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Abstract

We speed up Neural Machine Translation
(NMT) decoding by shrinking run-time
target vocabulary. We experiment with
two shrinking approaches: Locality Sensi-
tive Hashing (LSH) and word alignments.
Using the latter method, we get a 2x over-
all speed-up over a highly-optimized GPU
implementation, without hurting BLEU.
On certain low-resource language pairs,
the same methods improve BLEU by 0.5
points. We also report a negative re-
sult for LSH on GPUs, due to relatively
large overhead, though it was successful
on CPUs. Compared with Locality Sensi-
tive Hashing (LSH), decoding with word
alignments is GPU-friendly, orthogonal to
existing speedup methods and more robust
across language pairs.

1 Introduction

Neural Machine Translation (NMT) has been
demonstrated as an effective model and been put
into large-scale production (Wu et al., 2016; He,
2015). For online translation services, decoding
speed is a crucial factor to achieve a better user
experience. Several recently proposed training
methods (Shen et al., 2015; Wiseman and Rush,
2016) aim to solve the exposure bias problem, but
require decoding the whole training set multiple
times, which is extremely time-consuming for mil-
lions of sentences.

Slow decoding speed is partly due to the large
target vocabulary size V, which is usually in the
tens of thousands. The first two columns of Ta-
ble 1 show the breakdown of the runtimes re-
quired by sub-modules to decode 1812 Japanese
sentences to English using a sequence-to-sequence
model with local attention (Luong et al., 2015).

Sub-module Full vocab WA50 Speedup
Total 1002.78 s 481.52 s 2.08
– Beam

expansion 174.28 s 76.52 s 2.28

– Source-side 83.67 s 83.44 s 1
– Target-side 743.25 s 354.52 s 2.1
– – Softmax 402.77 s 20.68 s 19.48
– – Attention 123.05 s 123.12 s 1
– – 2nd layer 64.72 s 64.76 s 1
– – 1st layer 88.02 s 87.96 s 1
Shrink vocab - 0.39 s -
BLEU 25.16 25.13 -

Table 1: Time breakdown and BLEU score of
full vocabulary decoding and our “WA50” decod-
ing, both with beam size 12. WA50 means de-
coding informed by word alignments, where each
source word can select at most 50 relevant target
words. The model is a 2-layer, 1000-hidden di-
mension, 50,000-target vocabulary LSTM seq2seq
model with local attention trained on the AS-
PEC Japanese-to-English corpus (Nakazawa et al.,
2016). The time is measured on a single Nvidia
Tesla K20 GPU.

Softmax is the most computationally intensive
part, where each hidden vector ht ∈ Rd needs to
dot-product with V target embeddings ei ∈ Rd.
It occupies 40% of the total decoding time. An-
other sub-module whose computation time is pro-
portional to V is Beam Expansion, where we need
to find the top B words among all V vocabulary ac-
cording to their probability. It takes around 17% of
the decoding time.

Several approaches have proposed to improve
decoding speed:

1. Using special hardware, such as GPU and
Tensor Processing Unit (TPU), and low-
precision calculation (Wu et al., 2016).

2. Compressing deep neural models through
knowledge distillation and weight pruning
(See et al., 2016; Kim and Rush, 2016).
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3. Several variants of Softmax have been pro-
posed to solve its poor scaling properties
on large vocabularies. Morin and Bengio
(2005) propose hierarchical softmax, where
at each step log2 V binary classifications are
performed instead of a single classification
on a large number of classes. Gutmann and
Hyvärinen (2010) propose noise-contrastive
estimation which discriminate between pos-
itive labels and k (k << V ) negative la-
bels sampled from a distribution, and is ap-
plied successfully on natural language pro-
cessing tasks (Mnih and Teh, 2012; Vaswani
et al., 2013; Williams et al., 2015; Zoph et al.,
2016). Although these two approaches pro-
vide good speedups for training, they still
suffer at test time. Chen et al. (2016) in-
troduces differentiated softmax, where fre-
quent words have more parameters in the em-
bedding and rare words have less, offering
speedups on both training and testing.

In this work, we aim to speed up decoding by
shrinking the run-time target vocabulary size, and
this approach is orthogonal to the methods above.
It is important to note that approaches 1 and 2
will maintain or even increase the ratio of target
word embedding parameters to the total parame-
ters, thus the Beam Expansion and Softmax will
occupy the same or greater portion of the decod-
ing time. A small run-time vocabulary will dra-
matically reduce the time spent on these two por-
tions and gain a further speedup even after apply-
ing other speedup methods.

To shrink the run-time target vocabulary, our
first method uses Locality Sensitive Hashing. Vi-
jayanarasimhan et al. (2015) successfully applies
it on CPUs and gains speedup on single step
prediction tasks such as image classification and
video identification. Our second method is to use
word alignments to select a very small number of
candidate target words given the source sentence.
Recent works (Jean et al., 2015; Mi et al., 2016;
L’Hostis et al., 2016) apply a similar strategy and
report speedups for decoding on CPUs on rich-
source language pairs.

Our major contributions are:

1. To our best of our knowledge, this work
is the first attempt to apply LSH technique
on sequence generation tasks on GPU other
than single-step classification on CPU. We

find current LSH algorithms have a poor per-
formance/speed trade-off on GPU, due to
the large overhead introduced by many hash
table lookups and list-merging involved in
LSH.

2. For our word alignment method, we find that
only the candidate list derived from lexical
translation table of IBM model 4 is adequate
to achieve good BLEU/speedup trade-off for
decoding on GPU. There is no need to com-
bine the top frequent words or words from
phrase table, as proposed in Mi et al. (2016).

3. We conduct our experiments on GPU and
provide a detailed analysis of BLEU/speedup
trade-off on both resource-rich/poor language
pairs and both attention/non-attention NMT
models. We achieve more than 2x speedup
on 4 language pairs with only a tiny BLEU
drop, demonstrating the robustness and effi-
ciency of our methods.

2 Methods

At each step during decoding, the softmax function
is calculated as:

P (y = j|hi) =
eh

T
i wj+bj

∑V
k=1 e

hT
i wk+bk

(1)

where P (y = j|hi) is the probability of word
j = 1...V given the hidden vector hi ∈ Rd, i =
1...B. B represents the beam size. wj ∈ Rd is
output word embedding and bj ∈ R is the corre-
sponding bias. The complexity is O(dBV ). To
speed up softmax, we use word frequency, local-
ity sensitive hashing, and word alignments respec-
tively to select C (C << V ) potential words and
evaluate their probability only, reducing the com-
plexity to O(dBC + overhead).

2.1 Word Frequency
A simple baseline to reduce target vocabulary is to
select the top C words based on their frequency in
the training corpus. There is no run-time overhead
and the overall complexity is O(dBC).

2.2 Locality Sensitive Hashing
The word j = argmaxk P (y = k|hi) will have
the largest value of hTi wj + bj . Thus the argmax
problem can be converted to finding the near-
est neighbor of vector [hi; 1] among the vectors
[wj ; bj ] under the distance measure of dot-product.
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Locality Sensitive Hashing (LSH) is a powerful
technique for the nearest neighbor problem. We
employ the winner-take-all (WTA) hashing (Yag-
nik et al., 2011) defined as:

WTA(x ∈ Rd) = [I1; ...; Ip; ...; IP ] (2)

Ip = argmaxKk=1 Permutep(x)[k] (3)

WTAband(x) = [B1; ...;Bw; ...;BW ] (4)

Bw = [I(w−1)∗u+1; ...; I(w−1)∗u+i; ...; Iw∗u] (5)

u = P/W (6)

where P distinct permutations are applied and the
index of the maximum value of the first K ele-
ments of each permutations is recorded. To per-
form approximate nearest neighbor searching, we
follow the scheme used in (Dean et al., 2013; Vi-
jayanarasimhan et al., 2015):

1. Split the hash code WTA(x) into W bands
(as shown in equation 4), with each band
P
W log2(K) bits long.

2. Create W hash tables [T1, ..., Tw, ..., TW ],
and hash every word index j into every table
Tw using WTAband(wj)[w] as the key.

3. Given the hidden vector hi, extract a list of
word indexes from each table Tw using the
key WTAband(hi)[w]. Then we merge the
W lists and count the number of the occur-
rences of each word index. Select the top C
word indexes with the largest counts, and cal-
culate their probability using equation 1.

The 4 hyper-parameters that define a WTA-LSH
are {K,P,W,C}. The run-time overhead com-
prises hashing the hidden vector, W times hash
table lookups and W lists merging. The overall
complexity isO(B(dC+K∗P+W+W∗Navg))),
where Navg is the average number of the word in-
dexes stored in a hash bin of Tw. Although the
complexity is much smaller than O(dBV ), the
runtime in practice is not guaranteed to be shorter,
especially on GPUs, as hash table lookups in-
troduce too many small kernel launches and list
merging is hard to parallelize.

2.3 Word Alignment

Intuitively, LSH shrinks the search space utilizing
the spatial relationship between the query vector
and database vectors in high dimension space. It

is a task-independent technique. However, when
focusing on our specific task (MT), we can employ
translation-related heuristics to prune the run-time
vocabulary precisely and efficiently.

One simple heuristic relies on the fact that each
source word can only be translated to a small set of
target words. The word alignment model, a foun-
dation of phrase-base machine translation, also
follows the same spirit in its generative story: each
source word is translated to zero, one, or more tar-
get words and then reordered to form target sen-
tences. Thus, we apply the following algorithm to
reduce the run-time vocabulary size:

1. Apply IBM Model 4 and the grow-diag-final
heuristic on the training data to get word
alignments. Calculate the lexical translation
table P(e|f) based on word alignments.

2. For each word f in the source vocabulary of
the neural machine translation model, store
the top M target words according to P(e|f)
in a hash table Tf2e = {f : [e1, ...eM ]}

3. Given a source sentence s = [f1, ..., fN ], ex-
tract the candidate target word list from Tf2e

for each source word fi. Merge the N lists to
form the reduced target vocabulary Vnew;

4. Construct the new embedding matrix and bias
vector according to Vnew, then perform the
normal beam search on target side.

The only hyper-parameter is {M}, the number
of candidate target words for each source word.
Given a source sentence of length Ls, the run-time
overhead includes Ls times hash table lookups and
Ls lists merging. The complexity for each decod-
ing step isO(dB|Vnew|+(Ls+LsM)/Lt), where
Lt is the maximum number of decoding steps. Un-
like LSH, these table lookups and list mergings are
performed once per sentence, and do not depend
on the any hidden vectors. Thus, we can overlap
the computation with source side forward propa-
gation.

3 Experiments

To examine the robustness of these decoding
methods, we vary experiment settings in dif-
ferent ways: 1) We train both attention (Lu-
ong et al., 2015) and non-attention (Sutskever
et al., 2014) models; 2) We train models on
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J2E E2J F2E U2E
TC BLEU X TC BLEU X TC BLEU X TC BLEU X

Full 0.87 25.16 1 0.95 33.87 1 0.84 28.12 1 0.9 11.67 1
TF1K 0.14 13.42 2.11 0.15 18.91 2.42 0.1 12.1 2.32 0.29 8.78 1.65
TF5K 0.49 21.31 1.93 0.56 29.77 2.23 0.38 21.98 2.04 0.67 11.54 1.51
TF10K 0.67 23.62 1.76 0.75 32.28 2.04 0.56 24.88 1.78 0.81 11.67 1.33
TF20K 0.78 24.61 1.48 0.87 33.41 1.74 0.72 26.95 1.42 0.89 11.66 1.09
LSH1K - 19.45 0.026 - 22.23 0.027 - 3.43 0.036 - 9.41 0.025
LSH5K - 23.43 0.023 - 30.63 0.025 - 12.81 0.031 - 11.41 0.022
LSH10K - 24.82 0.022 - 32.63 0.024 - 18.45 0.028 - 11.63 0.020
LSH20K - 25.20 0.020 - 33.78 0.022 - 24.31 0.025 - 11.73 0.018
WA10 0.75 24.74 2.12 0.77 33.24 2.46 0.72 27.9 2.37 0.66 12.17 1.7
WA50 0.82 25.13 2.08 0.85 33.79 2.43 0.77 27.94 2.34 0.71 12.01 1.67
WA250 0.84 25.13 1.89 0.88 34.05 2.27 0.8 27.95 2.1 0.73 11.94 1.62
WA1000 0.85 25.17 1.57 0.9 33.97 1.93 0.82 28.08 1.67 0.75 11.89 1.58

Table 2: Word type coverage (TC), BLEU score, and speedups (X) for full-vocabulary decoding (Full),
top frequency vocabulary decoding (TF*), LSH decoding (LSH*), and decoding with word align-
ments(WA*). TF10K represents decoding with top 10,000 frequent target vocabulary (C = 10, 000).
WA10 means decoding with word alignments, where each source word can select at most 10 candidate
target words (M = 10). For LSH decoding, we choose (32, 5000, 1000) for (K,P ,W ), and vary C.

both resource-rich language pairs, French to En-
glish (F2E) and Japanese to English (J2E), and
a resource-poor language pair, Uzbek to English
(U2E); 3) We translate both to English (F2E, J2E,
and U2E) and from English (E2J). We use 2-
layer LSTM seq2seq models with different at-
tention settings, hidden dimension sizes, dropout
rates, and initial learning rates, as shown in Ta-
ble 3. We use the ASPEC Japanese-English Cor-
pus (Nakazawa et al., 2016), French-English Cor-
pus from WMT2014 (Bojar et al., 2014), and
Uzbek-English Corpus (Linguistic Data Consor-
tium, 2016).

Table 2 shows the decoding results of the
three methods. Decoding with word alignments
achieves the best performance/speedup trade-off
across all four translation directions. It can halve
the overall decoding time with less than 0.17
BLEU drop. Table 1 compares the detailed time
breakdown of full-vocabulary decoding and WA50
decoding. WA50 can gain a speedup of 19.48x
and 2.28x on softmax and beam expansion respec-
tively, leading to an overall 2.08x speedup with
only 0.03 BLEU drop. In contrast, decoding with
top frequent words will hurt the BLEU rapidly as
the speedup goes higher. We calculate the word
type coverage (TC) for the test reference data as

J2E E2J F2E U2E
Source Vocab 80K 88K 200K 50K
Target Vocab 50K 66K 40K 25K

#Tokens 70.4M 70.4M 652M 3.3M
#Sent pairs 1.4M 1.4M 12M 88.7K
Attention Yes Yes No Yes

Dimension 1000 1000 1000 500
Dropout 0.2 0.2 0.2 0.5

Learning rate 0.5 1 0.35 0.5

Table 3: Training configurations on different lan-
guage pairs.

follows:

TC =
|{run-time vocab} ∩ {word types in test}|

|{word types in test}|
The top 1000 words only cover 14% word types of
J2E test data, whereas WA10 covers 75%, whose
run-time vocabulary is no more than 200 for a 20
words source sentence.

The speedup of English-to-Uzbek translation is
relatively low (around 1.7x). This is because the
original full vocabulary size is small (25k), leaving
less room for shrinkage.

LSH achieves better BLEU than decoding with
top frequent words of the same run-time vocabu-
lary size C on attention models. However, it in-
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troduces too large an overhead (50 times slower),
especially when softmax is highly optimized on
GPU. When doing sequential beam search, search
error accumulates rapidly. To reach reasonable
performance, we have to apply an adequately large
number of permutations (P = 5000).

We also find that decoding with word align-
ments can even improve BLEU on resource-poor
languages (12.17 vs. 11.67). Our conjecture is that
rare words are not trained enough, so neural mod-
els confuse them, and word alignments can pro-
vide a hard constraint to rule out the unreasonable
word choices.

4 Conclusion

We apply word alignments to shrink run-time
vocabulary to speed up neural machine transla-
tion decoding on GPUs, and achieve more than
2x speedup on 4 translation directions without
hurting BLEU. We also compare with two other
speedup methods: decoding with top frequent
words and decoding with LSH. Experiments and
analyses demonstrate that word alignments pro-
vides accurate candidate target words and in-
troduces only a tiny overhead over a highly-
optimized GPU implementation.
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