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Abstract

We propose a model to automatically de-
scribe changes introduced in the source
code of a program using natural language.
Our method receives as input a set of code
commits, which contains both the modifi-
cations and message introduced by an user.
These two modalities are used to train an
encoder-decoder architecture. We evalu-
ated our approach on twelve real world
open source projects from four different
programming languages. Quantitative and
qualitative results showed that the pro-
posed approach can generate feasible and
semantically sound descriptions not only
in standard in-project settings, but also in
a cross-project setting.

1 Introduction

Source code, while conceived as a set of structured
and sequential instructions, inherently reflects hu-
man intent: it encodes the way we command a ma-
chine to perform a task. In that sense, it is expected
that it follows to some extent the same distribu-
tional regularities that a proper natural language
manifests (Hindle et al., 2012). Moreover, the un-
ambiguous nature of source code, comprised in
plain and human-readable format, allows an indi-
rect way of communication between developers, a
phenomenon boosted in recent years given the cur-
rent software development paradigm, where bil-
lions of lines code are written in a distributed and
asynchronous way (Gousios et al., 2014).

The scale and complexity of software systems
these days has naturally led to explore automated
ways to support developers’ code comprehension
(Letovsky, 1987) from a linguistic perspective.
One of these attempts is automatic summarization,
which aims to generate a compact representation

of the source code in a portion of natural language
(Haiduc et al., 2010).

While existing code summarization methods are
able to provide relevant insights about the pur-
pose and functional features of the code, their
scope is inherently static. In contrast, software
development can be seen as a sequence of incre-
mental changes, intended to either generate a new
functionality or to repair an existing one. Source
code changes are critical for understanding pro-
gram evolution, which motivated us to explore if
it is possible to extend the notion of summariza-
tion to encode code changes into natural language
representations, i.e., develop a model able to ex-
plain a source code level modification. With this,
we envision a tool for developers that is able to
i) ease the comprehension of the dynamics of the
system, which could be useful for debugging and
repairing purposes and ii) automate the documen-
tation of source code changes.

To this end, we rely on the concept of code com-
mit, the standard contribution procedure imple-
mented in modern subversion systems (Gousios
et al., 2014), which provides both the actual
change and a short explanatory paragraph. Our
model consists of an encoder-decoder architec-
ture which is trained on a set of triples conformed
by the version of a system before and after the
change, along with the comment. Given the high
heterogeneity of the modalities involved, we rely
on an attention mechanism to efficiently learn the
parts of the sequences that are more expressive and
have more explanatory power.

We performed an empirical study on twelve
real world software systems, from which we ob-
tained the commit activity to evaluate our model.
Our experiments explored in-project and cross-
project scenarios, and our results showed that the
proposed model is able to generate semantically
sound descriptions.
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2 Related Work

The use natural language processing to support
software engineering tasks has increased consis-
tently over the years, mainly in terms of source
code search, traceability and program feature lo-
cation (Panichella et al., 2013; Asuncion et al.,
2010).

The emergence of unifying paradigms that ex-
plicitly relate programming and natural languages
in distributional terms (Hindle et al., 2012) and
the availability of large corpus mainly from open
source software opened the door for the use of lan-
guage modeling for several tasks (Raychev et al.,
2015). Examples of this are approaches for learn-
ing program representations (Mou et al., 2016),
bug localization (Huo et al.), API suggestion (Gu
et al., 2016) and code completion (Raychev et al.,
2014).

Source code summarization has received spe-
cial attention, ranging from the use of information
retrieval techniques to the addition of physiologi-
cal features such as eye tracking (Rodeghero et al.,
2014). In recent years several representation learn-
ing approaches have been proposed, such as (Al-
lamanis et al., 2016), where the authors employ a
convolutional architecture embedded inside an at-
tention mechanism to learn an efficient mapping
between source code tokens and natural language
keywords.

More recently, (Iyer et al., 2016) proposed a
encoder-decoder model that learns to summarize
from Stackoverflow data, which contains snippet
of code along with descriptions. Both approaches
share the use of attention mechanisms (Bahdanau
et al., 2014) to overcome the natural disparity be-
tween the modalities when finding relevant token
alignments. Although we also use an attention
mechanism, we differ from them in the sense we
are targeting the changes in the code rather than
the description of a file.

In terms of specifically working on code change
summarization, Cortés-Coy et al. (2014); Linares-
Vásquez et al. (2015) propose a method based on
a set of rules that considers the type and impact of
the changes, and (Buse and Weimer, 2010) com-
bines summarization with symbolic execution. To
the best of our knowledge, our approach represents
the first attempt to generate natural language de-
scriptions from code changes without the use of
hand-crafted features, a desirable setting given the
heterogeneity of the data involved.

3 Proposed Model

Our model assumes the existence of T versions of
a given project {v1, . . . , vT }. Given a pair of con-
secutive versions (vt−1, vt), we define the tuple
(Ct, Nt), where Ct = ∆t

t−1(v) represents a code
snippet associated to changes over v in time t and
Nt represents its corresponding natural language
(NL) description. Let C be the set of all source
code snippets and N be the set of all descriptions
in NL. We consider a training corpus with T code
snippets and summary pairs (Ct, Nt), 1 ≤ t ≤ T ,
Ct ∈ C , Nt ∈ N. Then, for a given code snippet
Ck ∈ C, the goal of our model is to produce the
most likely NL description N?.

Concretely, similarly to (Iyer et al., 2016), we
use an attention-augmented encoder-decoder ar-
chitecture. The encoder can be seen as a lookup
layer, which simply reads through the source input
sequence and returns the embedded tokens. The
decoder is a RNN that reads this representation
and generates NL words one at a time based on
its current hidden state and guided by a global at-
tention model (Luong et al., 2015). We model the
probability of a description as a product of the con-
ditional next-word probabilities. More formally,
for each NL token ni ∈ Nt we define,

hi = f(ni−1E, hi−1) (1)

p(ni|n1, ..., ni−1) ∝ W tanh(W1hi +W2ai) (2)

where E is the embedding matrix for NL to-
kens, ∝ denotes a softmax operation, hi repre-
sents the hidden state and ai is the contribution
from the attention model on the source code. W ,
W1 and W2 are trainable combination matrices.
The decoder repeats the recurrence until a fixed
number of words or a special END token is gen-
erated. The attention contribution ai is defined as
ai =

∑k
j=1 αi,j · cjF , where cj ∈ Ct is a source

code token, F is the source code token embedding
matrix and αi,j is:

αi,j =
exp (h>i cjF )∑

cj∈Ct
exp (h>i cjF )

(3)

We use a dropout-regularized LSTM cell for
the decoder (Zaremba et al., 2015) and also add
dropout at the NL embeddings and at the output
softmax layer, to prevent over-fitting. We added
special START and END tokens to our training se-
quences and replaced all tokens and output words
occurring less than 2 and 3 times, respectively,
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with a special UNK token. We set the maximum
code and NL length to be 100 tokens. For decod-
ing, we approximate N? by performing a beam
search on the space of all possible summaries us-
ing the model output, with a beam size of 10 and a
maximum summary length of 20 words.

To evaluate the quality of our generated descrip-
tions we use both METEOR (Lavie and Agarwal,
2007) and sentence level BLEU-4 (Papineni et al.,
2002). Since the training objective does not di-
rectly optimize for these scores, we compute ME-
TEOR on our validation set after every epoch and
save the intermediate model that gives the maxi-
mum score as the final model. For evaluation on
our test set we used the BLEU-4 score.

4 Empirical Study

Data and pre-processing: We captured histori-
cal data from twelve open source projects hosted
on Github based on their popularity and maturity,
selecting 3 projects for each of the following lan-
guages: python, java, javascript and c++. For
each project, we downloaded diff files and meta-
data of the full commit history. Diff files encode
per-line differences between two files or sets of
files in a standard format, allowing us to recover
source code changes in each commit at the line
level. On the other hand, medatada allows us to
recover information such as the author and mes-
sage of each commit.

The extracted commit messages were processed
using the Penn Treebank tokenizer (Marcus et al.,
1993), which nicely deals with punctuation and
other text marks. To obtain a source code repre-
sentation of each commit, we parsed the diff files
and used a lexer (Brandl, 2016) to tokenize their
contents in a per-line fashion allowing us to max-
imize the amount of source code recovered from
the diff files. Data and source code available1.

Experimental Setup: Given the flat structure
of the diff file, source code in contiguous lines
might not necessarily correspond to originally
neighboring code lines. Moreover, they might
come from different files in the project. To deal
with this issue, we first worked only with those
commits that modify a single file in the project;
we call this the atomicity assumption. By using
only atomic commits we reduced our training data
by an average of roughly 50%, but in exchange we
made sure all the extracted code lines came from

1http://github.com/epochx/commitgen

Language Project Full Atomic Added Rem.

python
Theano 24,200 65.40% 11.43% 2,83%
keras 2,855 66.02% 11.07% 3,01%

youtube-dl 13,968 74.49% 11.52% 2,59%

javascript
node 15,811 53.17% 11.87% 3,21%

angular 6,204 32.90% 5.59% 1,72%
react 7,806 53.29% 12.67% 2,72%

c++
opencv 20,480 50.08% 8.83% 1,66%
CNTK 10,792 38.36% 6.00% 2,23%
bitcoin 12,596 48.11% 9.84% 2,56%

java
CoreNLP 9,149 42.77% 7.84% 1,98%

elasticsearch 25,764 43.77% 9.02% 2,61%
guava 3,821 38.63% 8.90% 2,64%

Average 12,787 50.58% 9.55% 2,48%

Table 1: Summary of our collected data.

the same file. At the same time, we expect to max-
imize the likelihood of observing a direct relation
between the commit message and the lines altered.

We then relaxed our atomicity assumption and
experimented with the full commit history. Given
our maximum sequence length constrain of 100 to-
kens, we only observed an average of 1,97% extra
data on each project. Since source code lines may
come from different files, we added a delimiting
token NEW FILE when corresponding.

We were also interested in studying the per-
formance of the model in a cross-project setting.
Given the additional challenges that this involves,
we designed a more controlled experiment. Start-
ing from the atomic dataset, we selected commits
that only add or only remove code lines, conform-
ing a derived dataset that we call uni-action. We
chose the python language to maximize the avail-
able data. See Table 1.

Results and Discussion: We begin by training
our model on the atomic dataset. As baseline we
used MOSES (Koehn et al., 2007) which although
is designed as a phrase-based machine translation
system, was previously used by Iyer et al. (2016)
to generate text from source code. Concretely, we
treated the tokenized code snippet as the source
language and the NL description as the target. We
trained a 3-gram language model using KenLM
(Heafield et al., 2013) and used mGiza to obtain
alignments. For validation, we use minimum error
rate training (Bertoldi et al., 2009; Och, 2003) in
our validation set.

As Table 3 shows, our model trained on atomic
data outperforms the baseline in all but one project
with an average gain of 5 BLEU points. In par-
ticular, we observe bigger gains for java projects
such as CoreNLP and guava. We hypothesize this
is because program differences in Java tend to be
longer than the rest. While this impacts on train-
ing time, at the same time it allows the model to
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work with a larger vocabulary space. On the other
hand, our model performs similarly to MOSES for
the node and slightly worse for the youtube-dl. A
detailed inspection of the NL messages for node
showed that many of them exhibit a fixed pattern
in their structure. We believe this rigidity restrains
the generation capabilities of the decoder, making
it more prone to memorization.

Table 2 shows examples of generated descrip-
tions for real changes and their references. Re-
sults suggest that our model is able to generate
semantically sound descriptions for the changes.
We can also visualize the summarizing power of
the model, as seen in the Theano and bitcoin ex-
amples. We observe a tendency to choose more
general terms over too specific ones meanwhile
also avoiding irrelevant words such as numbers
or names. Results also suggest the emergence of
rephrasing capabilities, specifically in the second
example from Theano. Finally, our generated de-
scriptions are, in most cases, semantically well
correlated to the reference descriptions. We also
report not so successful results, such as case of
youtube-dl, where we can see signs of memoriza-
tion on the generated descriptions.

Regarding the cross-project setting experiments
on python, we obtained BLEU scores of 14.6 and
18.9 for only-adding and only-removing instances
in the uni-action dataset, respectively. We also ob-
tained validation accuracies up to 43.94%, sug-
gesting feasibility in this more challenging sce-
nario. Moreover, as the generated descriptions
from the keras project in Table 2 show, the model
is still able to generate semantically sound descrip-
tions.

Figure 1: Heatmaps of attention weights αi,j .

Despite the small data increase, we also trained
our model on full datasets as a way to confirm
the generative power of our model. In particular,
we wanted to test the model is able leverage on
atomic data to also capture and compress multi-
file changes. As shown in Table 3, results in terms
of BLEU and validation accuracy manifest reason-
able consistency, despite the higher disparity be-

Reference Generated

ke
ra

s Fix image resizing in
preprocessing/image Fixed image preprocessing .

Fix test flakes Fix flaky test

T
he

an
o fix crash in the new warning

message . Better warning message .

remove var not used . remove not used code .
Better error msg better error message .

bi
tc

oi
n

Merge pull request 4486
45abeb2 Update Debian

packaging description for new
bitcoin-cli ( Johnathan Corgan )

Update Debian packaging
description for new

bitcoin-cli

Add two unittest-related files to
.gitignore

Add : Minor files to
.gitignore

C
or

eN
L

P

Add a bunch of verbs which are
more likely to be xcomp than

vmod

Add a bunch of verbs which
are more to be xcomp than

vmod
Add a brief test for optional

nodes make this test do something

yo
ut

ub
e-

dl [ crunchyroll ] Fix uploader and
upload date extraction

[ crunchyroll ] Fix uploader
extraction

[ extractor/common ] Improve
base url construction

[ extractor/common ]
Improve extraction

[ mixcloud ] Use
unicode literals

[ common ] Use
unicode literals

op
en

cv fixed gcc compilation fixed compile under linux
remove unused variables in

OCL PERF TEST P ( )
remove unused variable in

the module

Table 2: Examples of generated natural language
passages v/s original ones taken from the test set.

tween source code and natural language on this
dataset, which means the model was able to learn
representations with more compressive power.

Soft alignments derived from Figure 1, which
shows examples of attention heatmaps, illustrate
how the model effectively associates source code
tokens with meaningful words.

Dataset atomic full
Val. acc BLEU Moses Val. acc BLEU

Theano 36.81% 9.5 7.1 39.88% 10.9
keras 45.76% 13.7 7.8 59.30% 8.8

youtube-dl 50.84% 16.4 17.5 53.65% 17.7
node 52.46% 7.8 7.7 53.70% 7.2

angular 44.39% 13.9 11.7 45.06% 15.3
react 49.44% 11.4 10.7 48.61% 12.1

opencv 50.77% 11.2 9.0 49.00% 8.4
CNTK 48.88% 17.9 11.8 44.85% 9.3
bitcoin 50.04% 17.9 13.0 55.03% 15.1

CoreNLP 63.20% 28.5 10.1 62.25% 26.7
elasticsearch 36.53% 11.8 5.2 35.98% 6.4

guava 65.52% 29.8 19.5 67.15% 34.3

Table 3: Results on the atomic and full datasets.

5 Conclusion and Future work

We proposed an encoder-decoder model for au-
tomatically generating natural descriptions from
source code changes. We believe our current re-
sults suggest that the idea is feasible and, if im-
proved, could represent a contribution for the un-
derstanding of software evolution from a linguis-
tic perspective. As future work, we will consider
improving the model by allowing feature learning
from richer inputs, such as abstract syntax trees
and also functional data, such as execution traces.
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