
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 491–497
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-2078

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 491–497
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-2078

Parser Adaptation for Social Media by Integrating Normalization

Rob van der Goot
University of Groningen

r.van.der.goot@rug.nl

Gertjan van Noord
University of Groningen

g.j.m.van.noord@rug.nl

Abstract

This work explores normalization for
parser adaptation. Traditionally, normal-
ization is used as separate pre-processing
step. We show that integrating the nor-
malization model into the parsing algo-
rithm is beneficial. This way, multiple nor-
malization candidates can be leveraged,
which improves parsing performance on
social media. We test this hypothesis
by modifying the Berkeley parser; out-of-
the-box it achieves an F1 score of 66.52.
Our integrated approach reaches a signif-
icant improvement with an F1 score of
67.36, while using the best normalization
sequence results in an F1 score of only
66.94.

1 Introduction

The non-canonical language use on social media
introduces many difficulties for existing NLP
models. For some NLP tasks, there has already
been an effort to annotate enough data to train
models, e.g. named entity recognition (Baldwin
et al., 2015), sentiment analysis (Nakov et al.,
2016) and paraphrase detection (Xu et al., 2015).
For parsing social media texts, such a resource is
not available yet, although there are some small
treebanks that can be used for development/testing
purposes (Foster et al., 2011; Kong et al., 2014;
Kaljahi et al., 2015; Daiber and van der Goot,
2016). To the best of our knowledge, the only
treebank big enough to train a supervised parser
for user generated content is the English Web
Treebank (Petrov and McDonald, 2012). This
treebank consists of constituency trees from five
different web domains, not including the domain
of social media.

0 1 2 3

this (0.5)

ths (0.3)

thus (0.2)

as (0.5)

is (0.4)

s (0.1)

nice (0.7)

nive (0.2)

rice (0.1)

Figure 1: A possible output of the normalization
model for the sentence ‘ths s nice’.

The magnitude of domain adaptation prob-
lems for the social media domain becomes clear
when training the Berkeley parser on newswire
text, and comparing its in-domain performance
with performance on the Twitter domain. The
Berkeley parser achieves an F1 score above 90
on newswire text (Petrov and Klein, 2007). An
empirical experiment that we carried out on a
Twitter treebank shows that the F1 score drops
below 70 for this domain.

Annotating a new training treebank for this do-
main would not only be an expensive solution, the
ever-changing nature of social media makes this
approach less effective over time. We propose an
approach in which we integrate normalization into
the parsing model. The normalization model pro-
vides the parser with different normalization can-
didates for each word in the input sentence. Exist-
ing algorithms can then be used to find the optimal
parse tree over this lattice (Bar-Hillel et al., 1961).
A possible normalization lattice for the sentence
‘this is nice’ is shown in Figure 1. In this example
output, the probability of ‘as’ is higher than the
probability of ‘is’, whereas the most fluent word
sequence would be ‘this is nice’. The parser can
disambiguate this word graph because it has ac-
cess to the syntactic context: ‘is’ is usually tagged
as VBZ, while ‘as’ is mostly tagged as IN. This ex-
ample shows the main motivation for using an in-
tegrated approach; the extra information from the
normalization can be useful for parsing.

491

https://doi.org/10.18653/v1/P17-2078
https://doi.org/10.18653/v1/P17-2078


2 Related Work

SANCL 2012 hosted a shared task on parsing the
English Web Treebank (EWT) (Petrov and Mc-
Donald, 2012). A wide variety of different ap-
proaches were used: ensemble parsers, product
grammars, self/up-training, word clustering, genre
classification and normalization. The teams that
used normalization often used simple rule-based
systems, and the actual effect of normalization on
the final parser performance was not tested. Fos-
ter (2010) experiment with rule-based normaliza-
tion on forum data in isolation and report a perfor-
mance gain of 2% in F1 score.

A theoretical exploration of the effect of nor-
malization on forum data is done by Kaljahi et al.
(2015). They released the Foreebank, a treebank
consisting of forum texts, annotated with normal-
ization and constituency trees. They show that
parsing manually normalized sentences results in
a 2% increase of F1 score. Baldwin and Li (2015)
evaluate the effect of different normalization ac-
tions on dependency parsing performance for the
social media domain. They conclude that a vari-
ety of different normalization actions is useful for
parsing.

A more practical exploration of the effect of
normalization for the social media domain is done
by Zhang et al. (2013). They test the effect of
automatic normalization on dependency parsing
by using automatically derived parse trees of the
normalized sentences as reference. Other work
that uses automatic normalization is Daiber and
van der Goot (2016), which compare the effect of
lexical normalization with machine translation on
a manually annotated dependency treebank. All
previous work uses only the best normalization se-
quence; errors in this pre-processing step are di-
rectly propagated to the parser.

For POS tagging, however, a joint approach is
proposed by Li and Liu (2015). They use the n-
best output of different normalization systems to
generate a Viterbi encoding, based on all possible
pairs of normalization candidates and their possi-
ble POS tags. Using this joint approach, they im-
prove on both POS tagging and normalization.

3 Method

We first describe how an existing normalization
model is modified for this specific use. Then we
discuss how we integrate this normalization into
the parsing model.

3.1 Normalization

We use an existing normalization model (van der
Goot, 2016). This model generates candidates us-
ing the Aspell spell checker1 and a word embed-
dings model trained on Twitter data (Godin et al.,
2015). Features from this generation are comple-
mented with n-gram probability features of canon-
ical text (Brants and Franz, 2006) and the Twit-
ter domain. A random forest classifier (Breiman,
2001) is exploited for the ranking of the generated
candidates.

Van der Goot (2016) focused on finding the cor-
rect normalization candidate for erroneous tokens,
gold error detection was assumed. Therefore, the
model was trained only on the words that were
normalized in the training data. Since we do not
know in advance which words should be normal-
ized, we can not use this model. Instead, we train
the model on all words in the training data, includ-
ing words that do not need normalization. Accord-
ingly, we add the original token as a normalization
candidate and add a binary feature to indicate this.
These adaptations enable the model to learn which
words should be normalized.

We compare the traditional approach of only us-
ing the best normalization sequence with an inte-
grated approach, in which the parsing model has
access to multiple normalization candidates for
each word. Within the integrated approach, we
compare normalizing only the words unknown to
the parser against normalizing all words. We re-
fer to these approaches as ‘UNK’ and ‘ALL’, re-
spectively. Figure 1 shows a possible output when
using ALL. When using UNK, the word ‘nice’
would not have any normalization candidates.

3.2 Parsing

We adapt the state-of-the-art PCFG Berkeley
Parser (Petrov and Klein, 2007) to fit our needs.
The main strength of this PCFG-LA parser is that
it automatically learns to split constituents into
finer categories during training, and thus learns a
more refined grammar than a raw treebank gram-
mar. It maintains efficiency by using a coarse-to-
fine parsing setup. Unknown words are clustered
by prefixes, suffixes, the presence of special char-
acters or capitals and their position in the sentence.

Parsing word lattices is not a new problem.
The parsing as intersection algorithm (Bar-Hillel
et al., 1961) laid the theoretical background for ef-

1www.aspell.net

492



ficiently deriving the best parse tree of a word lat-
tice given a context-free grammar. Previous work
on parsing a word lattice in a PCFG-LA setup in-
cludes Constant et al. (2013), and Goldberg and
Elhadad (2011) for the Berkeley Parser. However,
these models do not support probabilities, which
are naturally provided by the normalization in our
setup. Another problem is the handling of word
ambiguities, which is crucial in our model.

Our adaptations to the Berkeley Parser resem-
ble the adaptations done by Goldberg and Elhadad
(2011). In addition, we allow multiple words on
the same position. For every POS tag in every
position we only keep the highest scoring word.
This suffices, since there is no syntactic ambiguity
possible with only unary rules from POS tags to
words, and therefore it is impossible for the lower
scoring words to end up in the final parse tree.

To incorporate the probability from the normal-
ization model (Pnorm) into the chart, we combine
it with the probability from the POS tag assigned
by the built-in tagger of the Berkeley parser (Ppos)
using the weighted harmonic mean (Rijsbergen,
1979):

Pchart = (1 + β2) ∗ Pnorm ∗ Ppos

(β2 ∗ Pnorm) + Ppos
(1)

Here, β is the relative weight we give to the nor-
malization and Pchart is the probability used in the
parsing chart. We use this formula because it al-
lows us to have a weighted average, in which we
reward the model if both probabilities are more
balanced.

4 Data

The normalization model we use is supervised, i.e.
it needs annotated training data from the target do-
main. This is readily available for Twitter; we use
2,000 manually normalized Tweets from Li and
Liu (2014) as training data.

We use the treebank from Foster et al. (2011)
as develop and test data for our parser. It com-
prises 269 trees for developing and 250 trees for
testing, all annotated using the annotation guide-
lines for the Penn Treebank (Bies et al., 1995)
with some small adaptations for the Twitter do-
main (usernames, hashtags and urls are annotated
as an NNP under an NP). For training, we use
the English Web Treebank (EWT) concatenated
with the standard training sections (2-21) of the
Wall Street Journal (WSJ) part of the Penn tree-
bank (Marcus et al., 1993).

Corpus Sents Words/ Unk%
sent

WSJ (2-21) 39,832 23.9 4.4
EWT 16,520 15.3 3.7
Foster et al. (2011)* 269 11.1 9.3
Li and Liu (2014) 2,577 15.7 14.1

Table 1: Some basic statistics for our training and
development corpora. % of unknown words (Unk)
calculated against the Aspell dictionary ignoring
capitalization. *Only the development part.

Some basic statistics of our training and devel-
opment data can be found in Table 1. Perhaps sur-
prisingly, the percentage of unknown words in the
EWT is lower than in the WSJ. This can be ex-
plained by the fact that the WSJ texts contains lots
of jargon and named entities which are not present
in the Aspell dictionary. The difference in per-
centage of unknown words between the normal-
ization training data and the development treebank
data might be an obstacle at first sight, but this
can be overcome by tuning the weight (β) when
combining the normalization and parse probabili-
ties (Equation 1). Nevertheless, the effect of nor-
malization will be smaller when there is less noise
in the data.

5 Results

The parser is evaluated using the F1 score as im-
plemented by EVALB2. All results in this section
are averaged over 10 runs, using different seeds for
the normalization model, unless mentioned other-
wise.

The performance of our model depends on two
parameters: the number of normalization candi-
dates per word α and the weight given to the
normalization β. We tuned these parameters on
the development data using α ∈ [1-10] and β ∈
[0.125, 0.25, 0.5, 1, 2, 4, 8, 16] to find the optimal
values. The best performance is achieved using
α = 6 and β = 2. From this optimal setting, we
will compare the effects of these variables for both
the UNK and the ALL normalization strategies.

Figure 2 shows the effect of using different
numbers of candidates and our baseline: the
vanilla Berkeley parser. Using only the single best
normalization sequence (α = 1) we can obtain
an improvement of 1.7% when normalizing all to-
kens. If we only normalize the unknown tokens

2nlp.cs.nyu.edu/evalb

493



Figure 2: F1 scores on the development data when
using multiple candidates while normalizing ALL
words or only the UNKnown words (beta = 2),
compared to a VANilla Berkeley parser.

the performance is slightly worse, but it still out-
performs the baseline.

If we use more normalization candidates, per-
formance increases; it converges around α = 6.
At this optimal setting, the baseline is outper-
formed by 2.2%. However, if more than only the
first candidate is used, it is not beneficial to nor-
malize all words anymore. This is probably an
effect of creating too much distance between the
original sentence and the normalization. The F1
score converges for higher number of candidates,
because lower ranked candidates have very low
normalization probabilities and are thus unlikely
to affect the final parse.

The normalization model seldomly finds a cor-
rect candidate beyond α > 2, at α = 2 the recall
for unknown words is 89.4% on the LexNorm cor-
pus (Han and Baldwin, 2011), whereas the accu-
racy at α = 6 is 91.7%. Perhaps surprisingly, the
parser performance still improves when increasing
α. Manual evaluation reveals that these improve-
ments are obtained by using incorrect normaliza-
tion candidates. Because these normalization can-
didates share some syntactic properties with the
original word, they can still help in deriving a
better syntactic parse. Figure 3 shows an exam-
ple of this phenomenon; “Bono” is normalized to
Bono’s, and is therefore tagged as an NNS, even
though this tag is still not correct, the head gets
tagged correctly as NP. Combined with the nor-
malization of “NOT”, this results in a much better
parse tree.

Table 2 shows the results using different

SBARQ

.

!

SQ

VP

VB

god

NP

NNP

NOT

VBZ

is

WHADVP

WRB

Bono

S

.

!

VP

NP

NN

god

RB

not

VBZ

is

NP

NNS

Bono’s

Figure 3: An example parse from the development
corpus; left is the output of the vanilla Berkeley
parser, right is the output with the integrated nor-
malization.

weights. We compare the non-integrated approach
(α = 1) with the optimal number of candidates
(α = 6). The best results are achieved when β
is 2, meaning that the normalization should get a
higher weight than the POS tagger. The integrated
model scores higher with almost all weights, the
difference between ALL and UNK is similar as in
Figure 2.

For the test data, we use the parameter settings
that performed best on the development treebank
(UNK, α = 6, β = 2), and the best performing
seed for the normalization model. The results on
the test data are compared to the traditional ap-
proach of only using the best normalization se-
quence, the vanilla Berkeley parser, and the Stan-
ford PCFG parser (Petrov and Klein, 2007) in Ta-
ble 3. The integrated approach significantly out-
performs the Berkeley parser as well as the tradi-
tional approach. It becomes apparent that the test
part of the treebank is more difficult than the de-
velopment part. Although the increase is smaller,

Cands(α) 1 6
Weight(β) UNK ALL UNK ALL
0.125 70.79 71.12 70.88 69.45
0.25 70.79 71.12 70.99 62.97
0.5 70.86 71.18 71.21 70.51
1.0 71.19 71.52 71.78 71.08
2.0 71.77 72.10 72.21 71.46
4.0 71.73 72.01 72.02 71.43
8.0 71.12 71.33 71.69 71.26
16.0 70.29 70.32 70.50 70.09

Table 2: F1 scores on the development data using
different weights, comparing only using the best
candidate versus using 6 candidates.

494



Parser dev test

Stanford parser 66.05 61.95
Berkeley parser 70.85 66.52

Best norm. seq. 72.04 66.94
Integrated norm. 72.77 67.36*

Gold POS tags 74.98 71.80

Table 3: F1 scores of our proposed models and
previous work on the test set, trained on the EWT
and WSJ. *Statistical significant against Berkeley-
parser at P < 0.01 and at P < 0.05 against the
best normalization sequence using a paired t-test.

normalization still improves parser performance.
On the development set, 46% of the errors which
can be accounted to mistakes made by the POS
tagger are solved, whereas on the test set, we only
solve 16% of this theoretical upper bound.

6 Discussion

The addition of multiple words on one position
in the chart will probably lead to less pruning in
the Berkeley parser, because more constituents in
the tree will have a relatively high probability. To
test if performance improvements are simply an
effect of less pruning, we perform two additional
experiments. Firstly, we use the vanilla Berke-
ley parser with lower pruning thresholds3 on the
Twitter development treebank. This results in a
decrease in F1 score from 70.85 to 70.64, showing
that our normalization model has a different effect.
Secondly, we run our proposed parsing model on
the standard development part of the more canon-
ical WSJ data (section 24). The vanilla Berkeley
parser achieves an F1 score of 89.15, whereas our
best performing model scores 89.12 due to over-
normalization. This shows that our model does not
improve performance across all domains.

To test the effect of the normalization on the
search space, we simply count the number of sur-
viving constituents in the chart in the middle and
final parse level. Results can be found in Ta-
ble 4. There is a slight increase in the number of
constituents when using normalization. A simi-
lar effect can be found for the parsing time; aver-
aged over 10 runs, the vanilla Berkeley parser took
24.3 seconds on the development set, whereas our

3Tested by running the parser with --accurate. We
also tried to tune the thresholds even further manually, but
this had similar effects.

Parse level Berkeley Integrated Norm.

3 756 765
6 3,086 3,115

Table 4: The average number of constituents in the
chart per sentence for the middle parsing level (3)
and the final level (6) on our development set.

model took 24.5 seconds on the same machine.

7 Conclusion

We have shown that we can significantly improve
the parsing of out-of domain data by using nor-
malization. If we use normalization as a sim-
ple pre-processing step, we observe a small im-
provement in performance, while higher improve-
ments can be achieved by using an integrated ap-
proach. Improvements in parsing performance are
not only an effect of using correct normalization
candidates, but are also due to wrong normaliza-
tion candidates which share syntactic properties
with the original word. Additionally, we show that
when using only the best normalization sequence,
it is better to normalize all words instead of only
the unknown words. However, when using an in-
tegrated approach it is better to only consider un-
known words for normalization.

Potential directions for future work include:
allowing multiword replacements, normalization
driven by the parsing model, and using lexical-
ized parsing so that the normalization candidates
are used for more decisions in the parsing process
than just assigning POS tags. To further improve
the F1-score for the parsing of Tweets, comple-
mentary methods can be used: reranking, uptrain-
ing or ensembling parsers and grammars are some
obvious next steps.

The source code of our experiments has been
made publicly available 4.

Acknowledgements
We would like to thank our colleagues, especially
Barbara Plank and Antonio Toral , and the anony-
mous reviewers for their valuable feedback. Fur-
thermore we would like to thank Jennifer Foster
for sharing the Twitter treebank. This work is
part of the Parsing Algorithms for Uncertain Input
project, funded by the Nuance Foundation.

4https://bitbucket.org/robvanderg/
berkeleygraph

495



References
Timothy Baldwin, Marie-Catherine de Marneffe,

Bo Han, Young-Bum Kim, Alan Ritter, and
Wei Xu. 2015. Shared tasks of the 2015
workshop on noisy user-generated text: Twitter
lexical normalization and named entity recogni-
tion. In Proceedings of the Workshop on Noisy
User-generated Text. Association for Computa-
tional Linguistics, Beijing, China, pages 126–135.
http://www.aclweb.org/anthology/W15-4319.

Tyler Baldwin and Yunyao Li. 2015. An in-depth
analysis of the effect of text normalization in so-
cial media. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 420–
429. http://www.aclweb.org/anthology/N15-1045.

Yehoshua Bar-Hillel, Micha Perles, and Eliahu Shamir.
1961. On formal properties of simple phrase struc-
ture grammars. Sprachtypologie und Universalien-
forschung 14:143–172.

Ann Bies, Mark Ferguson, Karen Katz, Robert Mac-
Intyre, Victoria Tredinnick, Grace Kim, Mary Ann
Marcinkiewicz, and Britta Schasberger. 1995.
Bracketing guidelines for Treebank II style Penn
Treebank project. Technical report, University of
Pennsylvania.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
version 1. Technical report, Google.

Leo Breiman. 2001. Random forests. Machine learn-
ing 45(1):5–32.

Matthieu Constant, Joseph Le Roux, and Anthony Si-
gogne. 2013. Combining compound recognition and
pcfg-la parsing with word lattices and conditional
random fields. ACM Transactions on Speech and
Language Processing (TSLP) 10(3):8.

Joachim Daiber and Rob van der Goot. 2016. The
denoised web treebank: Evaluating dependency
parsing under noisy input conditions. In Pro-
ceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC
2016). European Language Resources Associa-
tion (ELRA), Paris, France. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/86 Paper.pdf.

Jennifer Foster. 2010. “cba to check the spelling”:
Investigating parser performance on discussion fo-
rum posts. In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Los Angeles, California, pages 381–384.
http://www.aclweb.org/anthology/N10-1060.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, and Josef Van Genabith. 2011.

#hardtoparse: POS Tagging and parsing the Twit-
terverse. In AAAI 2011 Workshop On Analyzing Mi-
crotext. United States, pages 20–25.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
Lab @ ACL WNUT NER shared task: Named entity
recognition for Twitter microposts using distributed
word representations. In Proceedings of the Work-
shop on Noisy User-generated Text. Association for
Computational Linguistics, Beijing, China, pages
146–153. http://www.aclweb.org/anthology/W15-
4322.

Yoav Goldberg and Michael Elhadad. 2011. Joint
hebrew segmentation and parsing using a pcfgla
lattice parser. In Proceedings of the 49th
Annual Meeting of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, pages 704–709.
http://www.aclweb.org/anthology/P11-2124.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a #twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Portland, Oregon, USA, pages
368–378. http://www.aclweb.org/anthology/P11-
1038.

Rasoul Kaljahi, Jennifer Foster, Johann Roturier,
Corentin Ribeyre, Teresa Lynn, and Joseph Le Roux.
2015. Foreebank: Syntactic analysis of customer
support forums. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1341–1347.
http://aclweb.org/anthology/D15-1157.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
Tweets. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1001–1012.
http://www.aclweb.org/anthology/D14-1108.

Chen Li and Yang Liu. 2014. Improving text normal-
ization via unsupervised model and discriminative
reranking. In Proceedings of the ACL 2014 Student
Research Workshop. Association for Computational
Linguistics, Baltimore, Maryland, USA, pages 86–
93. http://www.aclweb.org/anthology/P14-3012.

Chen Li and Yang Liu. 2015. Joint POS tagging and
text normalization for informal text. In Proceedings
of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. pages 1263–1269.
http://ijcai.org/Proceedings/15/Papers/182.pdf.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated

496



corpus of English: The Penn Treebank. Computa-
tional linguistics 19(2):313–330.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016). Association for
Computational Linguistics, San Diego, California,
pages 1–18. http://www.aclweb.org/anthology/S16-
1001.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In Human Lan-
guage Technologies 2007: The Conference of the
North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference. Association for Computational Lin-
guistics, Rochester, New York, pages 404–411.
http://aclweb.org/anthology/N07-1051.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL). volume 59.

CJ Rijsbergen. 1979. Information Retrieval, volume 2.
University of Glasgow.

Rob van der Goot. 2016. Normalizing so-
cial media texts by combining word embed-
dings and edit distances in a random for-
est regressor. In Normalisation and Anal-
ysis of Social Media Texts (NormSoMe).
http://www.let.rug.nl/rob/doc/normsome2016.pdf.

Wei Xu, Chris Callison-Burch, and Bill Dolan. 2015.
Semeval-2015 task 1: Paraphrase and semantic
similarity in twitter (pit). In Proceedings of the
9th International Workshop on Semantic Evalua-
tion (SemEval 2015). Association for Computa-
tional Linguistics, Denver, Colorado, pages 1–11.
http://www.aclweb.org/anthology/S15-2001.

Congle Zhang, Tyler Baldwin, Howard Ho, Benny
Kimelfeld, and Yunyao Li. 2013. Adaptive
parser-centric text normalization. In Proceed-
ings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Sofia, Bulgaria, pages 1159–1168.
http://www.aclweb.org/anthology/P13-1114.

497


	Parser Adaptation for Social Media by Integrating Normalization

