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Abstract

Previous work introduced transition-based
algorithms to form a unified architecture
of parsing rhetorical structures (including
span, nuclearity and relation), but did not
achieve satisfactory performance. In this
paper, we propose that transition-based
model is more appropriate for parsing the
naked discourse tree (i.e., identifying span
and nuclearity) due to data sparsity. At the
same time, we argue that relation labeling
can benefit from naked tree structure and
should be treated elaborately with consid-
eration of three kinds of relations includ-
ing within-sentence, across-sentence and
across-paragraph relations. Thus, we de-
sign a pipelined two-stage parsing method
for generating an RST tree from text. Ex-
perimental results show that our method
achieves state-of-the-art performance, es-
pecially on span and nuclearity identifica-
tion.

1 Introduction

A typical document is usually organized in a co-
herent way that each text unit is relevant to its
context and plays a role in the entire semantics.
Text-level discourse analysis tries to identify such
discourse structure of a document and its success
can benefit many downstream tasks, such as sen-
timent analysis (Polanyi and van den Berg, 2011)
and document summarization (Louis et al., 2010).

One most influential text-level discourse pars-
ing theory is Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988), under which a text
is parsed to a hierarchical discourse tree. The leaf
nodes of this tree correspond to Elementary Dis-
course Units (EDUs, usually clauses) and then leaf
nodes are recursively connected by rhetorical rela-

tions to form larger text spans until the final tree is
built. RST also depicts which part is more impor-
tant in a relation by tagging Nucleus or Satellite.
Generally, each relation at least includes a Nucleus
and there are three nuclearity types: Nucleus-
Satellite (NS), Satellite-Nucleus (SN) and Nucleus-
Nucleus (NN). Therefore, the performance of RST
discourse parsing can be evaluated from three as-
pects: span, nuclearity and relation.

To parse discourse trees, transition-based pars-
ing model, which gains significant success in de-
pendency parsing (Yamada and Matsumoto, 2003;
Nivre et al., 2006) , was introduced to discourse
analysis. Marcu (1999) first employed a transi-
tion system to derive a discourse parse tree. In
such a system, action labels are designed by com-
bining shift-reduce action with nuclearity and re-
lation labels, so that one classifier can determine
span, nuclearity and relation simultaneously via
judging actions. More recent studies followed
this research line and enhanced the performance
by either tuning the models (Sagae, 2009) or
using more effective features (Ji and Eisenstein,
2014; Heilman and Sagae, 2015). Though these
transition-based models show advantages in the
unified processing of span, nuclearity and rela-
tion, they report weaker performance than other
methods, like CYK-like algorithms (Li et al.,
2014, 2016) or greedy bottom-up algorithms
that merge adjacent spans (Hernault et al., 2010;
Feng and Hirst, 2014).

In such cases, we analyze that the labelled data
can not sufficiently support the classifier to dis-
tinguish among the information-rich actions (e.g.,
Reduce-NS-Contrast) , since there exist very few
labelled text-level discourse corpus available for
training. The limited training data will cause un-
balanced actions and lead to the problems of data
sparsity and overfitting. Thus, we propose to use
the transition-based model to parse a naked dis-
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course tree (i.e., identifying span and nuclearity)
in the first stage. The benefits are three-fold. First,
we can still use the transition based model which is
a good tree construction tool. Second, much fewer
actions need to be identified in the tree construc-
tion process. Third, we could separately label re-
lations, which needs careful consideration.

In the second stage, relation labels for each
span are determined independently. Prior stud-
ies (Joty et al., 2013; Feng and Hirst, 2014) have
found that rhetorical relations distribute differ-
ently intra-sententially vs. multi-sententially.
They discriminate the two levels by training two
models with different feature sets. We take a fur-
ther step and argue that relations between para-
graphs are usually more loosely connected than
those between sentences within the same para-
graph. Therefore we train three separate classi-
fiers for labeling relations at three levels: within-
sentence, across-sentence and across-paragraph.
Different features are used for each classifier and
the naked tree structure generated in the first stage
is also leveraged as features. Experiments on the
RST-DT corpus demonstrate the effectiveness of
our pipelined two-stage discourse parsing model.

2 Our Method

Our discourse parsing process is composed of two
stages: tree structure construction and relation la-
beling. In this work, we follow the convention to
use the gold standard EDU segmentations and fo-
cus on building a tree with nuclearity and relation
labels assigned for each inner node.

2.1 Tree Structure Construction

In a typical transition-based system for discourse
parsing, the parsing process is modeled as a se-
quence of shift and reduce actions, which are ap-
plied to a stack and a queue. The stack is initial-
ized to be empty and the queue contains all EDUs
in the document. At each step, the parser performs
either shift or reduce. Shift pushes the first EDU
in the queue to the top of the stack, while reduce
pops and merges the top elements in the stack to
get a new subtree, which is then pushed back to
the top of the stack. A parse tree can be finally
constructed until the queue is empty and the stack
only contains the complete tree. Only one classi-
fier is learned to judge the actions at each step.

To derive a discourse tree in a unified frame-
work, prior systems design multiple reduce actions

with consideration of both nuclearity and relation
types. With 3 nuclearity types and 18 relation
types, the number of reduce actions exceeds 40,
leading to the data sparsity problem.

In our parsing model, a transition-based system
is responsible for building the naked tree without
relation labels. We only design four types of ac-
tions, including: Shift, Reduce-NN, Reduce-NS,
Reduce-SN. We identify span and nuclearity si-
multaneously in the transition-based tree construc-
tion, since nuclearity is actually closely related to
the tree structure, just as the left-arc and right-
arc action in dependency parsing. The number
of the four actions on the training set of RST-DT
corpus is shown in Table 1. Though the four ac-
tions still have an unbalanced distribution, the rel-
atively large number of occurrences assures that
the classifier in our system can be trained more
sufficiently.

Shift Reduce-NN Reduce-NS Reduce-SN
19443 4329 11702 3065

Table 1: Statistics of the Four Actions

2.2 Relation Labeling

The most challenging subtask of discourse parsing
is relation labeling. In a binarized RST discourse
tree, a relation label can be determined for each
internal node, describing the relation between its
left and right subtrees1.

We conduct relation labeling after the naked
tree structure has been constructed. On one hand,
the naked tree structure can provide more infor-
mation to support relation classification, verified
in (Feng and Hirst, 2014). For example, some re-
lations tend to appear around the tree root while
other relaitons would like to keep away from
the root. On the other hand, we can elabo-
rately distinguish relations at different levels, in-
cluding within-sentence, across-sentence, across-
paragraph. We add across-paragraph level be-
cause some relations, like textual-organization and
topic-change are observed to mainly occur be-
tween paragraphs.

Therefore, we adopt three classifiers for label-
ing relations at different levels. We first traverse
the naked tree in post order and ignore leaf nodes,
since we only need to judge relations for internal
nodes. Next, for each internal node, we determine

1Relation label is actually assigned to the satellite subtree
and a “Span” label is assigned to the nucleus substree.
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whether its left and right subtrees are in different
paragraphs, or the same paragraph, or the same
sentence. For each level, we predict a relation la-
bel using the corresponding classifier.

2.3 Training

We use SVM classifiers for the four classification
tasks (one action classifier and three relation clas-
sifiers). We take the linear kernel for fast training
and use squared hinge loss with L1 penalty on the
error term. The penalty coefficient C is set to 1.

The four classifiers are learned with offline
training. Training instances for the action classi-
fier are generated by converting gold parse trees
into a sequence of actions. Then we extract fea-
tures for each action before it is performed. Train-
ing instances for relation classifiers are prepared
by traversing the gold parse trees and extracting
features for the relation of each internal node.

3 Features

This section details the features used in our model,
which are a key to the four classifiers in discourse
parsing.

For the action classifier, features are extracted
from the top 2 elements S1, S2 in the stack and the
first EDU Q1 in the queue. We design the feature
sets for the action classifier as follows:
• Status features: the previous action; number of

elements in the stack and queue.

• Position features: whether S1, S2 or S1, Q1

are in the same sentence or paragraph; whether
they are start or end of a sentence, paragraph or
document; distance from S1, S2, Q1 to the start
and end of document.

• Structural features: nuclearity type (NN, NS
or SN) of S1, S2; number of EDUs and sen-
tences in S1, S2; length comparison of S1, S2

with respect to EDUs and sentences.
• Dependency features: whether dependency re-

lations exist between S1, S2 or between S1, Q1;
the dependency direction and relation type.

• N-gram features: the first and the last n words
and their POS tags in the text of S1, S2, Q1,
where n ∈ {1, 2}.

• Nucleus features: the dependency heads of
the nucleus EDUs2 for S1, S2, Q1 and their
POS tags; brown clusters (Brown et al., 1992;
2Nucleus EDU is defined by recursively selecting the Nu-

cleus in the binary tree until an EDU (leaf node) is reached.

Turian et al., 2010) of all the words in the nu-
cleus EDUs of S1, S2, Q1.
Next, we list all the features used for the three

relation classifiers. Given an internal node P in the
naked tree, we aim to predict the relation between
its left child Cleft and right child Cright. Depen-
dency features, N-gram features and nucleus fea-
tures discussed above are also needed, the only
difference is that these features are applied to the
left and right children. Other features include:
• Refined Structural features: nuclearity type

of node P ; distance from P , Cleft, Cright to
the start and end of the document / paragraph /
sentence with respect to paragraphs / sentences
/ EDUs; number of paragraphs / sentences /
EDUs in Cleft and Cright; length comparison
of Cleft and Cright with respect to paragraphs /
sentences / EDUs.

• Tree features: depth and height of the node P
in the tree; nuclearity type of P and P ’s grand-
parent node, if they exist. This feature type ben-
efits from our stagewise parsing method.
Relation labeling classifiers at different levels

pick somewhat different features from all the fea-
tures. N-gram and structural features work for the
three classifiers. Dependency features are only
used for within-sentence classifier. Nucleus fea-
tures and tree features are only used for across-
sentence and across-paragraph classifiers.

4 Experiments

We evaluate our parser on RST Discourse Tree-
bank (RST-DT) (Carlson et al., 2003) and thor-
oughly analyze different components of our
method. Results show our parsing model achieves
state-of-the-art performance on the text-level dis-
course parsing task.

4.1 Setup
RST-DT annotates 385 documents (347 for
training and 38 for testing) from the Wall
Street Journal using Rhetorical Structure The-
ory (Mann and Thompson, 1988). Convention-
ally, we use 18 coarse-grained relations and bi-
narize non-binary relations with right-branching
(Sagae and Lavie, 2005). For preprocessing, we
use the Stanford CoreNLP toolkit (Manning et al.,
2014) to lemmatize words, get POS tags, segment
sentences and syntactically parse them.

To directly compare with other discourse pars-
ing systems, we employ the same evaluation met-
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rics, i.e. the precision, recall and F-score 3 with re-
spect to span (S), nuclearity (N) and relation (R),
as defined by Marcu (2000).

4.2 Results and Analysis

We compare our system against other state-
of-the-art discourse parsers, shown in Table 2.
Among them, Joty et al. (2013), Li et al. (2014)
and Li et al. (2016) all employ CKY-like algo-
rithms to search global optimal parsing result.
Ji and Eisenstein (2014) and Heilman and Sagae
(2015) use transition-based parsing systems with
improvements on the feature representation.
Feng and Hirst (2014) adopts a greedy approach
that merges two adjacent spans at each step and
two CRFs are used to predict the structure and the
relation separately.

From Table 2, we can see that our method
outperforms all the others with respect to span
and nuclearity, and exceeds most systems on re-
lation labeling. Especially, our method signif-
icantly outperforms other transition-based mod-
els (Ji and Eisenstein, 2014; Heilman and Sagae,
2015) on building the naked tree structure (span
and nuclearity). This is mainly due to the proper
design of actions in our transition-based system.
The reason that Ji and Eisenstein (2014) achieve a
high score of relation labeling may be that their la-
tent representations are more advantageous in cap-
turing semantics, which will inspire us to refine
our features in future work.

Model S N R
Joty et al. (2013) 82.7 68.4 55.7
Li et al. (2014) 84.0 70.8 58.6

Ji and Eisenstein (2014) 82.1 71.1 61.6
Feng and Hirst (2014) 85.7 71.0 58.2

Heilman and Sagae (2015) 83.5 69.3 57.4
Li et al. (2016) 85.8 71.1 58.9

Ours 86.0 72.4 59.7
Human 4 88.7 77.7 65.8

Table 2: Performance comparison with state-of-
the-art parsers.

To further explore the influence of different
components in our model, we implement three
simplified versions (i.e., Simp-1/2/3), as is shown
in Table 3. Stage means whether two-stage strat-

3Precision, recall and F-score are the same when manual
segmentation is used.

4The human agreement on the annotations of RST corpus

egy is adopted, Level denotes whether three kinds
of relations (i.e., within-sentence, across-sentence,
and across-paragraph) are differently classified,
and Tree represents whether relation labeling uses
tree features generated in the first stage.

The simplest model Simp-1 is almost the same
as (Heilman and Sagae, 2015) except that we em-
ploy more features. That Simp-1 has a high per-
formance also means that transition-based method
has potentials for constructing discourse trees.
Simp-2 adopts the two-stage strategy, but uses only
one classifier to classify all the relations. We can
observe that the pipelined two stages bring a sig-
nificant improvement with respect to all the as-
pects, compared to Simp-1. The difference be-
tween Simp-3 and Ours is that Simp-3 does not
exploit the tree structure features generated in the
first stage. We can see that the three-level rela-
tion classification and tree features together bring
an improvement of about 1 percent on relation la-
beling. Compared with prior work, this slight im-
provement is also valuable and more efficacious
features need to be explored.

Model Stage Level Tree S N R
Simp-1 No No No 84.4 70.7 57.7
Simp-2 Yes No No 86.0 72.4 58.6
Simp-3 Yes Yes No 86.0 72.4 59.4
Ours Yes Yes Yes 86.0 72.4 59.7

Table 3: Comparison with simplified versions.

Though the three-level relation labeling does
not achieve prominent improvement, we get some
interesting results via analyzing the performance
on each relation. The Attribution and Same-Unit
relations are the top 2 relations that we success-
fully classify with F-score as 0.87 and 0.83 re-
spectively and over 90 percent of these two re-
lations occur within sentences. This means that
within-sentence relations are relatively easy to
cope with. We also compare our final model
with Simp-1 and results show that the Textual-
Organization and Topic-Comment relaitons gain
an increase by 20% and 8% respectively. Most
of the Textual-Organization and Topic-Comment
relations are loosely across paragraphs and their
numbers (i.e., 148 and 130 instances in training
data) are also relatively small. We can see that our
method can improve on predicting infrequent re-
lations and partly solve the data sparsity problem.
At the same time, we infer that relations indeed be-
long to different levels and deserve fine treatment.
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5 Conclusion

In this paper, we design a novel two-stage method
for text-level discourse analysis. The first stage
adopts the transition-based algorithm to construct
naked trees with consideration of span and nu-
clearity. The second stage categorizes relations
into three levels and uses three classifiers for re-
lation labeling. This pipelined design can mitigate
the data sparsity problem in tree construction, and
provide a new view of elaborately treating rela-
tions. Comprehensive experiments show the ef-
fectiveness of our proposed method.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments on this paper. This work was
partially supported by National Natural Science
Foundation of China (61572049 and 61333018).
The correspondence author of this paper is Sujian
Li.

References
Peter F Brown, Peter V Desouza, Robert L Mercer,

Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics 18(4):467–479.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2003. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Current and new directions in discourse and dia-
logue, Springer, pages 85–112.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints
and post-editing. In ACL. pages 511–521.

Michael Heilman and Kenji Sagae. 2015. Fast rhetor-
ical structure theory discourse parsing. arXiv
preprint arXiv:1505.02425 .

Hugo Hernault, Helmut Prendinger, David A DuVerle,
Mitsuru Ishizuka, and Tim Paek. 2010. Hilda: a dis-
course parser using support vector machine classifi-
cation. Dialogue and Discourse 1(3):1–33.

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
ACL. pages 13–24.

Shafiq R Joty, Giuseppe Carenini, Raymond T Ng, and
Yashar Mehdad. 2013. Combining intra-and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In ACL (1). pages 486–496.

Jiwei Li, Rumeng Li, and Eduard H Hovy. 2014.
Recursive deep models for discourse parsing. In
EMNLP. pages 2061–2069.

Qi Li, Tianshi Li, and Baobao Chang. 2016. Discourse
parsing with attention-based hierarchical neural net-
works pages 362–371.

Annie Louis, Aravind Joshi, and Ani Nenkova. 2010.
Discourse indicators for content selection in summa-
rization. In Proceedings of the 11th Annual Meeting
of the Special Interest Group on Discourse and Di-
alogue. Association for Computational Linguistics,
pages 147–156.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-Interdisciplinary Jour-
nal for the Study of Discourse 8(3):243–281.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.
pages 55–60.

Daniel Marcu. 1999. A decision-based approach to
rhetorical parsing. In Proceedings of the 37th an-
nual meeting of the Association for Computational
Linguistics on Computational Linguistics. Associa-
tion for Computational Linguistics, pages 365–372.

Daniel Marcu. 2000. The theory and practice of dis-
course parsing and summarization. MIT press.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiit,
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