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Abstract

Although new corpora are becoming
increasingly available for machine
translation, only those that belong to the
same or similar domains are typically
able to improve translation performance.
Recently Neural Machine Translation
(NMT) has become prominent in the
field. However, most of the existing
domain adaptation methods only focus
on phrase-based machine translation. In
this paper, we exploit the NMT’s internal
embedding of the source sentence and
use the sentence embedding similarity to
select the sentences which are close to
in-domain data. The empirical adaptation
results on the IWSLT English-French and
NIST Chinese-English tasks show that
the proposed methods can substantially
improve NMT performance by 2.4-9.0
BLEU points, outperforming the existing
state-of-the-art baseline by 2.3-4.5 BLEU
points.

1 Introduction

Recently, Neural Machine Translation (NMT)
has set new state-of-the-art benchmarks on many
translation tasks (Cho et al., 2014; Bahdanau et al.,
2015; Jean et al., 2015; Tu et al., 2016; Mi et al.,
2016; Zhang et al., 2016). An ever increasing
amount of data is becoming available for NMT
training. However, only the in-domain or related-
domain corpora tend to have a positive impact
on NMT performance. Unrelated additional
corpora, known as out-of-domain corpora, have
been shown not to benefit some domains and tasks
for NMT, such as TED-talks and IWSLT tasks
(Luong and Manning, 2015).

To the best of our knowledge, there are only

a few works concerning NMT adaptation (Luong
and Manning, 2015; Freitag and Al-Onaizan,
2016). Most traditional adaptation methods focus
on Phrase-Based Statistical Machine Translation
(PBSMT) and they can be broken down broadly
into two main categories namely model adaptation
and data selection (Joty et al., 2015) as follows.

For model adaptation, several PBSMT models,
such as language models, translation models and
reordering models, individually corresponding to
each corpus, are trained. These models are
then combined to achieve the best performance
(Sennrich, 2012; Sennrich et al., 2013; Durrani
et al., 2015). Since these methods focus on the
internal models within a PBSMT system, they are
not applicable to NMT adaptation. Recently, an
NMT adaptation method (Luong and Manning,
2015) was proposed. The training is performed
in two steps: first the NMT system is trained
using out-of-domain data, and then further trained
using in-domain data. Empirical results show their
method can improve NMT performance, and this
approach provides a natural baseline.

For adaptation through data selection, the main
idea is to score the out-domain data using models
trained from the in-domain and out-of-domain
data and select training data from the out-of-
domain data using a cut-off threshold on the
resulting scores. A language model can be
used to score sentences (Moore and Lewis, 2010;
Axelrod et al., 2011; Duh et al., 2013; Wang
et al., 2015), as well as joint models (Hoang and
Sima’an, 2014a,b; Durrani et al., 2015), and more
recently Convolutional Neural Network (CNN)
models (Chen et al., 2016). These methods select
useful sentences from the whole corpus, so they
can be directly applied to NMT. However, these
methods are specifically designed for PBSMT and
nearly all of them use the models or criteria which
do not have a direct relationship with the neural
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translation process.
For NMT sentences selection, our hypothesis is

that the NMT system itself can be used to score
each sentence in the training data. Specifically,
an NMT system embeds the source sentence into
a vector representation1 and we can use these
vectors to measure a sentence pair’s similarity
to the in-domain corpus. In comparison with
the CNN or other sentence embedding methods,
this method can directly make use of information
induced by the NMT system information itself. In
addition, the proposed sentence selection method
can be used in conjunction with the NMT further
training method (Luong and Manning, 2015).

2 NMT Background

An attention-based NMT system uses a
Bidirectional RNN (BiRNN) as an encoder
and a decoder that emulates searching through a
source sentence during decoding (Bahdanau et al.,
2015). The encoder’s BiRNN consists of forward
and backward RNNs. Each word xi is represented
by concatenating the forward hidden state

−→
hi and

the backward one
←−
hi as hi = [

−→
hi ;
←−
hi ]
>. In this

way, the source sentence X = {x1, ..., xTx} can
be represented as annotations H = {h1, ..., hTx}.
In the decoder, an RNN hidden state sj for time j
is computed by:

sj = f(sj−1, yj−1, cj). (1)

The context vector cj is then, computed as
a weighted sum of these annotations H =
{h1, ..., hTx}, by using alignment weight αji:

cj =

Tx∑

j=1

αjihi. (2)

3 Sentence Embedding and Selection

3.1 Sentence Embedding

A source sentence can be represented as the
annotations H. However the length of H depends
on the sentence length Tx. To represent a sentence
as a fixed-length vector, we adopt the initial hidden

1Li et al. (2016)’s fine-tuned NMT systems apply a similar
sentence representation. In comparison, we adopt a transition
layer between the source and target layers and don’t use test
data.

layer state sinit for the decoder as this vector:

sinit(X) = tanh(W

∑Tx
i=1 hi
Tx

+ b), hi ∈ H,

(3)
where an average pooling layer averages the
annotation hi for each source word into a fixed-
length source sentence vector, and a nonlinear
transition layer (weights W and bias b are jointly
trained with all the other components of NMT
system) transforms this embedded source sentence
vector into the initial hidden state sinit for the
decoder (Bahdanau et al., 2015).

3.2 Sentence Selection

We employ the data selection method, which is
inspired by (Moore and Lewis, 2010; Axelrod
et al., 2011; Duh et al., 2013). As Axelrod
et al. (2011) mentioned, there are some pseudo
in-domain data in out-of-domain data, which are
close to in-domain data. Our intuition is to select
the sentences whose embeddings are similar to the
average in-domain ones, while being dis-similar to
the average out-of-domain ones:

• 1) We train a French-to-English NMT system
NFE using the in-domain and out-of-domain
data together as training data.2

• 2) Each sentence f in the training data F
(both in-domain Fin and out-of-domain Fout)
is embedded as a vector vf = sinit(f) by
using NFE.

• 3) The sentence pairs (f, e) in the out-
of-domain corpus Fout are classified into
two sets: the sentences close to in-domain
sentences, and those that are distant.

That is, we firstly calculate the vector centers of
in-domain CFin and out-of-domain CFout corpora,
respectively.

CFin =

∑
f∈Fin

vf

|Fin|
,

CFout =

∑
f∈Fout

vf

|Fout|
.

(4)

Then we measure the Euclidean distance d
between each sentence vector vf and in-domain

2It is possible to use a sample of the out-of-domain data.
In this paper, we use all of them.
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vector center CFin as d(vf , CFin) and out-of-
domain vector center CFout as d(vf , CFout),
respectively. We use the difference δ of these two
distances to classify each sentence:

δf = d(vf , CFin)− d(vf , CFout). (5)

By using an English-to-French NMT system
NEF, we can obtain a target sentence embedding
ve, in-domain target vector center CEin and
out-of-domain target vector center CEout .
Corresponding distance difference δe is,

δe = d(ve, CEin)− d(ve, CEout). (6)

δf , δe and δfe = δf + δe can be used to select
sentences. That is, the sentence pairs (f, e) with
δf (or δe, δfe) less than a threshold are the new
selected in-domain corpus. This threshold is tuned
by using the development data.

4 Experiments

4.1 Data sets

The proposed methods were evaluated on two data
sets as shown in Table 1.

• IWSLT 2014 English (EN) to French (FR)
corpus3 was used as in-domain training data
and dev2010 and test2010/2011 (Cettolo
et al., 2014), were selected as development
(dev) and test data, respectively. Out-
of-domain corpora contained Common
Crawl, Europarl v7, News Commentary v10
and United Nation (UN) EN-FR parallel
corpora.4

• NIST 2006 Chinese (ZH) to English corpus5

was used as the in-domain training corpus,
following the settings of (Wang et al.,
2014). Chinese-to-English UN data set
(LDC2013T06) and NTCIR-9 (Goto et al.,
2011) patent data set were used as out-of-
domain data. NIST MT 2002-2004 and NIST
MT 2005/2006 were used as the development
and test data, respectively. We are aware of
that there are additional NIST corpora in a
similar domain, but because this task was for
domain adaptation, we only selected a small
subset, which is mainly focused on news and

3https://wit3.fbk.eu/mt.php?release=2014-01
4http://statmt.org/wmt15/translation-task.html
5http://www.itl.nist.gov/iad/mig/tests/mt/2006/

blog texts. The statistics on data sets were
shown in Table 1.

These adaptation corpora settings were nearly
the same as that used in (Wang et al., 2016). The
differences were:

• For IWSLT, they chose FR-EN translation
task, which is popular in PBSMT. We chose
EN-FR, which is more popular in NMT;

• For NIST, they chose 02-05 as dev set, and
we chose 02-04. Because we would report
results on two test sets (MT05 and MT06) in
comparison with only one (MT06).

IWSLT EN-FR Sentences Tokens
TED training (in-domain) 178.1K 3.5M
WMT training (out-of-domain) 17.8M 450.0M
TED dev2010 0.9K 20.1K
TED test2010 1.6K 31.9K
TED test2011 0.8K 15.6K
NIST ZH-EN Sentences Tokens
NIST in-domain training 430.8K 12.6M
out-of-domain training 8.8M 249.4M
dev (MT02-04) 3.4K 106.4K
test (MT05) 1.0K 34.7K
test (MT06) 1.6K 46.7K

Table 1: Statistics on data sets.

4.2 NMT System

We implemented the proposed method in
Groundhog6 (Bahdanau et al., 2015), which is
one of the state-of-the-art NMT frameworks.
The default settings of Groundhog were applied
for all NMT systems: the word embedding
dimension was 620 and the size of a hidden
layer was 1000, the batch size was 64, the source
and target side vocabulary sizes were 30K, the
maximum sequence length were 50, and the
beam size for decoding was 10. Default dropout
were applied. We used a mini-batch Stochastic
Gradient Descent (SGD) algorithm together with
ADADELTA optimizer (Zeiler, 2012). Training
was conducted on a single Tesla K80 GPU.
Each NMT model was trained for 500K batches,
taking 7-10 days. For sentence embedding and
selection, it only took several hours to process
all of sentences in the training data, because
decoding was not necessary.

6https://github.com/lisa-groundhog/
GroundHog
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4.3 Baselines
Along with the standard NMT baseline system,
we also compared the proposed methods to the
recent state-of-the-art NMT adaptation method
of Luong and Manning (2015)7 as described in
Section 1. Two typical sentence selection methods
for PBSMT were also used as baselines: Axelrod
et al. (2011) used language model-based cross-
entropy difference as criterion; Chen et al. (2016)
used a CNN to classify the sentences as either
in-domain or out-of-domain. In addition, we
randomly sampled out-of-domain data to create
a corpus the same size as that used for the best
performing proposed system. We tried our best to
re-implement the baseline methods using the same
basic NMT setting as the proposed method.

4.4 Results and Analyses
In Tables 2 and 3, the in, out and in + out
indicate that the in-domain, out-of-domain and
their mixture were used as the NMT training
corpora. δf , δe and δfe indicate that corresponding
criterion was used to select sentences, and these
selected sentences were added to in-domain
corpus to construct the new training corpora.
+fur indicates that the selected sentences were
used to train an initial NMT system, and then this
initial system was further trained by in-domain
data (Luong and Manning, 2015). The threshold
for the sentence selection method was selected
on development data. That is, we selected the
top ranked 10%, 20%,...,90% out-of-domain data
to be added into the in-domain data, and the
best performing models on development data were
used in the evaluation on test data.

The vocabulary was built by using the selected
corpus and in-domain corpus.8 Translation
performance was measured by case-insensitive
BLEU (Papineni et al., 2002). Since the proposed
method is a sentence selection approach, we can
also show the effect on standard PBSMT (Koehn
et al., 2007).

In the IWSLT task, the observations were as
follows:

• Adding out-of-domain to in-domain data, or
directly using out-of-domain data, degraded

7Freitag and Al-Onaizan (2016)’s method is quite similar
to Luong and Manning (2015)’s, so we did not compare to
them.

8According to our empirical comparison, the performance
did not significantly change if we used in + out to build the
vocabulary for all of the systems.

Methods Sent. SMT SMT NMT NMT
No. tst10 tst11 tst10 tst11

in 178.1K 31.06 32.50 29.23 30.00
out 17.7M 30.04 29.29 27.30 28.48
in+out 17.9 M 30.00 30.26 28.89 28.55
Random 5.5M 31.22 33.85 30.53 32.37
Luong 17.9 M N/A N/A 32.21 35.03
Axelrod 9.0M 32.06 34.81 32.26 35.54
Chen 7.3M 31.42 33.78 30.32 33.81
δf 7.3M 31.46 33.13 32.13 34.81
δe 3.7M 32.08 35.94 32.84 36.56
δfe 5.5M 31.79 35.66 32.67 36.64
δf+fur 7.3M N/A N/A 34.04 37.18
δe+fur 3.7M N/A N/A 33.88 38.04
δfe+fur 5.5M N/A N/A 34.52 39.02

Table 2: IWSLT EN-FR results. Luong and
Manning (2015)’s further (shorted as fur in
Tables 2 and 3) training method can only be
applied to NMT.

Methods Sent. SMT SMT NMT NMT
No. MT05 MT06 MT05 MT06

in 430.8K 29.66 30.73 27.28 26.82
out 8.8M 29.91 30.13 28.67 27.79
in+out 9.3M 30.23 30.11 28.91 28.22
Random 5.7M 29.90 30.18 28.02 27.49
Luong 9.3M N/A N/A 29.91 29.61
Axelrod 2.2M 30.52 30.96 28.41 28.75
Chen 4.8M 30.64 31.05 28.39 28.06
δf 4.8M 30.90 31.96 29.21 30.14
δe 2.2M 30.94 31.33 30.00 30.63
δfe 5.7M 30.72 31.43 30.13 31.07
δf+fur 4.8M N/A N/A 30.80 31.54
δe+fur 2.2M N/A N/A 30.49 31.13
δfe+fur 5.7M N/A N/A 31.35 31.80

Table 3: NIST ZH-EN results.

PBSMT and NMT performance.

• Adding data selected by δf , δe and δfe
substantially improved NMT performance
(3.9 to 6.6 BLEU points), and gave
rise to a modest improvement in PBSMT
performance (0.4 to 3.1 BLEU points). This
method also outperformed the best existing
baselines by up to 1.1 BLEU points for NMT
and 0.8 BLEU for PBSMT.

• The proposed method worked synergistically
with Luong’s further training method, and
the combination was able to add up to an
additional 2-3 BLEU points, indicating that
the proposed method and Luong’s method are
essentially orthogonal.

• The performance by using both sides of
sentence embeddings δfe was slightly better
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than using monolingual sentence embedding
δf and δe.

In the NIST task, the observations were similar
to the IWSLT task, except:

• Adding out-of-domain slightly improved
PBSMT and NMT performance.

• The proposed method improved both
PBSMT and NMT performance, but not as
substantially as in IWSLT.

These observations suggest that the out-of-
domain data was closer to the in-domain than in
IWSLT.

5 Discussions

5.1 Selected Size Effect
We show experimental results on varying the size
of additional data selected from the out-of-domain
dataset, in Figure 1. It shows that the proposed
method δfe reached the highest performance on
dev set, when top 30% out-of-domain sentences
are selected as pseudo in-domain data. δfe
outperforms the other methods in most of the cases
on development data.
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Figure 1: Selected size tuning on IWSLT.

5.2 Training Time Effect
We also show the relationship between BLEU and
batches of training in Figure 2.

Most of the methods (without further training)
converged after similar batches training.
Specifically, in researched the highest BLEU
performance on dev faster than other methods
(without further training), then decreased and
finally converged.

The further training methods, which firstly
trained the models using out-of-domain data and
then in-domain data, converged very soon after
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Figure 2: Training time on IWSLT.

in-domain data were introduced. In further
training, the out-of-domain trained system could
be considered as a pre-trained NMT system. Then
the in-domain data training help NMT system
overfit at in-domain data and gained around two
BLEU improvement.

6 Conclusion and Future Work

In this paper, we proposed a straightforward
sentence selection method for NMT domain
adaptation. Instead of the existing external
selection criteria, we applied the internal NMT
sentence embedding similarity as the criterion.
Empirical results on IWSLT and NIST tasks
showed that the proposed method can substantially
improve NMT performances and outperform
state-of-the-art existing NMT adaptation methods
on NMT (even PBSMT) performances.

In addition, we found that the combination
of sentence selection and further training has an
additional effect, with a fast convergence. In
our further work, we will investigate the effect
of training data order and batch data selection on
NMT training.
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