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Abstract

Because syntactic structures and spans of
multiword expressions (MWEs) are inde-
pendently annotated in many English syn-
tactic corpora, they are generally inconsis-
tent with respect to one another, which is
harmful to the implementation of an ag-
gregate system. In this work, we construct
a corpus that ensures consistency between
dependency structures and MWEs, in-
cluding named entities. Further, we ex-
plore models that predict both MWE-
spans and an MWE-aware dependency
structure. Experimental results show that
our joint model using additional MWE-
span features achieves an MWE recogni-
tion improvement of 1.35 points over a
pipeline model.

1 Introduction

To solve complex Natural Language Processing
(NLP) tasks that require deep syntactic analysis,
various levels of annotation such as parse trees and
named entities (NEs) must be consistent with one
another (Finkel and Manning, 2009). Otherwise,
it is usually impossible to combine these pieces of
information effectively.

However, the standard syntactic corpus of En-
glish, Penn Treebank, is not concerned with con-
sistency between syntactic trees and spans of mul-
tiword expressions (MWEs). In Penn Treebank,
that is, an MWE-span does not always correspond
to a span dominated by a single non-terminal
node. Therefore, word-based dependency struc-
tures converted from Penn Treebank are generally
inconsistent with MWE-spans (Figure 1a). To mit-
igate this inconsistency, Kato et al. (2016) estab-

(a) a word-based dependency structure

(b) an MWE-aware dependency structure

Figure 1: A word-based and an MWE-aware de-
pendency structure. In the former, a span of an
MWE (“a number of”) does not correspond to any
subtree. The MWE is represented as a single node
in the latter structure.

lishes each span of functional MWEs 1 as a sub-
tree of a phrase structure in the Wall Street Journal
portion of Ontonotes (Pradhan et al., 2007).

To pursue this direction further, we construct a
corpus such that dependency structures are consis-
tent with MWEs, by extending Kato et al. (2016)’s
corpus 2. As is the case with their corpus, each
MME is a syntactic unit in an MWE-aware de-
pendency structure from our corpus (Figure 1b).
Moreover, our corpus includes not only functional
MWEs but also NEs. Because NEs are highly pro-
ductive and occur more frequently than functional
MWEs, they are difficult to cover in a dictionary.

Consistency between NE-spans and phrase
structures is not guaranteed because they are in-
dependently annotated in most syntactic corpora.

1By functional MWEs, we mean MWEs that function ei-
ther as prepositions, conjunctions, determiners, pronouns, or
adverbs.

2We release our dependency corpus at https:
//github.com/naist-cl-parsing/
mwe-aware-dependency. MWE-aware phrase struc-
tures will be distributed from LDC as a part of LDC2017T01.
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Figure 2: Example of inconsistency between NE-
spans and phrase structures. A rectangle shows an
NE-span.

MWE POS NNP RB IN others
MWE 20,992 3,796 2,424 737
Instances
MWE Types 11,875 377 92 52

Table 1: Corpus statistics.

For instance, in Figure 2, an NE-span is “Board of
Investment,” which is inconsistent with the syntac-
tic tree. Therefore, we resolve this inconsistency
by modifying phrase structures locally and estab-
lishing each NE as a subtree.

Furthermore, to evaluate the constructed cor-
pus, we explore pipeline and joint models that pre-
dict both MWE-spans and an MWE-aware depen-
dency tree 3. Our experimental results show that
the proposed joint model with additional MWE-
span features achieves an MWE recognition im-
provement of 1.35 points over the pipeline model.

2 MWE-aware Dependency Corpus

To ensure consistency between MWE annotations
and dependency structures, we first integrate NE

Type Non- Contiguous Crossing
of MWEs terminal children brackets
Functional 3,466 1,663 1,799
MWEs
NEs 18,625 2,252 144

Table 2: Histogram tabling the consistency be-
tween MWE-spans and phrase structures.

3Although Kato et al. (2016) conducts experiments re-
garding MWE-aware dependency parsing, they use gold
MWE-spans. This is not a realistic scenario. By contrast,
our parsing models do not use gold MWE-spans.

annotations on Ontonotes 4 into phrase structures
such that functional MWEs are established as sub-
trees. Subsequently, we convert phrase structures
to dependency structures. We construct our corpus
by extending Kato et al. (2016)’s corpus 5, which
is itself built on a corpus by Shigeto et al. (2013).
Regarding MWE annotations, Shigeto et al. (2013)
first constructed an MWE dictionary by extract-
ing functional MWEs from the English-language
Wiktionary 6, and classified their occurrences in
Ontonotes into either MWE or literal usage. Kato
et al. (2016) integrated these MWE annotations
into phrase structures and established functional
MWEs as subtrees.

Next, we describe the establishment of each
NE as a subtree. If an NE-span does not corre-
spond to any non-terminal in a phrase structure,
there are two possibilities: (A) the NE-span cor-
responds to multiple contiguous children of a sub-
tree, or (B) the NE-span has crossing brackets with
the spans in the parse tree (Finkel and Manning,
2009; Kato et al., 2016). In Case (A), we insert
a new non-terminal (“MWE NNP”) that governs
the NE-span 7. In Case (B), many instances corre-
spond to a noun phrase (NP) comprised of a nested
NP and a prepositional phrase (Figure 2). In the
main NP, a modifier, such as a determiner, an ad-
jective, or a possessive NP, precedes an NE. For
these instances, according to Finkel and Manning
(2009), we reduce Case (B) to Case (A) by moving
the modifier from the nested NP to the main NP.
Then, we establish each NE as a subtree by insert-
ing an MWE-specific non-terminal. Furthermore,
in some instances it is more reasonable to enlarge
NE-spans than to modify phrase structures. As
a typical example, there is an NE annotation that
covers only part of a coordination structure, such
as “Peter and Edward Bronfman,” where “Edward
Bronfman” is annotated as an NE. In this case,
we extend an original NE-span to the whole co-
ordination structure. We show the statistics for
the corpus in Table 1 8. This corpus has 27,949
MWE instances in 37,015 sentences. A histogram

4We exploit NE annotations on Ontonotes Release 5.0
(LDC2013T19). We address traditional NEs, such as per-
sons, locations, and organizations, while omitting the follow-
ing: DATE, TIME, PERCENT, MONEY, QUANTITY, OR-
DINAL, and CARDINAL. Note that we only focus on multi-
word NEs.

5https://catalog.ldc.upenn.edu/LDC2017T01
6https://en.wiktionary.org
7We do not require manual annotations for Case (A).
8NEs have NNP as an MWE-level POS tag.
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Figure 3: In the joint model, we directly infer an
MWE-aware dependency tree in which an MWE
(“a number of”) is represented as a head-initial
structure by a dependency parser.

tabling the consistency between MWE-spans and
phrase structures is shown in Table 2. For tree-
to-dependency conversion, we first replace a sub-
tree corresponding to an MWE by a preterminal
node and its child node. The preterminal node has
an MWE-level POS (MWE POS) tag. The child
node is generated by joining all components of the
MWE with underscores. We then convert a phrase
structure into a Stanford-style dependency struc-
ture (Marneffe and Manning, 2008) (Figure 1b).

3 Models for MWE identification and
MWE-aware dependency parsing

In this section, we explore models that predict
both MWE-spans and an MWE-aware depen-
dency structure (Figure 1b).

3.1 Pipeline Model

The pipeline model involves the following three
steps. First, BIO tags encoding MWE-spans and
MWE POS tags, such as “B NNP” and “I DT” are
predicted by a sequential labeler based on Con-
ditional Random Fields (CRFs) (Lafferty et al.,
2001). Second, tokens belonging to each pre-
dicted MWE-span are concatenated into a sin-
gle node. Finally, an MWE-based dependency
structure (Figure 1b) is predicted by an arc-eager
transition-based parser. For the CRFs, in addi-
tion to word-form and character-based features,
we use 1- to 3-gram features based on dictionaries
of functional MWEs and NEs within 5-word win-
dows from a target token. For a dictionary of func-
tional MWEs, we use the dictionary by Shigeto
et al. (2013) (Section 2). Meanwhile, we create
a dictionary of NEs from a title list of English
Wikipedia articles, excepting stop words, provided
by UniNE 9. Regarding parsing features, we use

9http://members.unine.ch/jacques.savoy/clef/englishST.txt

baseline features and rich non-local features pro-
posed by Zhang and Nivre (2011).

3.2 Joint Model
In the proposed joint model, MWE-spans and
MWE POS tags are encoded as dependency la-
bels, and conventional word-based dependency
parsing is performed by an arc-eager transition-
based parser. We use the same parsing features
used in the pipeline model. We convert MWEs
in MWE-aware dependency structures (Figure 1b)
to head-initial structures (Figure 3) that encode
MWE-spans and MWE POS tags. Note that
this representation is similar to Universal Depen-
dency (McDonald et al., 2013). When parsing, we
use constraints based on a history of transitions
and the dictionary of functional MWEs. This is
done to avoid invalid dependency trees. Because
NEs are highly productive, we do not use a con-
straint regarding NEs.

Joint(+dict)
We designed additional features based on matches
with dictionaries of NEs and functional MWEs.
Hereafter, we refer to the joint model coupled with
these additional features as joint(+dict). For in-
stance, given a sentence that starts with “a number
of cities,” the additional features are as follows: a
/ B DT, number / I DT, of / I DT, cities / O. Based
on these additional features, we extend the base-
line features proposed by Zhang and Nivre (2011)
to develop MWE-specific features whose atomic
features include not only words and word-level
POS tags, but also BIO tags encoding MWE-spans
and MWE POS tags.

Joint(+pred span)
Because dictionary matching is not concerned
with context, in this setting, we use MWE-spans
and MWE POS tags predicted by CRF, rather than
dictionary matching. Hereafter, we refer to this
as joint(+pred span). By using features extracted
from CRF predictions, we can mitigate error prop-
agation from sequential labeling and consider in-
formation from a full sentence. Moreover, we can
alleviate difficulties in predicting MWE-spans and
MWE POS tags encoded as head-initial structures
(Figure 3) by the parser.

4 Experimental Setting
We split the Wall Street Journal (WSJ) portion of
Ontonotes, using sections 2-21 for training, and
section 23 for testing. For all models, we used
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Dependency Parsing MWE Recognition
All sentences First tokens of MWEs

Model UAS LAS UAS LAS FUM FTM
Pipeline 91.39 89.42 84.06 78.22 91.40 91.32
Joint 91.15 89.18 81.93 77.74 89.03 88.79
Joint(+dict) 91.36 89.37 84.45 80.74 91.93 91.78
Joint(+pred span) 91.50 89.51 84.85 81.29 92.75 92.60

Table 3: Experimental results on the test set.

Dependency Parsing MWE Recognition
(First tokens of MWEs)
Functional MWEs NEs Functional MWEs NEs

Model UAS LAS UAS LAS FUM FTM FUM
Pipeline 78.89 64.01 85.58 82.41 96.76 96.42 89.81
Joint 71.28 65.05 85.07 81.49 91.01 89.93 88.47
Joint(+dict) 79.93 73.70 85.79 82.82 97.94 97.25 90.16
Joint(+pred span) 81.31 74.74 85.89 83.23 97.59 96.91 91.32

Table 4: Breakdown of experimental results by type of MWE. Note that UAS / LAS are calculated
regarding first tokens of MWEs. For NEs, the FTM is the same as the FUM because each NE always
takes NNP as an MWE-level POS tag, and is not repeated.

the POS tags predicted by the Stanford POS tag-
ger (Toutanova et al., 2003) 10. For the pipeline
model and joint(+pred span), we used MWE-
spans and MWE POS tags predicted by CRF 11.
For dependency parsing, we used Redshift (Hon-
nibal et al., 2013) for all models, with a beam
size of 16 for decoding. For training, we re-
moved non-projective dependency trees. For test-
ing, we parsed all sentences. To evaluate pars-
ing, we used unlabeled and labeled attachment
scores (UAS/LAS) 12. For the pipeline model, we
converted each concatenated token correspond-
ing to an MWE into a head-initial structure and
compared this with the gold tree. For the joint
model, we directly compared a predicted tree
with the gold tree. To evaluate MWE recogni-
tion, we used the F-measure for untagged / tagged
MWEs (FUM/FTM) 13. For the pipeline model,
we compared the gold MWEs with predictions by
CRF. For the proposed joint model, we compared
the gold MWEs with predicted MWE-spans and

10We used 20-way jackknifing for the training split. The
test split was automatically tagged by the POS tagger trained
on the training split.

11We used 20-way jackknifing for the training split. The
test split was automatically tagged by the sequential labeler
trained on the training split.

12When calculating UAS/LAS, we removed punctuation.
13FUM only focuses on MWE-spans, whereas FTM fo-

cuses on both MWE-spans and MWE POS tags.

MWE POS tags represented as dependency labels.

5 Experimental Results and Discussion
We present the experimental results in Table 3.
Comparing the joint model with the pipeline
model, there is not much difference between these
models regarding UAS / LAS for all sentences.
However, the former is 2.13 / 0.48 points worse
than the latter in terms of UAS / LAS regarding the
first tokens of MWEs (1269 in 34,526 tokens), and
2.37 / 2.53 points worse than the latter regarding
FUM / FTM. These results suggest that the perfor-
mance of the joint model with no additional fea-
tures at predicting dependencies inside and around
MWEs is worse than the pipeline model. One of
the reasons for this is that the exploitation of head-
initial structures in the joint model (Figure 3) in-
volves the addition of MWE-specific labels. This
results in an increase in the total number of de-
pendency labels from 41 to 50. Because of this
broader output space, more search errors can oc-
cur in the joint model compared with the pipeline
model. Moreover, a breakdown by type of MWE
(Table 4) shows that most differences in perfor-
mance between these two models are related to
functional MWEs. These results suggest that con-
straints regarding functional MWEs during pars-
ing (3.2) are harmful to the joint model with no ad-
ditional features in terms of its performance with
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respect to functional MWEs.

By adding MWE-specific features to the joint
model, however, we observe at least a 2.52 / 3.00
point improvement in terms of UAS / LAS regard-
ing the first tokens of MWEs, and a 2.90 / 2.99
point improvement regarding FUM / FTM. As a
result, we obtain a 1.35 / 1.28 point improvement
with joint(+pred span) compared with the pipeline
model in terms of FUM / FTM. A breakdown by
type of MWE shows that the addition of MWE-
specific features leads to a performance improve-
ment, especially for functional MWEs (Table 4).
These results suggest that MWE-specific features
are effective at both MWE recognition through de-
pendency parsing and the prediction of dependen-
cies connecting inside and outside of MWEs.

Comparing the joint(+pred span) with the
joint(+dict), the former is 0.40 / 0.55 points better
than the latter in terms of UAS / LAS regarding the
first tokens of MWEs, and 0.82 / 0.82 points bet-
ter than the latter regarding FUM / FTM. We can
attribute this gain in performance to the additional
features extracted from more accurate predictions
of MWE-spans and MWE POS tags by CRF than
those by dictionary matching.

6 Related Work
Whereas French Treebank is available for French
MWEs (Abeillé et al., 2003), there have been only
limited corpora for English MWE-aware depen-
dency parsing. Schneider et al. (2014) constructs
an MWE-annotated corpus on English Web Tree-
bank (Bies et al., 2012). However, this corpus is
relatively small as training data for a parser, and
its MWE annotations are not consistent with syn-
tactic trees. By contrast, our corpus covers the
whole of the WSJ portion of Ontonotes and en-
sures consistency between MWE annotations and
parse trees.

Korkontzelos and Manandhar (2010) reports
an improvement in base-phrase chunking by pre-
grouping MWEs as words-with-spaces. They fo-
cus on compound nouns, adjective-noun construc-
tions, and named entities. However, they use gold
MWE-spans, and this is not a realistic setting. By
contrast, we use predicted MWE-spans.

Three works concerned with a French MWE-
aware syntactic parsing are relevant. First, Green
et al. (2013) proposes a method for recognizing
contiguous MWEs as a part of constituency pars-
ing by using MWE-specific non-terminals. They

investigate a CFG-based model and a model based
on tree-substitution grammars. Second, Candito
and Constant (2014) compares several architec-
tures for graph-based dependency parsing and
MWE recognition, in which MWE recognition is
conducted before, during, and after parsing. Fi-
nally, Nasr et al. (2015) explores a joint model of
MWE recognition and dependency parsing. They
focus on complex function words. In terms of data
representation, they adopt one similar to ours, in-
sofar as the components of an MWE are linked
by dependency edges whose labels are MWE-
specific.

7 Conclusion

We constructed a corpus that ensures consistency
in Ontonotes between dependency structures and
English MWEs, including named entities. Fur-
thermore, we explored models that can predict
both MWE-spans and an MWE-aware depen-
dency structure. Our experiments show that by
using additional MWE-span features, our joint
model achieves an MWE recognition improve-
ment of 1.35 points over the pipeline model.
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