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Abstract

We propose a new dependency pars-
ing scheme which jointly parses a sen-
tence and repairs grammatical errors by
extending the non-directional transition-
based formalism of Goldberg and El-
hadad (2010) with three additional ac-
tions: SUBSTITUTE, DELETE, INSERT. Be-
cause these actions may cause an infinite
loop in derivation, we also introduce sim-
ple constraints that ensure the parser ter-
mination. We evaluate our model with re-
spect to dependency accuracy and gram-
maticality improvements for ungrammat-
ical sentences, demonstrating the robust-
ness and applicability of our scheme.

1 Introduction

Robustness has always been a desirable property
for natural language parsers: humans generate a
variety of noisy outputs, such as ungrammatical
webpages, speech disfluencies, and the text in lan-
guage learner’s essays. Such non-canonical text
contains grammatical errors such as substitutions,
insertions, and deletions. For example, a non-
native speaker of English might write “*I look in
forward hear from you”, where in is inserted, to is
deleted, and hearing is substituted incorrectly.

We propose a novel dependency parsing scheme
that jointly parses and repairs ungrammatical sen-
tences with these sorts of errors. The parser is
based on the non-directional easy-first (EF) parser
introduced by Goldberg and Elhadad (2010) (GE
herein), which iteratively adds the most probable
arc until the parse tree is completed. These ac-
tions are called ATTACHLEFT and ATTACHRIGHT
depending on the direction of the arc. We ex-
tend the EF parsing scheme to be robust for un-
grammatical inputs by correcting grammatical er-
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Figure 1: Illustrative example of partial derivation under
error-repair easy-first non-directional dependency parsing.
Solid arrows represent ATTACHRIGHT and ATTACHLEFT in
Goldberg and Elhadad (2010). Dotted arcs correspond to ac-
tions for each step. Following the notation by GE: arcs are
directed from a child to its parent.

rors with three new actions: SUBSTITUTE, INSERT,
and DELETE. These new actions do not add an arc
between tokens but instead they edit a single to-
ken. As a result, the parser is able to jointly parse
and correct grammatical errors in the input sen-
tence. We call this new scheme Error-Repair Non-
Directional Easy-First parsing (EREF). Since the
new actions may greatly increase the search space
(e.g., infinite substitutions), we also introduce sim-
ple constraints to avoid such issues.

We first describe the technical details of EREF
(§2) and then evaluate our EREF parser with re-
spect to dependency accuracy (robustness) and
grammaticality improvements (§3). Finally, we
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position this effort at the intersection of noisy text
parsing and grammatical error correction (§4).

2 Model
Non-directional Easy-first Parsing Let us be-
gin with a brief review of a non-directional easy-
first (EF) parsing scheme proposed by GE, which
is the foundation of our proposed scheme de-
scribed in the following sections.

The EF parser has a list of partial structures
p1, ..., pk (called pending) initialized with sen-
tence tokens w1, ..., wn, and it keeps updating
pending through derivations. Unlike left-to-right
(e.g., shift-reduce) parsing algorithms (Yamada
and Matsumoto, 2003; Nivre, 2004), EF itera-
tively selects the best pair of adjoining tokens and
chooses the direction of attachment: ATTACHLEFT
or ATTACHRIGHT. Once the action is committed,
the corresponding dependency arc is added and the
child token is removed from pending. The first
two derivations in Figure 1 depict ATTACHRIGHT
and ATTACHLEFT. Pseudocode is shown in Algo-
rithm 1 (lines 1, 3-12).

The parser is trained using the structured per-
ceptron (Collins, 2002) to choose actions to take
given a set of features expanded from templates.
The cost of actions is computed at every step by
checking the validity: whether a new arc is in-
cluded in the gold parse and whether the child al-
ready has all its children. See GE for further de-
scription of feature templates and structured per-
ceptron training. Since it is possible that there are
multiple valid sequence of actions and it is impor-
tant to examine a large search space, the parser
is allowed to explore (possibly incorrect) actions
with a certain probability, termed learning with ex-
ploration by Goldberg and Nivre (2013).

Error-repair variant of EF Error-repair non-
directional easy-first parsing scheme (EREF) is
a variant of EF. We add three new actions:
SUBSTITUTE, DELETE, INSERT as ActsER. We do
not deal with a swapping action (Nivre, 2009) to
deal with word reordering errors, since the errors
are even less frequent than other error types (Lea-
cock et al., 2014). SUBSTITUTE replaces a token
to a grammatically more probable token, DELETE
removes an unnecessary token, and INSERT in-
serts a new token at a designated index. These
actions are shown in Figure 1 and Algorithm
1 (lines 13-25). Because the length of pend-
ing decreases as an attachment occurs, the parser

Algorithm 1: Error-repair non-directional parsing

Input: ungrammatical sentence= w1 ... wn

Output: a set of dependency arcs (Arcs),
repaired sentence (ŵ1 ... ŵm)

1 Acts = { ATTACHLEFT, ATTACHRIGHT }
2 ActsER = { DELETE, INSERT, SUBSTITUTE }
3 Arcs = { }
4 pending = p1...pn ← w1...wn

5 repaired = ŵ1...ŵn ← w1...wn

6 while len (pending) > 1 do
7 best ← argmax

act∈Acts∪ActsER

score (act (i))

8 s.t. 1 ≤ i ≤ len(pending) ∩ isLegal(act, pending)
9 if best ∈ Acts then

10 (parent, child)← edgeFor(best)
11 Arcs.add((parent, child))
12 pending.remove(child)
13 else if best = SUBSTITUTE then
14 c = bestCandidate(best, repaired)
15 pending.replace(pi, c)
16 repaired.replace(ŵpi.idx, c)
17 else if best = DELETE then
18 pending.remove(pi)
19 repaired.remove(ŵpi.idx)
20 Arcs.updateIndex()
21 else if best = INSERT then
22 c = bestCandidate(best, repaired)
23 pending.insert(i, c)
24 repaired.insert(pi.idx, c)
25 Arcs.updateIndex()
26 end
27 return Arcs, repaired

also keeps the token indices in repaired (line 5),
which holds all tokens in a sentence throughout
the parsing process. Furthermore, the parser up-
dates token indices in pending and repaired when
INSERT or DELETE occurs. Technically, when a
token at i is deleted/inserted, the parser decre-
ments/increments the indices that are k >= i (be-
fore executing the action) in pending, repaired,
and parents and children in a (partial) dependency
tree (Arcs).

To find the best candidate for SUBSTITUTE and
INSERT efficiently, we restrict candidates to the
same part-of-speech or pre-defined candidate list.
We select the best candidate by comparing each
n-gram language model score with the same sur-
rounding context.

Similar to EF, while training the parser, the cost
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Algorithm 2: Check validity during training

1 Function isValid(act, repaired, Gold)
2 d before = editDistance(repaired, Gold)
3 repaired + = repaired.apply(act)
4 d after = editDistance(repaired +, Gold)
5 if d before > d after then return true;
6 else return false;
7 end

for ActsER is based on validity. The validity of
the new actions is computed by taking the edit dis-
tance (d) between the Gold tokens (w∗1 ... w∗r ) and
the sentence state that the parser stores in repaired
(ŵ1 ... ŵm). When the edit distance after taking
an action (d after) is smaller than before (d before),
we regard the action as valid (Algorithm 2).

One serious concern of EREF is that the new
actions may cause an infinite loop during pars-
ing (e.g., infinite SUBSTITUTE, or an alternative
DELETE and INSERT sequence.). To avoid this,
we introduce two constraints: (1) edit flag and
(2) edit limit. Edit flag is assigned for each to-
ken as a property, and a parser is not allowed to
execute ActsER on a token if its flag is on. The
flag is turned on when a parser executes ActsER on
a token whose flag is off. In INSERT action, the
flag of the inserted token is activated, while the
subsequent token (which gave rise to the INSERT)
is not. Edit limit is set to be the number of to-
kens in a sentence, and the parser is not allowed
to perform ActsER when the total number of ex-
ecution of ActsER exceeds the limit. These two
constraints prevent the parser from falling into an
infinite loop as well as parsing in the same order
of time complexity as GE. We also add the follow-
ing constraints to avoid unreasonable derivations:
(i) a word with a dependent cannot be deleted and
(ii) any child words cannot be substituted. All the
constraints are implemented in the isLegal() func-
tion in Algorithm 1 (line 8). We note that these
constraints not only prevent undesirable deriva-
tions but also leads to an efficiency in exploring
the search space during training.

3 Experiment

Data and Evaluation We evaluate EREF with
respect to dependency parsing accuracy (Exp1)
and grammaticality improvement (Exp2).1

1Code for the experiments is available at http://
github.com/keisks/error-repair-parsing

In the first experiment, as in GE, we train and
evaluate our parser on the English dataset from
the Penn Treebank (Marcus et al., 1993) with the
Penn2Malt conversion program (Sections 2-21 for
training, 22 for tuning, and 23 for test). We use the
PTB for the dependency experiment, since there
are no ungrammatical text corpora that has depen-
dency annotation on the corrected texts by human.

We choose the following most frequent error
types that are used in CoNLL 2013 shared task
(Ng et al., 2013):

1. Determiner (substitution, deletion, insertion)
2. Preposition (substitution, deletion, insertion)
3. Noun number (singular vs. plural)
4. Verb form (tense and aspect)
5. Subject verb agreement

Regarding the candidate sets for INSERT and
SUBSTITUTE actions, following Rozovskaya and
Roth (2014), we focus on the most common can-
didates for each error type, setting the determiner
candidates to be {a, an, the, φ (as deletion)},
preposition candidates to be {on, about, from, for,
of, to, at, in, with, by, φ}, and verb forms to be
{VB(P|Z|G|D|N)}. We build a 5-gram language
model on English Gigaword with the KenLM
Toolkit (Heafield, 2011) for EREF to select the
best candidate.

We manually inject grammatical errors into
PTB with certain error-rates similarly to the Gen-
ERRate toolkit by Foster and Andersen (2009),
which is designed to create synthetic errors into
sentences to improve grammatical error detection.

We train and tune EREF models with different
token-level error injection rates from 5% (E05) to
20% (E20), because language learner corpora have
generally around 5% to 15% of token level errors
depending on learners’ proficiency (Leacock et al.,
2014). Since the error injection is stochastic, we
train each model with 10 runs and take an average
of parser performance on the test set.

As a baseline, we use the original parser as de-
scribed by GE, which is equivalent to EREF with
training on an error-free corpus (E00). Since the
EF baseline does not allow error correction dur-
ing parsing, we pre-process the test data with a
grammatical error correction system similar to Ro-
zovskaya and Roth (2014), where a combination
of classifiers for each error type corrects grammat-
ical errors.

For evaluation, we jointly parse and correct
grammatical errors in the test set with different

191



(%) Baseline E05 E10 E15 E20
0 91.43 91.12 90.87 90.61 90.29
5 89.99 90.00 89.87 89.72 89.48
10 87.84 87.99 88.07 88.14 88.04
15 85.64 86.18 86.54 86.75 86.82
20 84.12 84.78 85.28 85.50 85.76
∇ -0.37 -0.32 -0.28 -0.26 -0.23

Table 1: Unlabeled dependency accuracy results with the 5x5
models and test sets. ∇ shows the slope of deterioration in
parser performance.

E05 E10 E15 E20
# edited sents (out of 5,124) 175 391 583 861
grammaticality (source) 2.92 2.95 2.95 2.89
grammaticality (this work) 2.96 2.99 3.27 2.98

Table 2: Grammaticality scores by 1-4 scale regression model
(Heilman et al., 2014). The first row shows the number of
sentences that are made (at least one) change. Bold numbers
show statistically significant improvements.

error injection rates (from 0% to 20%). It is im-
portant to note that the number of tokens between
the parser output and the oracle may be differ-
ent because of error injection into the test set and
ActsER during parsing. To handle this mismatch,
we evaluate the dependency accuracy with align-
ment (Favre et al., 2010) in the spirit of SParseval
(Roark et al., 2006), where tokens between a hy-
pothesis and oracle are aligned prior to calculating
the dependency accuracy.

In the second experiment, we use the Treebank
of Learner English (TLE) (Berzak et al., 2016) to
see the grammaticality improvement in a real sce-
nario. TLE contains 5,124 sentences and 2.69 (std
1.9) token errors per sentence. The average sen-
tence length is 19.06 (std 9.47). TLE also pro-
vides dependency labels and POS tags on the raw
(ungrammatical) sentences. It is important to note
that TLE has dependency annotation only for the
original ungrammatical sentences, and therefore
we do not compute the accuracy of dependency
parse in this experiment. Since the corpus size is
small, we train EREF (E05 to E20) on 100k sen-
tences from Annotated Gigaword (Napoles et al.,
2012) and used TLE as a test set. Spelling errors
are ignored because EREF can use the POS infor-
mation. Grammaticality is evaluated by a regres-
sion model (Heilman et al., 2014), which scores
grammaticality on the ordinal scale (from 1 to 4).

Results Table 1 shows the result of unlabeled
dependency accuracy (UAS).2 As previously pre-

2Technically, it is possible to train the model with learning
labels simultaneously (LAS), but there is a trade-off between

Successful cases
I ’m looking forward to [-see-] {+seeing+} you next summer
I ’ve never [-approve-] {+approved+} his deal
There is not {+a+} possibility to travel

Failure cases
I ’ve [-assisted-] {+assisting+} your new musical show
I am writing to complain [-about-] {+with+} somethings
I hope you liked {+the+} everything I said

Table 3: Successful and failure examples by EREF. The edits
are represented by [-deletion-] and {+insertion+}. Adjacent
pairs of deletion and insertion are considered as substitution.

sented (Foster, 2007; Cahill, 2015), our experi-
ment also shows that parser performance deterio-
rated as the error rate in the test corpus increased.
On the error-free test set (0%), the baseline (EF
pipeline) outperforms other EREF models; the ac-
curacy is lower when the parser is trained on nois-
ier data. The difference among the models be-
comes small when the test set has 10% error injec-
tion rate. As the rate increases further, the trend
of parser accuracy reverses. When the test set has
15% or higher noise, the E20 is the most accu-
rate parser. This trend is presented by the slope
of deterioration ∇ =

accuracy20%−accuracy0%
20 in Ta-

ble 1; a parser trained on noisier training data
shows smaller decline and more robustness.3 This
indicates that the EREF is more robust than the
vanilla EF on ungrammatical texts by jointly pars-
ing and correcting errors.

Table 2 demonstrates the result of grammati-
cality improvement (1-4 scale) on the TLE cor-
pus, and Table 3 shows successful and failure
corrections by EREF. Minimally trained models
(E05 and E10) show little improvement in gram-
maticality because the models are too conser-
vative to make edits. The models with higher
error-injection rates (E15 and E20) achieve 0.1
to 0.3 improvements that are statistically signifi-
cant. There is still room to improve regarding the
amount of corrections. This is probably because
TLE contains a variety of errors (e.g., collocation,
punctuation) in addition to the five error types we
focus. To deal with other error types, we can ex-
tend EREF by adding more actions, although it in-
creases the search space.

From a practical perspective, the level of un-
grammaticality should be realized ahead of time.
This is an issue to be addressed in future research.
search space and training time. The primary goal of this ex-
periment is to see if the EREF is able to detect and correct
grammatical errors.

3Baseline model without preprocessing always underper-
formed the preprocessed baseline.
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4 Related Work

Our work lies at the intersection of parsing non-
canonical texts and grammatical error correction.

Joint dependency parsing and disfluency de-
tection has been pursued (Rasooli and Tetreault,
2013, 2014; Honnibal and Johnson, 2014; Wu
et al., 2015; Yoshikawa et al., 2016), where a
parser jointly parses and detects disfluency (e.g.,
reparandum and interregnum) for a given speech
utterance. Our work could be considered an exten-
sion via adding SUBSTITUTE and INSERT actions,
although we depend on easy-first non-directional
parsing framework instead of a left-to-right strat-
egy. Importantly, the DELETE action is easier to
handle than the SUBSTITUTE and INSERT actions,
because they bring us challenging issues about a
process of candidate word generation and avoiding
an infinite loop in derivation. We have addressed
these issues as explained in §2.

In terms of the literature from grammatical
error correction, this work is closely related to
Dahlmeier and Ng (2012), where they show an er-
ror correction decoder with the easy-first strategy.
The decoder iteratively corrects the most probable
ungrammatical token by applying different classi-
fiers for each error type. The EREF parser also de-
pends on the easy-first strategy to find ungrammat-
ical index to be deleted, inserted, or substituted,
but it parses and corrects errors jointly whereas the
decoder is designed as a grammatical error correc-
tion framework rather than a parser.

There is a line of work for parsing ungrammati-
cal sentences (e.g., web forum) by adapting an ex-
isting parsing scheme on domain specific annota-
tions (Petrov and McDonald, 2012; Cahill, 2015;
Berzak et al., 2016; Nagata and Sakaguchi, 2016).
Although we share an interest with respect to deal-
ing with ungrammatical sentences, EREF focuses
on the parsing scheme for repairing grammatical
errors instead of adapting a parser with a domain
specific annotation scheme.

More broadly, our work can also be regarded
as one of the joint parsing and text normalization
tasks such as joint spelling correction and POS
tagging (Sakaguchi et al., 2012), word segmen-
tation and POS tagging (Kaji and Kitsuregawa,
2014; Qian et al., 2015).

5 Conclusions

We have presented an error-repair variant of the
non-directional easy-first dependency parser. We

have introduced three new actions, SUBSTITUTE,
INSERT, and DELETE into the parser so that it
jointly parses and corrects grammatical errors in
a sentence. To address the issue of parsing incom-
pletion due to the new actions, we have proposed
simple constraints that keep track of editing his-
tory for each token and the total number of ed-
its during derivation. The experimental result has
demonstrated robustness of EREF parsers against
EF and grammaticality improvement. Our work is
positioned at the intersection of noisy text parsing
and grammatical error correction. The EREF is a
flexible formalism not only for grammatical error
correction but other tasks with jointly editing and
parsing a given sentence.
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