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Abstract

Recently, the neural machine translation
systems showed their promising perfor-
mance and surpassed the phrase-based
systems for most translation tasks. Re-
treating into conventional concepts ma-
chine translation while utilizing effective
neural models is vital for comprehend-
ing the leap accomplished by neural ma-
chine translation over phrase-based meth-
ods. This work proposes a direct hid-
den Markov model (HMM) with neu-
ral network-based lexicon and alignment
models, which are trained jointly using the
Baum-Welch algorithm. The direct HMM
is applied to rerank the n-best list created
by a state-of-the-art phrase-based transla-
tion system and it provides improvements
by up to 1.0% BLEU scores on two differ-
ent translation tasks.

1 Introduction

The hidden Markov model (HMM) was first in-
troduced to statistical machine translation for ad-
dressing the word alignment problem (Vogel et al.,
1996). Then the HMM-based approach was
widely used along with the IBM models (Brown
et al., 1993) for aligning the source and target
words. In the conventional approach, the Bayes’
theorem is used and the HMM is applied to the
inverse translation model

Pr(eI1|fJ1 ) = Pr(eI1) · Pr(fJ1 |eI1)

=
∑

aJ1

Pr(fJ1 , a
J
1 |eI1) (1)

In this case, as a part of a noisy channel model, the
marginalisation becomes intractable for every e.

This work proposes a novel concept focusing on
direct HMM for Pr(eI1|fJ1 ), in which the align-
ment direction is from target to source positions.
This specific property allows us to introduce de-
pendencies into the translation model that take
the full source sentence into account. This as-
pect will be important for the future decoder to
be developed. The lexicon and alignment prob-
abilities in the HMM are modeled using feed-
forward neural networks (FFNN) and they are
trained jointly. The trained HMM is then ap-
plied for reranking the n-best lists created by a
state-of-the-art open source phrase-based transla-
tion system. The experiments are conducted on
the IWSLT 2016 German→English and BOLT
Chinese→English translation tasks. The FFNN-
based hybrid HMM provides improvements by up
to 1.0% BLEU scores.

2 Related Work

In order to discuss related work, we will consider
the following two key concepts that are essential
for the work to be presented:

• Neural lexicon and alignment models

The idea of using neural networks for lexicon
modeling is not new (Schwenk, 2012; Sun-
dermeyer et al., 2014; Devlin et al., 2014).
Apart from differences in the neural network
architecture, the important difference to this
work is that those approaches did not include
the concepts of HMM models and end-to-end
training. In addition to neural lexicon model-
ing, (Alkhouli et al., 2016) also applied a neu-
ral network for alignment modeling like this
work, but their training procedure was based
on the maximum approximation and on pre-
defined GIZA++ (Och and Ney, 2003) align-
ments.
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There were other studies that focused on
feature-rich alignment models (Blunsom and
Cohn, 2006; Berg-Kirkpatrick et al., 2010;
Dyer et al., 2011), but those studies did not
use a neural network to automatically learn
features (as we do in this work). (Yang et al.,
2013) used neural network-based lexicon and
alignment models inside the HMM alignment
model, but they model alignments using a
simple distortion model that has no depen-
dence on lexical context. Their goal was to
improve the alignment quality in the context
of a phrase-based translation system. How-
ever, apart from (Dyer et al., 2011), no results
on translation were reported.

The idea of using neural networks is the
basis of the state-of-the-art attention-based
approach to machine translation (Bahdanau
et al., 2015; Luong et al., 2015). However,
that approach is not based on the principle of
an explicit and separate lexicon model.

• End-to-end training

The HMM in combination with the neural
translation model lends itself to what is usu-
ally called end-to-end training. The training
criterion is the logarithm of the target sen-
tence posterior probability. This criterion re-
sults in a specific training algorithm that can
be interpreted as a combination of forward-
backward algorithm (as in EM style training
of HHMs) and backpropagation. To the best
of our knowledge, this end-to-end training
has not been considered before for machine
translation. In the context of signal process-
ing and recognition, the connectionist tem-
poral classification (CTC) approach (Graves
et al., 2006) leads to a similar training proce-
dure. (Tran et al., 2016) studied neural net-
works for unsupervised training for a part-of-
speech tagging task. In their approach, the
training criterion for this problem results in
a combination of EM framework and back-
propagation, which has a certain similarity to
the training algorithm for translation as pre-
sented in this work.

3 Definition of neural network-based
HMM

Similar to hidden alignments aj = j → i between
the source string fJ1 = f1...fj ...fJ and the target

string eI1 = e1...ei...eI in the conventional HMM,
we define the alignments in direct HMM as bi =
i→ j. Then the model can be defined as:

Pr(eI1|fJ1 ) =
∑

bI1

Pr(eI1, b
I
1|fJ1 ) (2)

Pr(eI1, b
I
1|fJ1 )

=
I∏

i=1

p(ei, bi|bi−11 , ei−11 , fJ1 )

=
I∏

i=1

p(ei|bi1, ei−11 , fJ1 )︸ ︷︷ ︸
lexicon model

· p(bi|bi−11 , ei−11 , fJ1 )︸ ︷︷ ︸
alignment model

(3)

Our feed-forward alignment model has the
same architecture (Figure 1) as the one proposed
in (Alkhouli et al., 2016). Thus the alignment
probability can be modeled by:

p(bi|bi−11 , ei−11 , fJ1 ) = p(∆i|f bi−1+γm
bi−1−γm , e

i−1
i−n)

(4)
where γm = m−1

2 and m indicates the window
size. ∆i = bi − bi−1 denotes the jump from the
predecessor position to the current position. Thus,
the jump over the source is estimated based on a
m-words source context window and n predeces-
sor target words.

fbi−1−2 fbi−1−1 fbi−1
fbi−1+1 fbi−1+2 ei−3 ei−2 ei−1

p(∆i|f bi−1+2

bi−1−2 , e
i−1
i−3)

Figure 1: A feed-forward alignment neural net-
work with 3 target history words, 5-gram source
window, a projection layer, 2 non-linear hidden
layers and a small output layer to predict jumps.

For the lexicon model, we assume a similar de-
pendence as in the alignment model with a shift,
namely on the source words within a window cen-
tred on the aligned source word and n predecessor
target words. To overcome the high costs of the
softmax function for large vocabularies, we adopt
the class-factored output layer consisting of a class
layer and a word layer (Goodman, 2001; Morin
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and Bengio, 2005). The model in this case is de-
fined as

p(ei|bi1, ei−11 , fJ1 )

= p(ei|f bi+γmbi−γm , e
i−1
i−n)

= p(ei|c(ei), f bi+γmbi−γm , e
i−1
i−n) · p(c(ei)|f bi+γmbi−γm , e

i−1
i−n)

(5)
where c denotes a word mapping that assigns each
target word to a single class, where the number
of classes is chosen to be much smaller than the
vocabulary size. The lexicon model architecture is
shown in Figure 2.

fbi−2 fbi−1 fbi fbi+1 fbi+2 ei−3 ei−2 ei−1

p(c(ei)|f bi+γmbi−γm , e
i−1
i−n) p(ei|c(ei), f bi+γmbi−γm , e

i−1
i−n)

Figure 2: A feed-forward lexicon neural network
with the same structure as the alignment model,
except a class-factored output layer.

4 Training

The training data of the direct HMM are the source
and target sequences, without any alignment in-
formation. In the training of direct HMM in-
cluding neural network-based models, the weights
have to be updated along with the posterior prob-
abilities calculated by the Baum-Welch algorithm.
Similar to the training procedure used in (Berg-
Kirkpatrick et al., 2010), we apply the EM algo-
rithm and define the auxiliary function as

Q(θ; θ̂)

=
∑

bI1

p(bI1|fJ1 , eI1, θ) log p(eI1, b
I
1|fJ1 , θ̂)

=
∑

bI1

p(bI1|fJ1 , eI1, θ)
I∑

i=1

[log p(ei|fbi+γmbi−γm , e
i−1
i−n, α̂)

+ log p(∆i|fbi−1+γm
bi−1−γm , e

i−1
i−n, β̂)]

=
∑

i

∑

j

pi(j|eI1, fJ1 , θ) log p(ei|f j+γmj−γm , e
i−1
i−n, α̂)

+
∑

i

∑

j′

∑

j

pi(j
′, j|eI1, fJ1 , θ) log p(∆i|f j

′+γm
j′−γm , e

i−1
i−n, β̂)

(6)

where θ̂ = {α̂, β̂}, j′ = bi−1 and

pi(j|eI1, fJ1 , θ) =
∑

bI1:bi=j

p(bI1|eI1, fJ1 , θ) (7)

Then the parameters can be separated for lexi-
con model and alignment model:

Q(θ; θ̂) = Qlex(θ; α̂) +Qalign(θ; β̂) (8)

where

∂Qlex(θ, α̂)

∂α̂
=

∑

i

∑

j

forward-backward algorithm︷ ︸︸ ︷
pi(j|eI1, fJ1 , θ)

· ∂
∂α̂

log p(ei|f j+γmj−γm , e
i−1
i−n, α̂)

︸ ︷︷ ︸
backpropagation

(9)

∂Qalign(θ, β̂)

∂β̂
=

∑

i

∑

j′

∑

j

forward-backward algorithm︷ ︸︸ ︷
pi(j

′, j|eI1, fJ1 , θ)

· ∂
∂β̂

log p(∆i|f j
′+γm
j′−γm , e

i−1
i−n, β̂)

︸ ︷︷ ︸
backpropagation

(10)
From Equations (9) and (10) we can observe

that the marginalisation of hidden alignments
(
∑

j pi(j|eI1, fJ1 , θ)) is the only difference com-
pared to the derivative of neural network train-
ing based on word-aligned data. In this approach
we iterate over all source positions and the word
alignment toolkit such as GIZA++ is not required.
Furthermore, the word-aligned data generated e.g.
by GIZA++ might contain unaligned and multiply
aligned words, which make the data difficult to use
for training neural networks. Thus the heuristic-
based approaches (Sundermeyer et al., 2014; De-
vlin et al., 2014) have to be used in order to guar-
antee the one-on-one alignments, which may neg-
atively influence the quality of the alignments. By
contrast, the neural network-based HMM is not
constrained by these heuristics. In addition, even
though the training process of the direct HMM
takes more time than the neural network training
on the word-aligned data, we should note that gen-
erating the word-aligned data using GIZA++ is
also a time-consuming process.

In general, our training procedure can be sum-
marized as follows:
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1. One iteration IBM-1 model training to cre-
ate lexicon table for initializing the forward-
backward table.

2. In the first epoch, for each sentence
pair calculate and save the entire table
of posterior probabilities pi(b|eI1, fJ1 ) (also
pi(b

′, b|eI1, fJ1 ) for alignment model) using
forward-backward algorithm based on the re-
sults of IBM-1 model.

3. Training neural network lexicon and align-
ment models based on the posterior probabil-
ities.

4. From the second epoch onwards:

(a) For each sentence pair, calculating the
posterior probabilities based on the lex-
icon and alignment probabilities esti-
mated by neural network models.

(b) Updating weights of neural networks
based on the posterior probabilities.

(c) Repeating step 4 until the perplexity
converges.

In this work the IBM-1 initialization is required.
We tried to train neural network models from
scratch, but the perplexity converges towards a bad
local minimum and gets stuck in it. We also at-
tempted other heuristics for initialization, such as
assigning probability 0.9 to diagonal alignments
and spreading the left 0.1 evenly among other
source positions. The resulted perplexity is much
higher compared to initializing using IBM-1.

5 Experimental Results

The experiments are conducted on the
IWSLT 2016 German→English and BOLT
Chinese→English translation tasks, which con-
sist of 20M and 4M parallel sentence pairs
respectively. The feed-forward neural network
alignment and lexicon models are jointly trained
on the subset of about 200K sentence pairs. As
an initial research of this topic, our new model
is only applied for reranking n-best lists created
by a phrase-based decoder. The maximum size
of the n-best lists is 500. The translation quality
is evaluated by case-insensitive BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006) metrics
using MultEval (Clark et al., 2011). The scaling
factors are tuned with MERT (Och, 2003) with
BLEU as optimization criterion on the develop-
ment sets. For the translation experiments, the

averaged scores are presented on the development
set from three optimization runs.

Our direct HMM consists of a feed-forward
neural network lexicon model with following con-
figuration:

• Five one-hot input vectors for source words
and three for target words

• Projection layer size 100 for each word

• Two non-linear hidden layers with 1000 and
500 nodes respectively

• A class-factored output layer with 1000 sin-
gleton classes dedicated to the most frequent
words, and 1000 classes shared among the
rest of the words.

and a feed-forward neural network alignment
model with the same configuration as the lexicon
model, except a small output layer with 201 nodes,
which reflects that the aligned position can jump
within the scope from −100 to 100 (Alkhouli
et al., 2016).

We conducted experiments on the source and
target window size of both network models.
Larger source and target windows could not pro-
vide significant improvements on BLEU scores, at
least for rescoring experiments.

The model is applied for reranking the n-best
lists created by the Jane toolkit (Vilar et al., 2010;
Wuebker et al., 2012) with a log-linear framework
containing phrasal and lexical smoothing models
for both directions, word and phrase penalties, a
distance-based reordering model, enhanced low
frequency features (Chen et al., 2011), a hierarchi-
cal reordering model (Galley and Manning, 2008),
a word class language mode (Wuebker et al., 2013)
and an n-gram language model. The word align-
ments used for the training of phrase-tables are
generated by GIZA++, which performs the align-
ment training sequentially for IBM-1, HMM and
IBM-4. More details about our phrase-based base-
line system can be found in (Peter et al., 2015).

The experimental results are demonstrated in
Table 1. The rescoring experiments are conducted
by adding HMM probability as feature and tuned
with MERT. The applied attention-based neural
network is a neural machine translation system
similar to (Bahdanau et al., 2015). The decoder
and encoder word embeddings are of size 620,
the encoder uses a bidirectional layer with 1000
LSTMs (Hochreiter and Schmidhuber, 1997) to
encode the source side. A layer with 1000 LSTMs

128



Table 1: Experimental results of rescoring using neural network-based direct HMM. The model with
sum denotes the system proposed in this work, while the model with Viterbi denotes the model with the
same neural network structure, which was trained based on the word-aligned data (alignments generated
by GIZA++) (Alkhouli et al., 2016). Improvements by systems marked by ∗ have a 95% statistical
significance from the NN-based direct HMM (Viterbi) system, whereas † denotes the 95% statistical
significant improvements with respect to the attention-based system in rescoring. 1 was used in reranking
the n-best lists, while 2 denotes the stand-alone attention-based decoder.

IWSLT BOLT
TEDX.tst.2014 MSLT.dev2016 DEV12 P1R6

BLEU[%] TER[%] BLEU[%] TER[%] BLEU[%] TER[%] BLEU[%] TER[%]

Phrase-based translation system 25.9 55.7 39.7 39.8 17.9 68.3 17.1 67.4
+ NN-based direct HMM (Viterbi) 26.6 54.9 40.2 39.3 18.5 67.6 17.8 66.8
+ NN-based direct HMM (sum) 26.9 54.7 40.6∗ 38.9∗† 18.9∗ 67.3∗† 18.3∗ 66.4
+ attention-based system 1 26.8 55.0 40.4 39.3 18.9∗ 67.6 18.0 66.4∗

Stand-alone attention-based system 2 27.0 54.8 40.4 39.2 19.6∗† 67.0∗† 18.5∗† 66.1∗

is used by the decoder. The data is converted
into subword units using byte pair encoding with
20000 operations (Sennrich et al., 2016). During
training a batch size of 50 is used. More details
about our neural machine translation system can
be found in (Peter et al., 2016).

With n-best rescoring, all neural network-based
systems achieve significant improvements over the
phrase-based system. The neural network-based
HMMs provide promising performance, even with
simple feed-forward neural networks. The direct
HMM trained by the EM procedure with marginal-
izing the hidden alignments outperformed the
same model trained on the word-aligned data.
For the rescoring tasks, it provides comparable
performance with the attention-based network.
The neural network-based HMM also helps the
phrase-based system achieve comparable results
with the stand-alone attention-based system on the
German→English task.

6 Conclusion and Future Work

This work aims to close the gap between the con-
ventional word alignment models and the novel
neural machine translation. The proposed di-
rect HMM consists of neural network-based align-
ment and lexicon models, both models are trained
jointly and without any alignment information.
With the simple feed-forward neural network
models, the HMM model already provides promis-
ing results and significantly improves the strong
phrase-based translation system.

As future work, we are searching for alter-
natives to initialize the training instead of using
IBM-1. We will investigate recurrent model struc-

tures, such as the LSTM representation for source
and target word embeddings (Luong et al., 2015).
In addition to the network structure, we will im-
plement a stand-alone decoder based on this novel
model. The first step would be to apply maxi-
mum approximation for the search problem as elu-
cidated in (Yu et al., 2017). Then we plan to in-
vestigate heuristics for marginalizing the hidden
alignment during search.
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