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Abstract

In dependency parsing, jackknifing tag-
gers is indiscriminately used as a simple
adaptation strategy. Here, we empirically
evaluate when and how (not) to use jack-
knifing in parsing. On 26 languages, we
reveal a preference that conflicts with, and
surpasses the ubiquitous ten-folding. We
show no clear benefits of tagging the train-
ing data in cross-lingual parsing.

1 Introduction

Dependency parsers are trained over manually an-
notated treebank data. By contrast, when applied
in the real world, they parse over sequences of pre-
dicted parts of speech. As POS tagging accuracy
drops due to domain change, the parsing quality
declines proportionally. Bringing these two POS
tag sources closer together thus makes for a rea-
sonable adaptation strategy.

Arguably the simplest of such adaptations is n-
fold jackknifing. In it, a treebank is divided into n
equal parts, and the n-th part is POS-tagged with
a tagger trained on the remainder. The procedure
is repeated until all n parts are assigned with pre-
dicted POS tags. A parser is then trained over the
thus altered treebank, under the assumption that
its POS features will now more closely resemble
those of the input data.

Jackknifing is simplistic as it i) has a very lim-
ited adaptation range for n ∈ N+, and it ii) does not
in any way take the input data into account, other
than through a vague assumption of an undefined
amount of tagging noise in the input. As such, it
exhibits very mixed results. Still, the method is
now ubiquitous in the parsing literature.

In Figure 1, we survey the ACL Anthology1 for
POS jackknifing. We uncover that ∼80% of the 70

1http://aclweb.org/anthology/

Figure 1: Jackknifing in the ACL Anthology. Dis-
tribution of n over 70 parsing papers that use tag-
ger n-folding.

parsing papers we retrieved make use of ten-fold
jackknifing. This choice spans across the various
languages and domains parsed in these papers, and
is even motivated by simply “following the tradi-
tions in literature”.2

Our contributions. We evaluate jackknifing to
establish whether its use is warranted in depen-
dency parsing. Controlling for tagging quality in
training and testing, we experiment with monolin-
gual and delexicalized cross-lingual parsers over
26 languages, showing that:

i) Indiscriminate use of ten-fold jackknifing re-
sults in sub-optimal parsing.

ii) Tagging the training data does not yield clear
benefits in realistic cross-lingual parsing.

iii) Our jackknifing extension improves parsing
through finer-grained adaptation.

2 Method

Jackknifing generally refers to a leave-one-out
procedure for reducing bias in parameter estima-
tion from an unbiased sample (Quenouille, 1956;
Tukey, 1958). More recently, in machine learn-
ing the term is used synonymously with “cross-

2Incidentally, using ten-folds with the WSJ data yields
roughly the same train- and test-set tagging accuracy, and
seems to be where the choice originated.
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validation” for estimation of predictive model per-
formance measures. In NLP, jackknifing has com-
monly been used to describe a procedure by which
the training input is adjusted to correspond more
closely to the expected test input, and it is in this
latter sense that we use the term here.

In particular, in parsing research, the n-fold
jackknifing proceeds as follows. The treebank is
first partitioned into n non-overlapping subsets of
equal size. Then, iteratively, each part acts as a
test subset and is tagged using a model induced by
the remaining n−1 parts, the training subset, until
the entire treebank is tagged.

We want to control for POS tagging accuracy
through the jackknifing method. To do this, we
train a tagger on increasing sized subsets of the
training set. In fold terminology, this corresponds
to dividing the training set into equal parts of size
1
n , training on n−1

n ths of the training set and testing
on the remaining 1

n th. However, this constrains the
size of the training subset to be larger than half the
original data, and thus concentrates our study on
models that use almost all the data, since the non-
linear curve f(n) = n−1

n becomes very flat very
fast. Thus, varying fold numbers reveals very little
variation in terms of POS tagging accuracy in the
lower accuracy range.

Linear extension. We now propose a simple ex-
tension of the jackknifing paradigm to study parser
accuracy given a percentage p of the training set:
linear jackknifing.

Let p ∈ (0,1) be the percentage of the randomly
shuffled training set D used to induce a model to
tag some remaining number of instances. A train-
ing subset of this size allows a test subset of size at
most ⌈∣D∣ ⋅ (1 − p)⌉. Given a test subset to tag, we
can induce a model from a random subset of the
remaining examples of size approximately p ⋅ ∣D∣
to become our training subset. We randomize the
choice of examples in the training subset to avoid
introducing bias. In order to tag all of D, the min-
imum number of models we need to generate is⌈1/(1 − p)⌉. We thus separate D into test sub-
sets f1, . . . , f⌈ 1/(1−p)⌉ each of size approximately⌈∣D∣ ⋅ (1 − p)⌉. For each fi, we randomly sam-
ple a training subset of size approximately ⌈p ⋅ ∣D∣⌉
from the remainder of D, induce a model and then
tag fi. This results in the original full training set
tagged with an accuracy corresponding to the per-
formance of a randomly selected tagger trained on
approximately p ⋅ ∣D∣ of the examples.

Figure 2: Tagger learning curve for 26 languages:
mean tagging accuracy with 95% confidence inter-
vals. Accuracy ranges for n-fold and linear jack-
knifing are indicated.

Intrinsic evaluation. For increasing values of p,
at 5% increments, we carried out linear jackknif-
ing on 26 languages. For each p, we averaged the
performance of the induced taggers on the respec-
tive gold standards. Figure 2 illustrates the dif-
ference in informativeness of the two approaches,
where each tagging accuracy score is averaged
across the 26 languages. We see that with n-fold
jackknifing, tagging accuracy is constrained to be-
tween approximately 92% and 95%, whereas lin-
ear jackknifing explores accuracies as low as ap-
proximately 86%. Moreover, the confidence in-
tervals are consistent across the p, demonstrating
unbiased tagging models generated on less data
(lower p). We now show that these smaller lev-
els of p are essential for good parser performance
in some cases of jackknifing.

3 Experiments

Our experiment aims at judging the adequacy of
jackknifing in dependency parsing. First, we out-
line the experiment setup, where we conduct two
sets of experiments:

i) monolingual, where lexicalized parsers are
trained on treebanks for their respective lan-
guages, and

ii) cross-lingual, that features SINGLE-best and
MULTI-source delexicalized parsers.

Tagging sources. By jackknifing we explore
how the mismatch between training and test POS
affects parsing. Our setup thus critically relies on
the sources of tags. We tag our test sets using:

i) PRED, the monolingual taggers, and
ii) PROJ, the low-resource taggers by Agić et al.

(2016), based on annotation projection.
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Monolingual parsing

Train: GOLD linear jackknifing n-fold jackknifing PROJ

Test: PRED PROJ PRED pmax PROJ pmax PRED nmax PROJ nmax PRED PROJ

Arabic (ar) 79.4 51.4 79.5 90 64.0 5 79.5 12 55.3 2 73.5 74.4
Bulgarian (bg) 86.8 56.4 87.2 80 66.7 5 87.2 12 60.2 2 82.2 78.0

Czech (cs) 81.0 58.2 81.6 85 62.5 5 81.6 8 60.1 2 77.3 70.7
Danish (da) 74.4 65.7 78.2 95 71.8 5 78.3 11 68.5 2 75.1 76.0

German (de) 79.0 51.8 80.2 20 56.6 5 80.1 2 54.4 7 75.6 69.2
Greek (el) 81.1 59.4 81.4 70 64.7 5 81.4 20 61.2 2 74.7 75.6

English (en) 80.9 71.6 82.3 80 77.6 5 82.3 17 76.0 2 80.2 80.9
Spanish (es) 80.7 75.4 82.1 20 78.3 5 81.8 9 77.3 4 80.2 80.2
Estonian (et) 74.3 61.6 76.0 55 67.1 5 76.1 13 65.0 2 73.3 70.5

Persian (fa) 82.3 25.8 83.2 35 46.3 5 83.1 4 35.1 2 66.3 71.9
Finnish (fi) 72.0 53.9 72.9 75 60.4 5 73.0 18 56.6 2 69.2 64.7
French (fr) 80.9 65.4 81.7 90 72.7 5 81.8 19 68.7 2 79.2 77.1

Hebrew (he) 80.6 54.2 81.5 75 68.1 5 81.5 7 61.7 2 77.9 75.7

Hindi (hi) 89.1 51.0 91.0 70 70.1 5 91.0 11 63.1 2 84.8 85.5
Croatian (hr) 78.1 54.6 78.2 45 62.9 5 78.4 19 56.3 20 73.6 72.5

Hungarian (hu) 74.3 55.4 74.9 95 63.2 5 75.2 17 58.3 2 71.0 66.8
Indonesian (id) 79.4 70.6 79.6 90 74.9 5 79.6 9 72.3 2 77.8 77.7

Italian (it) 86.2 76.2 87.6 55 82.9 5 87.6 2 80.6 2 86.2 85.5
Dutch (nl) 72.1 60.2 73.8 50 67.9 5 73.8 12 65.6 8 67.6 72.6

Norwegian (no) 83.7 74.8 85.3 95 79.9 5 85.3 8 78.0 2 83.7 82.6

Polish (pl) 83.7 69.8 84.7 30 75.8 5 84.9 20 73.0 2 81.4 78.6
Portuguese (pt) 82.2 75.7 83.2 30 78.8 5 83.1 2 77.7 19 80.2 82.0
Romanian (ro) 81.8 66.8 82.5 85 72.9 5 82.5 5 69.0 2 79.7 79.1

Slovene (sl) 82.0 62.5 84.2 55 71.4 5 84.2 16 68.9 7 79.3 77.4
Swedish (sv) 80.9 74.4 81.9 90 77.3 10 82.0 19 76.8 7 80.0 79.1

Tamil (ta) 65.1 33.4 65.8 95 49.5 5 65.6 5 42.5 2 51.5 56.3

Mean 79.7 60.6 80.8 67.5 68.6 5.2 80.8 11.4 64.7 4.2 76.2 75.4
Best for #/26 0 0 18 – 0 – 21 – 0 – 0 26

Table 1: Parsing accuracy (UAS) in relation to the underlying sources of POS tags in training and at
runtime. Bold: best result for language, separately for PRED and PROJ test sets.

We do not experiment with gold POS tags in the
test sets. Instead, we only focus on realistic pars-
ing over predicted tags. The tags in our training
sets can be GOLD, PROJ, or they can be predicted
through n-fold or linear jackknifing.

In n-fold jackknifing, we experiment with n ∈{2,3, ..,20}, while for the linear extension we set
p ∈ {5,10, ...,95}. We report the average pars-
ing scores over 5 runs for each n and p so as to
mitigate the effects of random shuffling in the two
jackknifing procedures. In finding the optimal val-
ues of the parameters nmax and pmax, we report
the highest values in case of ties. For example, if
n = 5 and n = 10 both yield the same maximum
UAS, we set nmax = 10.

We emphasize the importance of realistic set-

tings especially in cross-lingual parsing. Thus, we
commit to using PROJ taggers with an outlook on
true low-resource languages.

Data. We use the Universal Dependencies (UD)
treebanks version 1.2 (Nivre et al., 2016).3 As the
projection-based taggers are trained on the WTC
dataset by Agić et al. (2016), we intersect the list
of WTC languages with the UD list for a total of
26 languages.

Tagging and parsing. For POS tagging, we use
the TNT tagger by Brants (2000). The PRED

taggers score 94.1±1.1%, while the low-resource
PROJ taggers are on average 71.7±5.7% accurate.
We experiment with two parsers. Bohnet’s (2010)

3http://universaldependencies.org/

681



Delexicalized transfer

Train: GOLD↝PROJ PROJ↝PROJ

Test: MULTI SINGLE MULTI SINGLE

Arabic (ar) 34.2 he 38.3 28.3 id 37.0
Bulgarian (bg) 49.5 cs 50.1 50.2 cs 51.1

Czech (cs) 50.4 sl 50.7 48.4 sl 50.8
Danish (da) 58.0 no 58.5 58.1 no 61.4

German (de) 43.9 no 45.0 45.8 sv 45.4
Greek (el) 56.3 it 55.4 57.3 no 55.3

English (en) 55.8 no 56.7 57.2 sv 58.2
Spanish (es) 67.9 it 68.5 64.9 it 67.6
Estonian (et) 45.8 fi 53.1 43.9 fi 50.8

Persian (fa) 21.5 ar 25.7 18.9 pl 24.2
Finnish (fi) 38.8 et 45.1 40.0 et 45.5
French (fr) 52.8 it 54.4 54.9 it 58.9

Hebrew (he) 44.6 ro 45.1 41.7 ro 44.0

Hindi (hi) 16.9 ta 38.1 18.0 ta 31.0
Croatian (hr) 50.9 sl 50.8 46.8 cs 49.3

Hungarian (hu) 39.9 sv 46.4 40.1 et 49.3
Indonesian (id) 54.5 ro 56.6 48.7 ro 54.4

Italian (it) 67.0 es 67.8 67.4 es 69.2
Dutch (nl) 55.1 es 53.9 52.2 sv 52.5

Norwegian (no) 63.5 sv 64.3 62.4 sv 64.4

Polish (pl) 62.9 cs 64.2 57.3 cs 59.2
Portuguese (pt) 65.7 es 67.7 64.7 it 66.9
Romanian (ro) 53.6 it 53.7 50.5 es 53.9

Slovene (sl) 50.5 cs 53.4 52.6 cs 56.3
Swedish (sv) 62.7 no 66.8 61.9 no 67.1

Tamil (ta) 21.2 hu 28.9 24.6 hi 33.8

Mean 49.4 – 52.3 48.3 – 52.2
Best for #/26 14 – 12 12 – 14

Table 2: UAS scores for the delexicalized transfer
parsers. TRAIN↝TEST indicates the training and
testing POS. Bold: best result for language, sepa-
rate for MULTI and SINGLE transfer. For SINGLE,
best source names are also reported.

second-order graph-based system MATE4 is the
primary. Further, we verify all parsing results by
using a transition-based parser YARA5 with dy-
namic oracles (Rasooli and Tetreault, 2015).

The following CoNLL 2009 features are used
for training the parsers:6 ID, FORM (in monolin-
gual parsing only), POS, and HEAD. Since ours
is not a benchmarking effort, we apply all systems
with their default settings.

3.1 Results

In monolingual parsing over PRED tags (Table 1),
we achieve an identical average UAS with lin-

4https://code.google.com/archive/p/
mate-tools/

5https://github.com/yahoo/YaraParser
6https://ufal.mff.cuni.cz/

conll2009-st/

Figure 3: Parsing accuracy (UAS) in relation to
linear jackknifing over 26 languages, with two
sources of test set POS tags.

ear and n-fold jackknifing. Our adaptations sur-
pass training with GOLD data by +1.1 UAS. Lin-
ear jackknifing improves over GOLD training by
+8.1 UAS when parsing over low-resource PROJ

tags. There, we top GOLD training by n-fold jack-
knifing as well, but it trails the linear variant by
-3.9 UAS. In the low-resource PROJ setup, PROJ-
trained parsers are dominant. They score +6.8
UAS over linear, +10.7 UAS over n-folding, and
+14.8 UAS over GOLD training.

Figure 3 plots the relation between the sample
size p in linear jackknifing and the resulting UAS
in parsing, split for PRED and PROJ test-set tag-
gings. Parsing over PRED tags, the UAS generally
increases with p, but we note that this increase is
rather small: over 26 languages, moving p from
5% to 95% yields only +0.7 UAS on average. By
contrast, adapting to the lower-quality PROJ tags
sees a larger +5 UAS benefit from decreasing p all
the way to 5%, which is well outside the n-fold
range, as indicated for n ∈ {2, ...,20} by the dot-
ted lines in the figure.

Our cross-lingual parsing experiment (Table 2)
contrasts two options: we either tag (PROJ↝) or do
not tag (GOLD↝) the parser training data. To re-
flect realistic low-resource parsing, the test data is
tagged with PROJ taggers only. On average, the
unadapted parsers are slightly better (UAS: +1.1
MULTI, +0.1 SINGLE). However, they are almost
evenly split with the adapted ones in terms of of-
fering the best performance for 12-14 out of the
26 test languages each. These results suggest, at
least for simplicity, a preference for not tagging
the treebanks.

4 Discussion

Linear or n-fold? In resource-rich PRED pars-
ing, the two jackknifing methods are evenly split,
with identical average UAS score and an overlap
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on 13 languages. In low-resource PROJ parsing, n-
folding falls far behind as the constraint for n ≥ 2
prevents it from adapting accordingly. The median
pmax in PRED and PROJ are 75% and 5%. The
first one roughly corresponds to 4-fold jackknif-
ing, while the second one is far below the two-fold
range. The median nmax are 11 and 2, and we note
that nmax is rarely ∼10 in Table 1.

If we simply use ten-fold jackknifing for PRED

tags, we manage to match the pmax scores for only
9 of 26 languages, and we score -0.2 UAS on av-
erage. If using n = 10 with PROJ tags, the discon-
nect is much more substantial, and we are unable
to reach pmax (-4.6 UAS).

The GOLD training data is never the best choice
in our monolingual parsing experiment, regardless
of whether the test tags are PRED or PROJ. This
result in itself justifies the usage of jackknifing as
adaptation for the monolingual setting, provided
that it is not indiscriminate.

Finding p̂max. For choosing the optimal linear
jackknifing in real-world parsing, we note that
pmax closely correlates with test set tagging ac-
curacy (Spearman’s ρ = 0.76), and negatively with
treebank size (ρ = −0.42, for ∣D∣ ≤ 10k sentences).
Thus, to adapt via linear jackknifing, we must i)
approximate the expected input data tagging accu-
racy, while at the same time ii) accounting for the
fact that the accuracy associated with any p de-
pends on treebank size as well. In other words,
given two treebanks ∣D1∣ < ∣D2∣, we would typi-
cally need p1 > p2 with the goal of matching the
same test-set accuracy.

The other parser. Replacing the MATE parser
with the transition-based YARA does not change
the outcome of our monolingual parsing experi-
ment, save for the average 0.58–1.65 drop in UAS.
On the other hand, in cross-lingual parsing, YARA

highlights the benefits of not tagging the training
data, as the GOLD↝PROJ parsers are there the best
choice for parsing 17/26 languages. On average,
we see +2.1 UAS for MULTI, and +0.7 for SIN-
GLE over PROJ↝PROJ. This is especially worth
noting since large-scale parsing generally favors
transition-based systems.

GOLD test tags. Thus far, we have shown the
need for more careful jackknifing in parser train-
ing with respect to the expected tagging quality
at parse time. Fixing n = 10 was suboptimal in
parsing over the fully supervised PRED tags, while

n = 2,10 were way below the threshold in low-
resource parsing over our cross-lingual PROJ tags.
We have purposely excluded GOLD test tags from
the discussion so far.

Still, while parsing over GOLD POS input does
not hold much significance for real-world applica-
tions, it is worth noting how jackknifing performs
in the upper limit: trying to reach the accuracy of
parsers trained and tested on GOLD tags. In that
particular setup, we observe the maximum UAS of
83.8 for median nmax = 12 and pmax = 80%. The
respective modal values are n = 20 and p = 95%,
meaning that for most languages, we come closest
to GOLD↝GOLD by maximizing the tagging ac-
curacy. The overall score amounts to -0.7 UAS
below the upper bound.

5 Related work

Jackknifing itself is for the most part incidental to
the work that employs it. Here, we mention a few
notable exceptions.

Che et al. (2012) compare jackknifing to using
gold tags in parsing Chinese for constituents and
dependencies, where they observe mixed results:
improvement with one parser, and decrease with
the other. Seeker and Kuhn (2013) briefly touch
upon the importance of jackknifing in bridging the
gap between training and test data, and experi-
ment with 5- and 10-folds. Honnibal and John-
son (2015) passingly contrast jackknifing to joint
learning, giving precedence to the latter for sim-
plicity. Finally, Kong et al. (2015) follow Zhu
et al. (2013) in ten-folding for Chinese and En-
glish, citing 2.0% and 0.4% improvements. Inci-
dentally, jackknifing parsers then hurts their per-
formance in tree conversions.

6 Conclusions

The parsing literature is riddled with indiscrimi-
nate use of n-fold part-of-speech tagger jackknif-
ing as makeshift domain adaptation.

In this paper we have proposed a careful empir-
ical treatment of jackknifing in dependency pars-
ing, far surpassing ten-folding via fine-grained
control over the data adjustment.
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Martı́nez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for pars-
ing truly low-resource languages. Transactions of
the Association of Computational Linguistics 4:301–
312. http://aclweb.org/anthology/Q16-1022.

Bernd Bohnet. 2010. Top accuracy and fast de-
pendency parsing is not a contradiction. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Col-
ing 2010 Organizing Committee, pages 89–97.
http://aclweb.org/anthology/C10-1011.

Thorsten Brants. 2000. Tnt - a statistical part-of-
speech tagger. In Proceedings of the Sixth Ap-
plied Natural Language Processing Conference.
http://aclweb.org/anthology/A00-1031.

Wanxiang Che, Valentin Spitkovsky, and Ting Liu.
2012. A comparison of chinese parsers for stan-
ford dependencies. In Proceedings of the 50th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, pages 11–16.
http://aclweb.org/anthology/P12-2003.

Matthew Honnibal and Mark Johnson. 2015. An
improved non-monotonic transition system for
dependency parsing. In Proceedings of the
2015 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, pages 1373–1378.
https://doi.org/10.18653/v1/D15-1162.

Lingpeng Kong, M. Alexander Rush, and A. Noah
Smith. 2015. Transforming dependencies into
phrase structures. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies. Association
for Computational Linguistics, pages 788–798.
https://doi.org/10.3115/v1/N15-1080.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association (ELRA), Paris, France, pages
1659–1666.

Maurice H. Quenouille. 1956. Notes on
Bias in Estimation. Biometrika 61:1–17.
https://doi.org/10.2307/2332914.

Mohammad Sadegh Rasooli and Joel Tetreault. 2015.
Yara Parser: A Fast and Accurate Dependency
Parser. arXiv preprint arXiv:1503.06733 .

Wolfgang Seeker and Jonas Kuhn. 2013. The effects
of syntactic features in automatic prediction of mor-
phology. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 333–344. http://aclweb.org/anthology/D13-
1033.

John W. Tukey. 1958. Bias and Confi-
dence in Not Quite Large Samples. An-
nals of Mathematical Statistics 29:614.
https://doi.org/10.1214/aoms/1177706647.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 434–
443. http://aclweb.org/anthology/P13-1043.

684


	How (not) to train a dependency parser: The curious case of jackknifing part-of-speech taggers

