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Abstract

We introduce a simple and effective
method to learn discourse-specific word
embeddings (DSWE) for implicit dis-
course relation recognition. Specifically,
DSWE is learned by performing connec-
tive classification on massive explicit dis-
course data, and capable of capturing dis-
course relationships between words. On
the PDTB data set, using DSWE as fea-
tures achieves significant improvements
over baselines.

1 Introduction

Recognizing discourse relations (e.g., Contrast,
Conjunction) between two sentences is a crucial
subtask of discourse structure analysis. These re-
lations can benefit many downstream NLP tasks,
including question answering, machine translation
and so on. A discourse relation instance is usually
defined as a discourse connective (e.g., but, and)
taking two arguments (e.g., clause, sentence). For
explicit discourse relation recognition, using only
connectives as features achieves more than 93%
in accuracy (Pitler and Nenkova, 2009). Without
obvious clues like connectives, implicit discourse
relation recognition is still challenging.

The earlier researches usually develop linguisti-
cally informed features and use supervised learn-
ing method to perform the task (Pitler et al., 2009;
Lin et al., 2009; Louis et al., 2010; Rutherford and
Xue, 2014; Braud and Denis, 2015). Among these
features, word pairs occurring in argument pairs
are considered as important features, since they
can partially catch discourse relationships between
two arguments. For example, synonym word pairs
like (good, great) may indicate a Conjunction re-
lation, while antonym word pairs like (good, bad)
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may mean a Contrast relation. However, classi-
fiers based on word pairs in previous work do not
work well because of the data sparsity problem. To
address this problem, recent researches use word
embeddings (aka distributed representations) in-
stead of words as input features, and design vari-
ous neural networks to capture discourse relation-
ships between arguments (Zhang et al., 2015; Ji
and Eisenstein, 2015; Qin et al., 2016; Chen et al.,
2016; Liu and Li, 2016). While these researches
achieve promising results, they are all based on
pre-trained word embeddings ignoring discourse
information (e.g., good, great, and bad are of-
ten mapped into close vectors). Intuitively, using
word embeddings sensitive to discourse relations
would further boost the performance.

In this paper, we propose to learn discourse-
specific word embeddings (DSWE) from explicit
data for implicit discourse relation recognition.
Our method is inspired by the observation that
synonym (antonym) word pairs tend to appear
around the discourse connective and (but). Other
connectives can also provide some discourse
clues. We expect to encode these discourse clues
into the distributed representations of words, to
capture discourse relationships between them. To
this end, we use a simple neural network to per-
form connective classification on massive explicit
data. Explicit data can be considered to be au-
tomatically labeled by connectives. While they
cannot be directly used as training data for im-
plicit discourse relation recognition and contain
some noise, they are effective enough to pro-
vide weakly supervised signals for training the
discourse-specific word embeddings.

We apply DSWE as features in a supervised
neural network for implicit discourse relations
recognition. On the PDTB (Prasad et al., 2008),
using DSWE yields significantly better perfor-
mance than using off-the-shelf word embeddings,
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or recent systems incorporating explicit data. We
detail our method in Section 2 and evaluate it in
Section 3. Conclusions are given in Section 4. Our
learned DSWE is publicly available at here.

2 Discourse-specific Word Embeddings

In this section, we first introduce the neural net-
work model for learning discourse-specific word
embeddings (DSWE), and then the way of collect-
ing explicit discourse data for training. Finally, we
highlight the differences between our work and the
related researches.
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Figure 1: Neural network model for learn-
ing DSWE. An explicit instance is denoted as
(arg1, arg2, conn). w1

arg1 , ..., wm
arg1 mean the

words in arg1. Two arguments are concatenated
as input and the number of hidden layers is not
limited to two.

We induce DSWE based on explicit data by per-
forming connective classification. The connective
classification task predicts which discourse con-
nective is suitable for combining two given argu-
ments. It is essentially similar to implicit rela-
tion recognition, just with different output labels.
Therefore, any existing neural network model for
implicit relation recognition can be easily used for
connective classification. We adapt the model in
(Wu et al., 2016) for connective classification be-
cause it is simple enough to enable us to train on
massive data. As illustrated in Figure 1, an ar-
gument is first represented as the average of dis-
tributed representations of words in it. On the con-
catenation of two arguments, multiple non-linear
hidden layers are then used to capture the inter-
actions between them. Finally, a softmax layer is
stacked for classification. We combine the cross-
entropy error and regularization error multiplied

by the coefficient λ as the objective function. Dur-
ing training, we initialize distributed representa-
tions of all words randomly and tune them to min-
imize the objective function. The finally obtained
distributed representations of all words are our
discourse-specific word embeddings.

Collecting explicit discourse data includes two
steps: 1) distinguish whether a connective occur-
ring reflects a discourse relation. For example, the
connective and can either function as a discourse
connective to join two Conjunction arguments, or
be just used to link two nouns in a phrase. 2) iden-
tify the positions of two arguments. According to
(Prasad et al., 2008), arg2 is defined as the argu-
ment following a connective, however, arg1 can
be located within the same sentence as the connec-
tive, in some previous or following sentence. Lin
et al. (2014) show that the accuracy of distinguish-
ing connectives is more than 97%, while identify-
ing arguments is below than 80%. Therefore, we
use the existing toolkit1 to find discourse connec-
tives, and just collect explicit instances using pat-
terns like [arg1 because arg2], where two argu-
ments are in the same sentence, to decrease noise.
We believe these simple patterns are enough when
using a very large corpus. Note that there are 100
discourse connectives in the PDTB, we ignore four
parallel connectives (e.g., if...then) for simplicity.
The way of collecting explicit data can be easily
generalized to other languages, one just need to
train a classifier to find discourse connectives fol-
lowing (Lin et al., 2014).

Some aspects of this work are similar to (Bi-
ran and McKeown, 2013; Braud and Denis, 2016).
Based on massive explicit instances, they first
build a word-connective co-occurrence frequency
matrix2, and then weight these raw frequencies. In
this way, they represent words in the space of con-
nectives to directly encode their discourse func-
tion. The major limitation of their approach is that
the dimension of the word representations must
be less than or equal to the number of connec-
tives. By comparison, we learn DSWE by predict-
ing connectives conditioning on arguments, which
yields better performance and has no such dimen-
sion limitation. Some researchers use explicit data
as additional training data via multi-task learning
(Lan et al., 2013; Liu et al., 2016) or data selec-
tion (Rutherford and Xue, 2015; Wu et al., 2016).

1https://github.com/linziheng/pdtb-parser.
2Biran and McKeown (2013) calculate co-occurrences be-

tween word pairs and connectives.
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In both cases, explicit data are directly used to esti-
mate the parameters of implicit relation classifiers.
As a result, it is hard for them to incorporate mas-
sive explicit data because of the noise problem.
By contrast, we leverage massive explicit data by
learning word embeddings from them.

3 Experiments

3.1 Data and Settings
We collect explicit data from the Xin and Ltw parts
of the English Gigaword Corpus (3rd edition), and
get about 4.92M explicit instances. We randomly
sample 20,000 instances as the development set
and the others as the training set for DSWE. Af-
ter discarding words occurring less than 5 times,
the size of the vocabulary is 185,048. For the con-
nective classification task, we obtain an accuracy
of about 53% on the development set.

We adapt the neural network model described in
Figure 1 as the classifier for implicit discourse re-
lation recognition (CDRR). Specifically, we con-
catenate some surface features with the last hid-
den layer as the input of the softmax layer to pre-
dict discourse relations. We choose 500 Produc-
tion rule (Lin et al., 2009) and 500 Brown Cluster
Pair (Rutherford and Xue, 2014) features based on
mutual information using the toolkit provided by
Peng et al. (2005). Our learned DSWE is used as
the pre-trained word embeddings for CDRR, and
fixed during training.

Hyper-parameters for training DSWE and
CDRR are selected based on their corresponding
development set, and listed in Table 1.

Hyper-parameter DSWE CDRR
wdim 300 300
hsizes [200] [200, 50]
lr 1.0 0.005
λ 0.0001 0.0001

update SGD AdaGrad
f ReLU ReLU

Table 1: Hyper-parameters for training DSWE and
CDRR. wdim means the dimension of word em-
beddings, hsizes the sizes of hidden layers, lr
the learning rate, λ the regularization coefficient,
update the parameter update strategy and f the
nonlinear function. Note that [200, 50] means that
CDRR uses two layers with the sizes of 200 and
50, respectively. And the learning rate for training
DSWE is decayed by a factor of 0.8 per epoch.

Following Liu et al. (2016), we perform a 4-
way classification on the four top-level relations
in the PDTB: Temporal (Temp), Comparison
(Comp), Contingency (Cont) and Expansion
(Expa). The PDTB is split into the training set
(Sections 2-20), development set (Sections 0-1)
and test set (Sections 21-22). Table 2 lists the
statistics of these data sets. Due to the small and
uneven test data set, we run our method 10 times
with different random seeds (therefore different
initial parameters), and report the results (of a run)
which are closest to the average results. Finally,
we use both Accuracy and Macro F1 (macro-
averaged F1) to evaluate our method.

Relation Train Dev Test
Temp 582 48 55
Comp 1855 189 145
Cont 3235 281 273
Expa 6673 638 538

Table 2: Statistics of data sets on the PDTB.

3.2 Results

We compare our learned discourse-specific word
embeddings (DSWE) with two publicly available
embeddings3:

1) GloVe4: trained on 6B words from Wikipedia
2014 and Gigaword 5 using the count based model
in (Pennington et al., 2014), with a vocabulary of
400K and a dimensionality of 300.

2) word2vec5: trained on 100B words from
Google News using the CBOW model in (Mikolov
et al., 2013), with a vocabulary of 3M and a dimen-
sionality of 300.

Results in Table 3 show that using DSWE gains
significant improvements (one-tailed t-test with
p<0.05) over using GloVe or word2vec, on both
Accuracy and Macro F1. Furthermore, using
DSWE achieves better performance across all re-
lations on the F1 score, especially for minority re-
lations (Temp, Comp and Cont). Overall, our
DSWE can effectively incorporate discourse infor-

3The reasons for using those publicly available word em-
beddings are: 1) They are both trained on massive data. 2)
It will be convenient for other people to reproduce our ex-
periments. 3) Using GloVe or word2vec word embeddings
trained on the same corpus as DSWE achieves worse perfor-
mance than using these two public ones.

4http://nlp.stanford.edu/projects/glove/glove.6B.zip
5https://code.google.com/archive/p/word2vec/GoogleNews-

vectors-negative300.bin.gz
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CDRR +GloVe +word2vec +DSWE
Temp P 36.00 27.03 31.58

R 16.36 18.18 21.82
F1 22.50 21.74 25.81

Comp P 53.97 50.00 43.00
R 23.45 20.00 29.66
F1 32.69 28.57 35.10

Cont P 44.90 51.81 55.29
R 40.29 36.63 42.12
F1 42.47 42.92 47.82

Expa P 60.47 60.72 63.91
R 76.21 81.60 79.00
F1 67.43 69.63 70.66

Accuracy 55.68 57.17 58.85
Macro F1 41.27 40.71 44.84

Table 3: Results of using different word embed-
dings. We also list the Precision, Recall and F1

score for each relation.

mation in explicit data, and thus benefits implicit
discourse relation recognition.

We also compare our method with three recent
systems which also use explicit data to boost the
performance:

1) R&X2015: Rutherford and Xue (2015) con-
struct weakly labeled data from explicit data based
on the chosen connectives, to enlarge the training
data directly.

2) B&D2016: Braud and Denis (2016) learn
connective-based word representations and build
a logistic regression model based on them6.

3) Liu2016: Liu et al. (2016) use a multi-task
neural network to incorporate several discourse-
related data, including explicit data and the RST-
DT corpus (William and Thompson, 1988).

System Accuracy Macro F1

R&X2015 57.10 40.50
B&D2016 52.81 42.27
Liu2016 57.27 44.98

CDRR+DSWE 58.85 44.84

Table 4: Comparison with recent systems.

Results in Table 4 show the superiority of our
method. Although Liu2016 performs slightly bet-
ter on Macro F1, it uses the additional labeled
RST-DT corpus. For R&X2015 and Liu2016, they

6We carefully reproduce their model since they adopt a
different setting in preprocessing the PDTB.

both incorporate relatively small explicit data be-
cause of the noise problem, for example, 20,000
and 40,000 instances respectively. By contrast,
our method benefits from about 4.9M explicit in-
stances. While B&D2016 uses massive explicit
data, it is limited by the fact that the maximum
dimension of word representations is restricted to
the number of connectives, for example 96 in their
work. Overall, our method can effectively utilize
massive explicit data, and thus is more powerful
than baselines.

not good
word2vec DSWE word2vec DSWE

do no great great
did n’t bad lot

anymore never terrific very
necessarily nothing decent better
anything neither nice success
anyway none excellent well

does difficult fantastic happy
never nor better certainly
want refused solid respect

neither impossible lousy fine
if limited wonderful import

know declined terrible positive
anybody nobody Good help

yet little tough useful
either denied best welcome

Table 5: Top 15 closest words of not and good in
both word2vec and DSWE.

To give an intuition of what information is en-
coded into the learned DSWE, we list in Table 5
the top 15 closest words of not and good, accord-
ing to the cosine similarity. We can find that, in
DSWE, words similar to not to some extent have
negative meanings. And since declined is similar
to not, a classifier may easily identify the implicit
instance [A network spokesman would not com-
ment. ABC Sports officials declined to be inter-
viewed.] as the Conjunction relation. For good in
DSWE, the similar words no longer include words
like bad. Furthermore, the similar score between
good and great is 0.54 while the score between
good and bad is just 0.33, which may make a clas-
sifier easier to distinguish word pairs (good, great)
and (good, bad), and thus is helpful for predicting
the Conjunction relation. This qualitative analysis
demonstrates the ability of our DSWE to capture
the discourse relationships between words.
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Figure 2: Impact of connectives used in training
DSWE.

Finally, we conduct experiments to investigate
the impact of connectives used in training DSWE
on our results. Specifically, we use the explicit
discourse instances with the top 10, 20, 30, 60
most frequent or all connectives to learn DSWE,
accounting for 78.9%, 91.9%, 95.8%, 99.4% or
100% of total instances, respectively. The top
10 most frequent connectives are: and, but, also,
while, as, when, after, if, however and because,
which cover all four top-level relations defined in
the PDTB. As illustrated in Figure 2, with only the
top 10 connectives, the learned DSWE achieves
better performance than the common word em-
beddings. We observe a significant improvement
when using top 20 connectives, almost the best
performance with top 30 connectives, and no fur-
ther substantial improvement with more connec-
tives. These results indicate that we can use only
top n most frequent connectives to collect explicit
discourse data for DSWE, which is very conve-
nient for most languages.

4 Conclusion

In this paper, we learn discourse-specific word em-
beddings from massive explicit data for implicit
discourse relation recognition. Experiments on the
PDTB show that using the learned word embed-
dings as features can significantly boost the per-
formance. We also show that our method can
use explicit data more effectively than previous
work. Since most of neural network models for
implicit discourse relation recognition use pre-
trained word embeddings as input, we hope that
our learned word embeddings would benefit them.
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