine learning can be incorporated to
choose the most efficient query.

2. This system only considers MySQL database
system. It can be expanded to work for
any other database system or unstructured
databases.

3. More efficient algorithm to handle implicit
queries can be developed.

4. Only single sentence natural language input
is handled. Multiple sentences which result
in a single query can be incorporated.

5. Neural methods can be used to solve the
problem of indecisiveness of n-grams.

22

References
Pranali P. Chaudhari. November 2013. Natural lan-

guage statement to sql query translator. Inter-
national Journal of Computer Applications (0975-
8887) 82(5).

Prof. Debarati Ghosal, Tejas Waghmare, Vivek Satam,
and Chinmay Hajirnis. March 2016. Sql query for-
mation using natural language processing (nlp). In-
ternational Journal of Advanced Research in Com-
puter and Communication Engineering 5(3).

Prasun Kanti Ghosh, Saparja Dey, and Subhabrata Sen-
gupta. 2014. Automatic sql query formation from
natural language query. International Journal of
Computer Applications (0975-8887), International
Conference on Microelectronics, Circuits and Sys-
tems (MICRO-2014) .

Hendrix. 1978. Lifer / ladder .

Prabhdeep Kaur and Shruthi J. Jan 2016. Conversion
of natural language query to sql. International Jour-
nal of Engineering Sciences and Emerging Tech-
nologies .

Ashish Palakurthi, Ruthu S. M., Arjun R. Akula, and
Radhika Mamidi. 2015. Classification of attributes
in a natural language query into different sql clauses.
IBM Research, Bangalore, India .

Gauri Rao, Chanchal Agarwal, Snehal Chaudhry,
Nikita Kulkarni, and Dr. S.H. Patil. 2010. Natural
language query processing using semantic grammar.
International Journal on Computer Science and En-
gineering 2(2):219–223.

Filbert Reinaldha and Tricya E. Widagdo. 2014. Natu-
ral language interfaces to database (nlidb): Question
handling and unit conversion. IEEE .

F. Siasar, M. Norouzifard, S. H. Davarpanah, and M. H.
Shenassa. May 2008. Using natural language pro-
cessing in order to create sql queries. Proceedings
of the International Conference on Computer and
Communication Engineering 2008 .

Garima Singh and Arun Solanki. 2016. An algorithm
to transform natural language into sql queries for re-
lational databases. Selforganizology 3(3):100–116.

W. A. Woods. 1973. Progress in natural language
understanding-an application to lunar geology. Na-
tional Computer Conference pages 451–460.

23

	nQuery - A Natural Language Statement to SQL Query Generator

