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Abstract

We present a neural architecture for con-
tainment relation identification between
medical events and/or temporal expres-
sions. We experiment on a corpus of de-
identified clinical notes in English from
the Mayo Clinic, namely the THYME cor-
pus. Our model achieves an F-measure
of 0.613 and outperforms the best result
reported on this corpus to date.

1 Introduction

Temporal information extraction from clinical
health records allows for a fine-grained analysis of
patient health history. Providing medical staff with
patient timelines could lead to improved diagnos-
tic and care. Important temporal information (such
as when a patient started a treatment, or when they
started experiencing side effects from a treatment)
can be found only within the narrative portion of
records and needs the development of new Natu-
ral Language Processing methods in order to be
accessed.

In this paper, we present a neural architec-
ture for narrative container identification between
medical events (EVENT) and/or temporal expres-
sions (TIMEX3). We experiment on the THYME
corpus (Styler IV et al., 2014), a corpus of de-
identified clinical notes in English from the Mayo
Clinic. We use the Gold Standard annotations for
EVENT and TIMEX3 entities and we focus on con-
tainment relation extraction where the objective is
to identify temporal relations between pairs of en-
tities formalized as narrative container relations.

2 Related Work

SemEval has been offering a shared task related
to temporal relation extraction from clinical nar-
ratives over the past two years (Bethard et al.,
2015, 2016). Relying on the THYME corpus,
the task challenged participants to extract EVENT

and TIMEX3 entities and then to extract narra-
tive container relations and document creation
time relations. Herein, we focus on the second
part of the challenge, temporal relation extrac-
tion and more specifically the narrative container
relations. Different approaches have been im-
plemented by the participants, including Support
Vector Machine (SVM) classifiers (AAl Abdul-
salam et al., 2016; Cohan et al., 2016; Lee et al.,
2016; Tourille et al., 2016), Conditional Random
Fields (CRF) and convolutional neural networks
(CNNs) (Chikka, 2016). Beyond the challenges,
Leeuwenberg and Moens (2017) propose a model
based on a structured perceptron to jointly predict
both types of temporal relations. Lin et al. (2016)
performs training instance augmentation to in-
crease the number of training examples and imple-
ment a SVM based model for containment relation
extraction. Dligach et al. (2017) implement mod-
els based on CNNs and Long Short-Term Mem-
ory Networks (LSTMs) (Hochreiter and Schmid-
huber, 1997) to extract containment relations from
the THYME corpus.

From a more general perspective, relation ex-
traction and classification is a task explored by
many approaches, from fully unsupervised to fully
supervised. Recent years have seen an increas-
ing interest for the use of neural approaches.
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Recursive neural networks (Socher et al., 2011,
2013) have proved useful for tasks involving long-
distance relations, such as semantic relation ex-
traction (Hashimoto et al., 2013; Li et al., 2015).
Convolutional networks have also been used (dos
Santos et al., 2015; Zeng et al., 2014) and more re-
cently, recurrent networks such as LSTM showed
to be more robust for learning long-distance se-
mantic information (Miwa and Bansal, 2016; Xu
et al., 2015; Zhou et al., 2016).

3 Data

3.1 Corpus Presentation

The THYME corpus is a collection of clinical texts
written in English from a cancer department that
have been released during the Clinical TempEval
campaigns (Bethard et al., 2015, 2016). This cor-
pus contains documents annotated with medical
events and temporal expressions as well as narra-
tive container relations.

According to the annotation guidelines of the
THYME corpus, a medical event is anything that
could be of interest on the patient’s clinical time-
line. It could be for instance a medical procedure,
a disease or a diagnosis. There are five attributes
given to each event: Contextual Modality, Degree,
Polarity, Type and DocTimeRel.

Temporal expressions are assigned a Class at-
tribute. Possible values for these attributes are pre-
sented in Table 2.

Narrative containers can be apprehended as
temporal buckets in which several events may be
included. These containers are anchored by tem-
poral expressions, medical events or other con-
cepts. Styler IV et al. (2014) argue that the use
of narrative containers instead of classical tem-
poral relations (Allen, 1983) yields better anno-
tation while keeping most of the useful temporal
information intact. The concept of narrative con-
tainer is illustrated in Figure 1 and described fur-
ther in Pustejovsky and Stubbs (2011).

We identify two types of narrative container re-
lations: relations that stay within sentence bound-
aries (≈75% of the instances) and relations that
spread over several sentences. In the rest of the
paper, we will refer to them as intra- and inter-
sentence relations. Descriptive statistics on the
corpus are presented in Table 1.
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Figure 1: Examples of intra-sentence narrative
container relations.

Train Test
EVENT 49,147 15,503
TIMEX3 5,791 1,917
Intra-sentence relations 12,855 4,365
Inter-sentence relations 4,582 1,565

Table 1: Descriptive statistics about the train and
test parts of the THYME corpus.

3.2 Preprocessing

We preprocessed the corpus using cTAKES
(Savova et al., 2010), an open-source natural lan-
guage processing system for the extraction of in-
formation from electronic health records. We ex-
tracted sentence and token boundaries, as well as
token types and semantic types of the entities that
have a span overlap with a least one gold stan-
dard EVENT entity of the THYME corpus. Seman-
tic types are a set of subject categories (organized
as a tree) that are used to categorize concepts in
the UMLS® (Unified Medical Language System)
Metathesaurus. There are currently 135 types (Bo-
denreider, 2004). This information was added to
the set of Gold Standard attributes available for
EVENT entities in the corpus. An overview of the
attributes available for each token is presented in
Table 2.

4 Task Description

The container relation extraction task can be cast
as a 3-class classification problem. For each com-
bination of EVENT and/or TIMEX3 from left to
right, three cases are possible:

• the first entity temporally contains the second
entity,

• the first entity is temporally contained by the
second entity,

• there is no temporal containment relation be-
tween the entities.

Intra- and inter-sentence relation detection can
be seen as two different tasks with specific fea-
tures. Intra-sentence relations can benefit from
intra-sentential clues such as adverbs (e.g. during)
or pronouns (e.g. which) which are not available
at the inter-sentence level. Furthermore, past work
on the topic seems to indicate that this differentia-
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Source Attribute Values

Corpus

Contextual Modality Actual, Hypothetical, Hedged, Generic or no-value
Degree Most, Little, N/A or no-value
Polarity Pos, Neg or no-value
Type Aspectual, Evidential, N/A or no-value
DocTimeRel Before, Before-Overlap, Overlap, After or no-value
Entity EVENT, TIMEX3 or no-entity

cTAKES
Entity Typea DiseaseDisorderMention, LabMention, MedicationEventMention, MedicationMen-

tion, ProcedureMention, SignSymptomMention or no-value
Semantic Typea list of semantic types extracted from the training corpus or no-value

a If the token is not part of an EVENT entity, the value is automatically no-value.

Table 2: Attributes available for each token of the corpus after preprocessing.

tion improves overall performance (Tourille et al.,
2016). We have adopted this approach by build-
ing two separate classifiers, one for intra-sentence
relations and one for inter-sentence relations.

If we were to consider all combinations of enti-
ties within documents for inter-sentence relations,
it would result in a very large training corpus with
very few positive examples. In order to cope
with this issue, we limit our experiments to inter-
sentence relations that do not span over more than
three sentences. By doing so, we obtain a man-
ageable training corpus size with less unbalanced
classes while keeping a good coverage. It results
in 2,085 inter-sentences relations for the training
corpus and 743 for the test corpus.

5 Neural Network Model

First, we present the main component of our model
in Section 5.1. Then, we describe the word embed-
dings that we use as input for the model in Sec-
tion 5.2. Finally, we present the parameters used
for network training in Section 5.3.

5.1 Temporal Relation Extraction

Our approach relies on Long Short-Term Memory
Networks (LSTMs) (Hochreiter and Schmidhuber,
1997). The architecture of our model is presented
in Figure 2. For a given sequence of tokens sepa-
rating two entities (EVENT and/or TIMEX3), repre-
sented as vectors, we compute a representation by
going from left to right in the sequence (forward
LSTM in figure 2).

As LSTMs tend to be biased toward the most re-
cent inputs, this implementation would be biased
toward the second entity of each pair processed by
the network. To counteract this effect, we compute
the reverse representation with an LSTM reading
the sequence backwards, from right to left (back-
ward LSTM in figure 2). By doing so, we keep as

much information as possible about the two enti-
ties.

The two final states are then concatenated and
linearly transformed to a 3-dimensional vector
representing the number of categories (concatena-
tion and projection in figure 2). Finally, a softmax
function is applied.

Figure 2: Neural architecture for containment re-
lation extraction.

5.2 Input Embeddings
Vectors representing tokens are built by concate-
nating a character-based embedding, a word em-
bedding, one embedding per Gold Standard at-
tribute and one embedding per cTAKES attribute.
While the word embedding is a classical option in
the context of neural models, the embeddings for
Gold Standard and cTAKES attributes are a way of
integrating in such model features that have been
demonstrated as useful in previous work. Finally,
temporal clues such as verbs, and more particu-
larly their tense, which are important in assessing
if one entity temporally contains another, are taken
into account by our character-based representation
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Intra-sentence classifier Inter-sentence classifier

ref pred corr P R F1 ref pred corr P R F1

No Features 4365 4529 3035 0.670 0.681 0.675 743 895 377 0.421 0.498 0.456
+ GS 4365 4253 2980 0.701 0.661 0.680 743 692 349 0.504 0.462 0.482
+ cTAKES 4365 4780 3170 0.663 0.704 0.683 743 628 305 0.486 0.408 0.443

Table 3: Results obtained by the intra-sentence and inter-sentence classifiers for each model of this paper.
We report the number of Gold Standard relations (ref), the number of relations predicted by our system
(pred), the number of true positives (corr), the precision (P), the recall (R) and the F1-measure (F1).

of tokens.
An overview of the embedding computation is

presented in Figure 3. Following Lample et al.
(2016), the character-based representation is con-
structed with a Bi-LSTM. First, a random embed-
ding is generated for every character present in the
training corpus. Token characters are then pro-
cessed with a forward and backward LSTM sim-
ilar to the one we use in our general architecture.
The final character-based representation is the re-
sult of the concatenation of the forward and back-
ward representations.

Figure 3: Neural architecture for input embed-
dings.

We use a character embedding size of 8 and hid-
den dimensions of 25 for the forward and back-
ward LSTMs, resulting in a final representation
size of 50 after concatenation. This representation
is randomly initialized and incrementally defined
by the training of the whole network.

For word embeddings, our vectors are pre-
trained by applying word2vec (Mikolov et al.,
2013) on the Mimic 3 corpus (Johnson et al.,
2016)1. In order to account for unknown tokens
during the test phase, we train a special embed-
ding UNK by replacing randomly some singletons
with the UNK token (probability of replacement =
0.5).

1Parameters used during computation: algorithm =
CBOW; min-count = 4; vector size = 100; window = 8.

In the inter-sentence relation classifier, we in-
troduce a specific token for identifying sentence
breaks. This token is composed of one distinc-
tive character and it is associated to a specific word
embedding.

Similarly to the character embeddings, we ran-
domly initialize one embedding per token attribute
value, with an embedding size of 4. All these em-
beddings are then concatenated in a final represen-
tation.

5.3 Network Training
We implemented the network using Tensor-
Flow (Abadi et al., 2015). We trained our network
with mini-batch Stochastic Gradient Descent us-
ing Adam (Kingma and Ba, 2014) with a batch-
size of 256. The learning rate was set to 0.001.
The hidden layers of our forward and backward
LSTMs have a size of 512. We kept 10% of the
training corpus for a development corpus and we
implemented early stopping with a patience of 10
epochs without performance improvement. Fi-
nally, we used dropout training to avoid overfit-
ting. We applied dropout on input embeddings
with a rate of 0.5.

6 Experiments and Discussion

We experimented with three configurations. In the
first one, we used only word embeddings and char-
acter embeddings. In the second one, we added
the feature embeddings related to the Gold Stan-
dard (GS) attributes. Finally, in a third experi-
ment, we added the feature embeddings related to
cTAKES. For each experiment, we report preci-
sion (P), recall (R) and F1-measure (F1) computed
with the official evaluation script2 provided during
the Clinical TempEval challenges. Results of the
experiments are presented in Table 4. For com-
parison, we report the baseline provided as refer-
ence during the Clinical TempEval shared tasks,

2https://github.com/bethard/
anaforatools
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P R F1

baseline (closest) 0.459 0.154 0.231
Lee et al. (2016) 0.588 0.559 0.573
Lin et al. (2016) 0.669 0.534 0.594

No features 0.646 0.568 0.605
+ GS features 0.687 0.549 0.610
+ cTAKES features 0.657 0.575 0.613

Table 4: Experimentation results. We report preci-
sion (P), recall (R) and F1-measure (F1) for each
configuration of our model, for the best system of
the Clinical TempEval 2016 challenge (Lee et al.,
2016) and for the best result obtained so far on the
corpus (Lin et al., 2016).

the results of the best system of the Clinical Tem-
pEval 2016 challenge (Lee et al., 2016) and the
best scores obtained after the challenge (Lin et al.,
2016) on the test portion of the corpus. Both
Lee et al. (2016) and Lin et al. (2016) rely on
SVM classifiers using hand-engineered linguistic
features.

All three of our models perform better in terms
of F1-measure than Lee et al. (2016) and Lin et al.
(2016). Our two best models also outperform
Leeuwenberg and Moens (2017), who report an
F-measure of .608 using a structured perceptron.
Interestingly, their model did not distinguish be-
tween intra- and inter- sentence relations, but in-
stead considered that related entities had to occur
within a window of 30 tokens. We see that the ad-
dition of attribute embeddings slightly improves
the overall performance of our system (+0.008).
Adding the embeddings of GS features contributes
to the major part of this improvement but tends to
increase the imbalance between recall and preci-
sion. On the contrary, while the attribute embed-
dings related to cTAKES seem to have little impact
on the overall performance, they tend to restore
more balanced precision and recall.

The results for respectively intra- and inter-
sentence relations are presented in Table 3. Simi-
larly to our global results, the intra-sentence clas-
sifier benefits from the addition of feature embed-
dings with a small increase for GS features and
only a very little improvement for cTAKES fea-
tures.

The inter-sentence classifier exhibits the same
trend: GS features do improve the performance.
However, adding cTAKES features degrades it
slightly (-0.013).

The closest work compared to ours is clearly

Dligach et al. (2017) as it also heavily relies on
neural models for extracting temporal contain-
ment relations between medical events. Dligach
et al. (2017) tested both CNN and LSTM mod-
els and found CNN superior to LSTM. However,
this work addressed intra-sentence relations only.
Moreover, its LSTM model was not a Bi-LSTM
model as ours and it did not include character-
based or attribute embeddings. Finally, it distin-
guished EVENT-TIMEX3 and EVENT-EVENT rela-
tions while we have only one model for the two
types of relations.

7 Conclusion and Perspectives

From a global perspective, the work we have pre-
sented in this article shows that in accordance with
a more general trend, our neural model for ex-
tracting containment relations clearly outperforms
classical approaches based on feature engineering.
However, it also shows that incorporating classi-
cal features in such a model is a way to improve
it, even if all kinds of features do not contribute
equally to such improvement. A more fine-grained
study has now to be performed to determine the
most meaningful features in this perspective and
to measure the contribution of each feature to the
overall performance, with a specific emphasis on
character-based embeddings.

Beyond a further analysis of the characteristics
of our model, we are interested in two main ex-
tensions. The first one will investigate whether
training two models, one for EVENT-TIMEX3 rela-
tions and one for EVENT-EVENT relations, as done
by Dligach et al. (2017), is a better option than
training one model for all types of containment
relations as presented herein. The second exten-
sion consists in transposing the model we have de-
fined in this work for English to French, as done
by Tourille et al. (2017) for a more traditional ap-
proach based on a feature engineering approach.
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